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Abstract: The cocrystallization of high-energy explosives has attracted great interests since it can
alleviate to a certain extent the power-safety contradiction. 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-
hexaaza-isowurtzitane (CL-20), one of the most powerful explosives, has attracted much attention for
researchers worldwide. However, the disadvantage of CL-20 has increased sensitivity to mechanical
stimuli and cocrystallization of CL-20 with other compounds may provide a way to decrease
its sensitivity. The intermolecular interaction of five types of CL-20-based cocrystal (CL-20/TNT,
CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular dynamic simulation
was reviewed. The preparation methods and thermal decomposition properties of CL-20-based
cocrystal are emphatically analyzed. Special emphasis is focused on the improved mechanical
performances of CL-20-based cocrystal, which are compared with those of CL-20. The existing
problems and challenges for the future work on CL-20-based cocrystal are discussed.

Keywords: molecular dynamic simulation; CL-20; cocrystal energetic materials; preparation;
characterization

1. Introduction

Energetic materials (EMs) are widely used in military and civilian applications, such as weaponry,
aerospace explorations and fireworks. However, both the power and safety of energetic materials are
the most concern in the field of energetic materials application, but there is an essential contradiction
between them: the highly energetic materials are often not safe, and, at present, the rareness of pure
low-sensitive and highly energetic explosive has been found [1–3]. For a long time, in order to obtain
EMs with lower sensitivity, the modifications of existing explosives have often focused mainly on
recrystallizing with solution and coating with polymer [4–6]. However, these traditional methods
cannot markedly reduce the sensitivities of existing explosives by only modifying morphology or
diluting power, due to the unchanging inherent structures of explosive molecules [7,8]. Due to the
stringent requirements for both low-sensitivity and high-power simultaneously, the cocrystallization of
explosive, a technique by which a multi-component crystal of several neutral explosive molecules forms
in a defined ratio through non-covalent interactions (e.g., H-bond, electrostatic interaction, etc.) [9,10],
has attracted great interest since it can alleviate, to a certain extent, the power-safety contradiction [11,12].
The new energetic cocrystals can potentially exhibit decreased sensitivity, higher performance through
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increased packing efficiency or oxygen balance, or improve aging due to altered bonds to specific
groups on constituent molecules [13–15]. Recently a lot of cocrystal explosives have been synthesized
and characterized [16–20]. An evaluation of the power and safety of energetic cocrystals has been
carried out, and cocrystallization is becoming increasingly hot in the field of energetic materials [21].
It was found that the stability (sensitivity) and detonation performance (energy, detonation velocity,
and detonation pressure, etc.) of cocrystal explosive could be influenced by the molar ratio of molecular
combination. Generally, when a cocrystal has too much content of high-energy explosives, the packing
density and detonation performance will be increased, with possible increase in explosive sensitivity.
On the contrary, the sensitivity will be decreased in a cocrystal explosive with a high content of
low-energetic or non-energetic explosives. The searches for stable insensitive and highly-energetic
explosive is the primary goal in the field of energetic material chemistry. Therefore, the molar ratios of
two or more kinds of explosive components should be controlled in a reasonable scope, and it is very
necessary to clarify the influence of the ratio of molecular combination on the stability and detonation
performance of cocrystal explosives, such as packing density, oxygen balance, detonation velocity,
and detonation pressure, etc. [22].

The compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is currently
known to be one of the most powerful explosives [23], and it is also a superior alternative to HMX
for applications in low signature rocket propellants [24–26] and gun propellants [27]. However,
the disadvantage of CL-20 is its increased sensitivity to mechanical stimuli and cocrystallization of
CL-20 with other compounds, which may provide a way to decrease its sensitivity [28]. Moreover, the
relationship of the reaction kinetic process with temperatures and densities for pyrolysis of CL-20/TNT
cocrystal was investigated using a reactive force field (ReaxFF) molecular dynamics simulation.
The evolution distribution of potential energy and total species, decay kinetics and kinetic parameters
for thermal decomposition reaction of CL-20 and TNT were analyzed. It was shown that the breaking
of −NO2 bond from CL-20 molecules is the initial reaction pathway for the thermal decomposition
of the cocrystal. With increasing the cocrystal density, the reaction energy barrier of CL-20 and
TNT molecule decomposition increases correspondingly. The decomposition process of TNT has an
inhibition action on the decomposition of CL-20 [29]. Meanwhile, the combustion behavior, flame
structure, and thermal decomposition of bi-molecular crystals of CL-20 with glycerol triacetate (GTA),
tris [1,2,5]oxadiazolo [3,4-b:3′,4′-d:3′’,4′’-f]azepine-7-amine (ATFAz), 4,4′’-dinitro-ter-furazan (BNTF),
oxepino [2,3-c:4,5-c’:6,7-c”] trisfurazan (OTF), oxepino [2,3-c:4,5-c’:6,7-c”] trisfurazan-1-oxide (OTFO)
were studied [30]. It was found that the introduction of volatile and thermally stable compounds into
the composition with CL-20 decreased the thermal stability of CL-20. The combustion mechanism of
the CL-20 cocrystal depends both on the burning rate of the second component and its volatility. While
there are few overview papers on CL-20-based cocrystal’s simulation, preparation and characterization.
Thus, in this paper, the achievements in the intermolecular interaction of five types of CL-20-based
cocrystals (CL-20/TNT, CL-20/HMX, CL-20/FOX-7, CL-20/TKX-50 and CL-20/DNB) by using molecular
dynamic simulation are reviewed. The preparation and performance of CL-20-based cocrystals are
emphatically analyzed, and the existing problems and challenges in the future work are reviewed.
The aim of this work is mainly to explore the nature of the formation of the different CL-20-based
cocrystal morphology and clarify the influence of the ratio of molecular combination on the stability
and detonation performance of CL-20-based cocrystal explosives.

2. Modelling and Simulation

2.1. Molecular Structures of Cocrystal Monomer

In order to simulate the properties of cocrystals, the molecular structures of each material can be
constructed. Table 1 lists the molecular structures of different energetic materials formed cocrystals.
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Table 1. Molecular structures of different energetic materials formed cocrystals.

Samples Molecular Structures Samples Molecular Structures

CL-20
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number of molecules should be adopted as a standard for assessing the component interaction 
strengths and stabilities of cocrystals. Therefore, according to our recent investigation [32], an energy 
correction formula for binding energy was used to standardize (uniform) the differences caused by 
diverse supercells and different molecular molar ratios as follows: 

Eb* = Eb·N0/Ni, (1) 

where Eb* denotes the binding energy after corrected, and Ni and N0 are the number of molecules for 
different supercells and a standard pattern (molar ratio in 1:1), respectively. The binding energy Eb is 
calculated by the following formula: 

Eb = Etot − (nECL-20 + mECM), (2) 

where Etot, ECL-20 or ECM is single point energy of cocrystal or monomer; n and m are the number of 
monomers in cocrystal. 

2.2. CL-20/TNT System 

CL-20 is a complex cage compound, which can be regarded as a six-membered ring and two 
five-membered rings arranged together, and it has six nitro groups. The preparation of CL-20/TNT 
cocrystal by the solvent method has attracted much attention worldwide due to its high-energy, 
insensitive and cheap explosives. The density and melting point of the CL-20/TNT cocrystal explosive 
(1.91 cm, 136 °C) are between CL-20 (2.04 g/cm3, 210 °C) and TNT (1.70 g/cm3, 81 °C), and the 
sensitivity is nearly double reduced that of CL-20 [11]. Figure 1 shows the intermolecular hydrogen 
bond of CL-20/TNT cocrystal. 
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CL-20 is a complex cage compound, which can be regarded as a six-membered ring and two 
five-membered rings arranged together, and it has six nitro groups. The preparation of CL-20/TNT 
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Simulation details: Andersen was set as the temperature control method (298.15 K). COMPASS
force-field was assigned. Summation methods for electrostatic and van der Waals were Ewald and
Atom-based, respectively. The accuracy for the Ewald method was 1.0 × 10−4 kcal·mol−1. Cutoff

distance and buffer width for the Atom-based method were 15.5 Å and 2.0 Å, respectively; 1.0 f. of
time step was set for MD processes, and the total dynamic time was performed with 100,000 fs. All the
MD calculations were carried out with MS 7.0 [31].

Because the binding energies of cocrystals obtained from the MD calculations are of different
numbers of molecules, i.e., different supercells and different molecular molar ratios, those of the
same number of molecules should be adopted as a standard for assessing the component interaction
strengths and stabilities of cocrystals. Therefore, according to our recent investigation [32], an energy
correction formula for binding energy was used to standardize (uniform) the differences caused by
diverse supercells and different molecular molar ratios as follows:

Eb* = Eb·N0/Ni, (1)

where Eb
* denotes the binding energy after corrected, and Ni and N0 are the number of molecules for

different supercells and a standard pattern (molar ratio in 1:1), respectively. The binding energy Eb is
calculated by the following formula:

Eb = Etot − (nECL-20 + mECM), (2)

where Etot, ECL-20 or ECM is single point energy of cocrystal or monomer; n and m are the number of
monomers in cocrystal.

2.2. CL-20/TNT System

CL-20 is a complex cage compound, which can be regarded as a six-membered ring and two
five-membered rings arranged together, and it has six nitro groups. The preparation of CL-20/TNT
cocrystal by the solvent method has attracted much attention worldwide due to its high-energy,
insensitive and cheap explosives. The density and melting point of the CL-20/TNT cocrystal explosive
(1.91 cm, 136 ◦C) are between CL-20 (2.04 g/cm3, 210 ◦C) and TNT (1.70 g/cm3, 81 ◦C), and the sensitivity
is nearly double reduced that of CL-20 [11]. Figure 1 shows the intermolecular hydrogen bond of
CL-20/TNT cocrystal.
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2.3. CL-20/HMX System 

Figure 1. Intermolecular hydrogen bond of CL-20/TNT cocrystal [8], with permission from Han Neng
Cai Liao, 2012.

The non-bond distances of O (3), H (5) in CL-20 and H (8), O (13) in TNT are 0.231 nm and
0.244 nm, respectively, which are smaller than the sum of their van der Waals radii (0.272 nm [33]),
indicating the existence of intermolecular hydrogen bonds. Through the interaction of C-H . . . O
hydrogen bond between the intermolecular, CL-20 and TNT molecules are connected as the form of
“zigzag chain” structure, and combined to form the stable structure of CL-20/TNT cocrystal, indicating
that the intermolecular hydrogen bond makes the arrangement of CL-20 and TNT molecules in the
crystal more regular, and the molecular packing is close with higher crystal density (1.84 g·cm−3).

Meanwhile, the cohesive energy density (CED) of CL-20/TNT cocrystal and its CL-20/TNT
composite mixture at different temperatures were investigated [11], results show in Table 2 and Figure 2.
With the increase of temperature, CED and its component VDW force and electrostatic force decrease
gradually, which is negatively related to the law that the sensitivity increases gradually with the
increase of temperature. Under certain conditions, CED, which reflects the energy required for phase
transition, can be used to determine the relative thermal sensitivity.

Table 2. The cohesive energy density (CED) of CL-20/TNT cocrystal and its CL-20/TNT composite at
different temperatures [11], with permission from Han Neng Cai Liao, 2016.

Samples T/K VdW Energy/kJ·cm−3 Electrostatic Energy/kJ·cm−3 CED/kJ·cm−3

CL-20/TNT
cocrystal

195 0.37 (0.01) 0.54 (0.01) 0.91 (0.01)

245 0.36 (0.00) 0.52 (0.01) 0.88 (0.01)

295 0.36 (0.00) 0.50 (0.01) 0.86 (0.01)

345 0.35 (0.00) 0.48 (0.01) 0.83 (0.01)

395 0.34 (0.00) 0.47 (0.01) 0.81 (0.01)

CL-20/TNT
composite 295 0.31 (0.01) 0.45 (0.01) 0.76 (0.01)

Deviations are listed in the parentheses.
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2.3. CL-20/HMX System

For HMX, if CL-20 and HMX can form the cocrystal in a certain proportion, the sensitivity of
CL-20 can be significantly reduced on the basis of its energy reduce little; on the other hand, the cost of
explosive can be significantly reduced and its application range can be expanded [32].

The properties of hexanitrohexaazaisowurtzitane (CL-20)/cyclotetramethylenete-tranitramine
(HMX) cocrystal were simulated and compared with those of CL-20/HMX mixture with the molar ratio
of CL-20 and HMX as 2:1 [2]. Simulation and calculation results show that the cocrystal process of
CL-20/HMX can significantly improve the anti-deformation ability and ductility of the system, and the
tensile modulus of the cocrystal structure is greater than that of the mixture. The maximum bond
length (Lmax) decreases in the order of: [CL-20/HMX mixture] > [ε-CL-20] > [β-HMX] > [CL-20/HMX
cocrystal]. The structure of CL-20/HMX mixture is sensitized by the predominant interaction of Van der
Waals force (Table 3), showing that the two components in the mixture system can be stably adsorbed
and have good physical compatibility. The cohesive energy density (CED) value of CL-20/HMX
cocrystal structure is far greater than that of CL-20/HMX mixture, and with the increase of temperature,
the cohesive energy density of the two components decreases and the structural stability becomes
worse (Table 4). The low sensitivity of CL-20/HMX cocrystal system is caused by the existence of
hydrogen bond CH–O with relatively short length.

Table 3. The binding energy between each component of CL-20/HMX mixture, kJ·mol−1 [2],
with permission from Han Neng Cai Liao, 2016.

Interaction Etotal ECL-20 EHMX Einter Ebind

E −25,926.37 −6256.29 −395.88 −5718.20 5718.20

vdW −1656.07 632.68 1187.37 −3363.27 3363.27

Electrostatic −23,541.63 −7939.87 −15,181.47 −420.30 420.30

Etotal is the single point energy of the equilibrium structure, ECL-20 is the single point energy of ε-CL-20, EHMX is the
single point energy of HMX, E is the total energy of each structure, vdW is the energy of each structure obtained by
vdW interaction, electrostatic is the energy of each structure obtained by electrostatic interaction, Ebind is binding
energy of CL-20 with HMX, Einter is interaction energy of CL-20 with HMX.

Table 4. CED of CL-20/HMX cocrystal and mixture systems at different temperatures [2], with permission
from Han Neng Cai Liao, 2016.

Samples Parameters
T/K

200 250 298 350 400

CL-20/HMX
cocrystal

CED 1.167 1.162 1.166 1.151 1.145

vdW 0.080 0.072 0.074 0.054 0.054

electrostatic 1.087 1.090 1.092 1.097 1.091

CL-20/HMX
mixture

CED 0.069 0.036 0.032 - 0.021

vdW 0.034

electrostatic 0.035 0.038 0.036 0.034 0.036

2.4. CL-20/FOX-7 System

For CL-20/FOX-7 cocrystal, the unit cell models of CL-20 and FOX-7 were constructed according to
their experimental cell parameters, respectively. Initial models were obtained by discovering module
in the COMPASS force field; 1.0 × 10−5 kcal mol−1 of accuracy was required. The CL-20 and FOX-7
crystal morphologies in vacuum were predicted by the Growth morphology model. Different cocrystal
molar ratios can be treated by the substituted method: molecules of CL-20 supercells were substituted
by an equal number of FOX-7 at molar ratios of 8:1, 5:1, 3:1, 2:1, and 1:1 (CL-20/FOX-7). Molecules of
FOX-7 supercells were substituted by an equal number of CL-20 (ε-, γ- and β-forms) at molar ratios
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of 1:2, 1:3, 1:5, and 1:8 (CL-20/FOX-7). Substituted molecules in this method were determined by the
Miller indices hkl. For the substituted models, NVT ensembles were selected.

Five growth faces (0 1 1), (1 01), (1 0 -1), (0 0 2), and (1 1 -1) and random face of ε-, γ- and
β-CL-20 were selected to study the binding energies of the cocrystals with FOX-7 in different molar
ratios. These growth faces and a random face of FOX-7were selected to study the binding energies of
cocrystals. Based on the MD simulation of substituted models, Eb

* of the ε-, γ-, and β-CL-20 cocrystal
explosives with FOX-7 on the different cocrystal faces in the different molar ratios are calculated
(Table 5). As can be seen, except for the random trend, there is a trend that the strongest binding energies
Eb

* in the γ-CL-20/FOX-7 are larger than those in ε-CL-20/FOX-7 and β-CL-20/FOX-7. Furthermore,
for γ-CL-20/FOX-7, the binding energies Eb

* on the (1 1 0) and (1 0 -1) cocrystal faces of FOX-7 in 1:2
and those on the (1 0 -1) and (1 1 0) faces of γ-CL-20 in 1:1 are larger than the other cases. These results
indicate that FOX-7 may prefer cocrystalizing with γ-CL-20 on the (1 1 0) and (1 0 -1) faces of FOX-7 in
1:2, or on the (1 0 -1) and (1 1 0) faces of γ-CL-20 in 1:1. It is noted that, as mentioned above, for the
cocrystal with the excess ratio of FOX-7, the FOX-7 supercells were substituted by an equal number
of CL-20, while in the cocrystal with the excess ratio of CL-20, the CL-20 supercells were substituted
by FOX-7.

Table 5. The corrected binding energy (in kJ·mol−1) of the substituted models of CL-20/FOX-7 [10],
with permission from the Journal of Mol Model, 2016.

8:1 5:1 3:1 2:1 1:1 1:2 1:3 1:5 1:8

ε

(0 1 1) −337.2 −625.4 −982.3 −1204.2 −1165.2 −1262.8 −1224.7 −844.1 −607.2

(1 1 0) −303.0 −578.6 −748.5 −1125.2 −1383.6 −1417.7 −1232.2 −1115.3 −642.2

(1 0 -1) −348.2 −619.5 −807.7 −1125.9 - −1183.1 −1189.3 −806.4 −677.0

(0 0 2) −323.2 −523.8 −839.4 −946.4 −1136.5 −1206.7 −787.9 −728.4 −761.1

(1 1 -1) −365.2 −490.0 −967.1 −1079.2 −1290.4 −1074.0 −1267.2 −911.7 −624.6

(0 2 1) −372.5 −572.9 −964.2 −1031.1 −1368.5

(1 0 1) −416.6 −523.0 −938.2 −1184.7 −1422.7 −1122.6 −927.9 −871.6 −681.2

Random −381.5 −581.4 −946.3 −1097.3 −1589.0 −1361.4 −1446.0 −1078.0 −822.1

γ

(0 1 1) −393.6 −503.1 −918.0 −1023.5 −1231.6 −1288.0 −1140.1 −1028.2 −518.3

(1 1 0) −363.5 −511.2 −940.2 −1101.6 −1456.7 −1605.1 −1387.0 −1179.4 −735.1

(1 0 -1) −452.6 −543.1 −815.2 −1128.4 −1489.2 −1588.2 −1311.8 −1056.6 −726.0

(0 0 2) −428.3 −511.6 −762.3 −878.5 −1003.9 −1257.3 −1157.3 −967.8 −732.3

(1 1 -1) −420.3 −493.1 −659.3 −815.2 −979.2 −1137.0 −1024.5 −922.3 −657.1

(0 2 1) −466.0 −526.3 −762.1 −912.1 −1218.1

(1 0 1) −431.8 −527.6 −988.6 −1215.1 −1345.5 −1322.1 −1252.3 −977.8 −511.6

Random −378.9 −515.8 −927.5 −1288.4 −1587.2 −1369.7 −1201.5 −835.6 −417.5

β
(0 0 1) −367.0 −578.9 −913.4 −1007.5 −1137.6

(0 1 0) −389.1 −618.0 −985.6 −1123.7 −1165.2

Random −408.5 −579.3 −866.2 −1252.8 −1443.6 −1532.7 −1276.8 −828.1 −497.6

2.5. CL-20/TKX-50 System

TKX-50 is an ionic salt structure with two hydroxylamine cations, and it can easily form hydrogen
bonds between H of -NH3

+ in TKX-50 and O of –NO2 in CL-20, which is in good agreement with
the results of surface electrostatic potential energy analysis. The surface electrostatic potential energy
analysis of CL-20 and TKX-50 is useful for exploring the formation mechanism of CL-20/TKX-50
cocrystal. CL-20/TKX-50 cocrystals with the mole ratio of 1:1, 1:2, 1:3 and 2:3 were prepared by
means of the solvent–nonsolvent method [34]. Compared with the raw materials and the mixture,
the XRD spectra of CL-20/TKX-50 cocrystals have no obvious change when the feed ratio is 1:1, 1:3 and
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2:3, and it can be considered that the eutectic of CL-20/TKX-50 cocrystals has not been successfully
prepared. Finally, the optimal mole ratio is 1:2. Figure 3 shows the surface electrostatic potential energy
distribution map of CL-20 (a) and TKX-50 (b), and the equilibrium structure of CL-20/TKX-50 cocrystal
model (c), a schematic diagram of intermolecular interaction of CL-20 and TKX-50 model (d).Molecules 2020, 25, x FOR PEER REVIEW 7 of 20 
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Figure 3. Surface electrostatic potential energy distribution map of CL-20 (a) and TKX-50 (b), and
the equilibrium structure of CL-20/TKX-50 cocrystal model (c), CL-20 and TKX-50 models (d) [34],
with permission from Huo Zha Yao Xue Bao, 2020.

2.6. CL-20/DNB System

As a cheap and insensitive explosive, DNB is often used as an alternative explosive for TNT, but its
energy is not ideal. If CL-20 and DNB can be combined in the same lattice through noncovalent bond
at the molecular level through cocrystal technology to form an explosive crystal with unique structure,
it is expected that the sensitivity and cost of CL-20 will be greatly reduced without significant energy
reduction, so as to expand the application range of CL-20 [12]. In order to improve the hazardous
performance of CL-20, 1,3-dinitrobenze (DNB) was introduced to CL-20 to form CL-20/DNB cocrystal
with 1:1 mole ratio. The primitive cell of CL-20/DNB cocrastal was shown in Figure 4.
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The molecular dynamics simulation of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,3-
dinitrobenzene (DNB) cocrystal and CL-20/DNB cocrystal with two polymer binders, hydroxyl-
terminated polybutatiene (HTPB) and polyethylene glycol (PEG) respectively were conducted [3].
Results indicate that the binding energy of CL-20/DNB/PEG is larger than that of CL-20/DNB/HTPB,
predicting that the stability and compatibility of the former is better than those of the latter (Table 6).
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In comparison with CL-20/DNB cocrystal, an addition of a small amount of binder (HTPB or PEG)
decreases the elastic constants (Cij), tensile modulus (E), bulk (K) and shear modulus (G), while Cauchy
pressure (C12–C44) and K/G value increase, showing that the stiffness of the polymerbonded explosives
(PBXs) system is weaker, and its ductibility is better.

Table 6. Total energies, component energies, binding energy and its normalized values of two different
polymerbonded explosives (PBXs) [3], with permission from Han Neng Cai Liao, 2015.

Samples Etotal Ebase Epolymer Ebind E’bind

CL-20/DNB/HTPB −51,789.1 −51,322.6 343.0 809.4 185.2

(114.1) (108.0) (29.5) (31.3) (7.2)

CL-20/DNB/PEG −51,451.5 −51,367.3 858.4 942.6 214.2

(134.5) (124.9) (42.1) (42.6) (9.7)

In addition, the initial thermal decomposition pathways, as well as some important products
generating mechanism of CL-20/DNB cocrystal at high temperatures (2000, 2500 K and 3000 K),
were studied by reactive molecular dynamics simulations using ReaxFF force field [4]. Results
show that with the increasing of temperature during the thermal decomposition process, the time
to balance and potential energy decrease, while the quantity of products increases. All the CL-20
molecules decompose faster than that of DNB, and as the temperature rises, the decomposition rate
of DNB increases significantly. According to the product identification analysis, the main thermal
decomposition products are NO2, NO, N2, H2O, HNO3, HON, HONO and CO2 for the cocrystal.
The major initial decomposition mechanism is the breaking of N−NO2 in the CL-20 and C−NO2 in
the DNB, which contributes to the formation of NO2. Then, the number of NO2 increases to the peak
rapidly and decreases subsequently (Figure 5). After the NO2→ONO rearrangement, it participates in
other reactions and eventually N2, NO, HONO, HON, H2O occur, and so on. In addition, the simulation
results indicate that carbon-containing clusters formed in the later stage of decomposition at 2500 K and
3000 K, which is a common phenomenon during the detonation of rich carbon-containing explosives.
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Meanwhile, the effect of CL-20/DNB cocrystallizing and mixing on the sensitivity, binding energy,
mechanical properties and thermal decomposition on the molecular level were investigated under
the condition of the COMPASS force field. Results indicate that the cocrystallizing and mixing can
reduce the sensitivity of CL-20, increase that of DNB, and the cocrystallizing effect is more obvious and
stable [35].

3. Preparation

For CL-20/TNT cocrystal, the CL-20/TNT cocrystal with 1:1 mole ratio was prepared by means of
the recrystallization method at room temperature, and with ethyl acetate as solvent [8]. It was found
that the morphology of CL-20/TNT cocrystal is different from that of CL-20 and TNT. The crystal of
CL-20 is “spindle” shape and TNT is an irregular block crystal. However, CL-20/TNT cocrystal is a
prismatic crystal with a smooth and complete surface and uniform size (Figure 6). The average particle
size is 270 µm, indicating that the designing and preparation of cocrystal can effectively change the
shape and size of explosive cocrystals.
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At the same time, ultrafine CL-20/TNT cocrystal explosive was prepared by a spray-drying
method [20]. Results show that the prepared samples are not the mix of CL-20 and TNT but rather
ultrafine CL-20/TNT cocrystal explosives. The particle sizes of the cocrystal explosives were lower
than 1 µm and they can aggregate into many microparticles, which are spherical in shape and 1–10 µm
in size (Figure 7). The thermal decomposition process can be divided into two stages. The peak
temperatures of exothermic decomposition for the first and second stages are 218.98 ◦C and 253.15 ◦C,
respectively (Figure 8). The characteristic drop height of CL-20/TNT cocrystal explosives is 49.3 cm,
which increases by 36.2 cm compared with that of raw CL-20 (Table 7).
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Figure 7. SEM photographs of explosive samples. (a) Raw CL-20 (×100); (b) Raw TNT (×100);
(c) CL-20/TNT cocrystal (×900); (d) CL-20/TNT cocrystal (×4200); (e) Spry drying CL-20 [20],
with permission from Han Neng Cai Liao, 2015.
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Figure 8. Differential scanning calorimetry (DSC) curves of explosive samples [20], with permission
from Han Neng Cai Liao, 2015.

Table 7. The lattice parameters of CL-20/DNB cocrystal were calculated by the ReaxFF force field
compared with the experimental value.

Lattice Parameter Experimental Value [5] ReaxFF Error/%

a/Å 9.4703 9.5606 0.95

b/Å 13.4589 13.5872 0.95

c/Å 33.620 33.9406 0.95

Density/g·cm−3 1.880 1.8268 −2.8

The ultrafine CL-20/HMX cocrystal explosive was prepared by an ultra-highly efficient mixing
method [6]. The prepared samples were regular block-like ultrafine CL-20/HMX cocrystal explosives
with a uniform particle size of less than 1 µm (Figure 9), which appeared new stronger diffraction
peaks at 11.558◦, 13.264◦, 18.601◦, 24.474◦, 33.785◦, 36.269◦. The purity of the CL-20/HMX cocrystal
explosive was 92.6%.

Moreover, the micro/nano CL-20/HMX energetic cocrystal materials were prepared by mechanical
ball milling, and characterized using SEM [7]. Results show that after a milling time of 120 min,
CL-20/HMX cocrystals prepared under optimal conditions are spherical in shape and the particle size
is 80–250 nm. Compared with respective energetic monomers, the prepared micro/nano CL-20/HMX
energetic cocrystal materials exhibit unique crystal structure and thermal decomposition properties
(Figure 10).

In addition, nano-sized CL-20/HMX cocrystals with a mean particle size of 81.6 nm were prepared
under the conditions of the 0.3 mm diameter of milling balls [9]. The impact sensitivity was conducted
to evaluate the impact safety performance of the CL-20/HMX cocrystal (Table 7). The micro-morphology
of the explosives is near-spherical and the particle size reveals a normal distribution (Figure 11). Before
and after milling, the element composition and molecular structure of CL-20/HMX did not change in
comparison to the raw CL-20 and HMX, while there are new crystal phases in the formed cocrystal. The
characteristic drop height (H50) of CL-20/HMX was 32.62 cm with 5 kg hammer, which is lower than
that of raw materials and mixture, indicating that the mechanical ball milling method is not simply to
mix the two explosives physically, but to form the cocrystal between the explosive molecules through
the hydrogen bond. Meanwhile, the crystal technology can improve the impact safety of explosives.
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Figure 9. SEM photographs of CL-20, HMX and CL-20/HMX cocrystals at different mixing time.
(a) CL-20; (b) HMX; (c) CL-20/HMX cocrystals for 5 min; (d) CL-20/HMX cocrystals for 15 min;
(e) CL-20/HMX cocrystals for 30 min; (f) CL-20/HMX cocrystals for 45 min; (g) CL-20/HMX cocrystals
for 60 min [6], with permission from Han Neng Cai Liao, 2020.
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Figure 11. SEM photographs and particle size distribution of nano-sized CL-20/HMX cocrystal.
(a) 50,000; (b) 20,000; (c) Frequency distribution; (d) Cumulative frequency distribution [9],
with permission from Gu Ti Huo Jian Ji Shu, 2018.

Nano-scale CL-20/HMX cocrystal of CL-20 and HMX in 2:1 molar ratio with a mean size below
200 nm was prepared by bead milling [36]. Figure 12 shows the morphological evolution of the crystal
particles. It was found that most of the coformer crystal particles are ~1 µm (Figure 12a). The mean
particle size of the discrete coformers substantially decreased after 10 min of milling (Figure 12b),
with no conversion to the cocrystalline material. Plate-like crystal particles with dimensions less
than 500 nm started to appear in the specimen being milled for 20 min, as indicated by the arrow in
Figure 12c. The plate-like particles were assigned to the 2CL-20·HMX cocrystal as (1) the 2CL-20·HMX
cocrystal is known to have a plate-like morphology; (2) the appearance of these particles and the
diffraction peaks of the 2CL-20·HMX cocrystal in the XRD pattern occurred at the same time; and
(3) more plate-like particles were observed in the specimens upon further milling (Figure 12d and e,
respectively). The observation of these relatively large cocrystal particles seems to be contradicting to
the intensive collisions between the grinding media and particles and between the particles themselves
occurring during the milling process. It is possible that some growth occurs during the drying of the
sampled specimens.
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Figure 12. SEM images (a–f) of specimens sampled at milling times between 0 and 60 min [36],
with permission from Cryst. Eng. Comm, 2015.

Preparation procedure: 438.0 mg (1 mmol) CL-20 and 472.3 mg (2 mmol) TKX-50 were dried
in a beaker at 40 ◦C for 3 h, 30 mL DMF was added to the beaker, heat to 80 ◦C in the water bath,
and ultrasonic for 30 min until the drug is completely dissolved. Then, 100 mL chloroform was put
into the flask. The completely dissolved solution was dropped into the flask at the rate of 0.8 mL/min,
and the magnetic stirring speed was kept at 1000 r/min. After dropping, keep the original speed and
continue stirring for 1 h. After standing for 3 h and filtering, the filtered samples were dried in a
vacuum for 3 h to obtain CL-20/TKX-50 ultrafine cocrystal samples. The performance was compared
with that of CL-20/TKX-50 mechanical mixture in the same mole ratio.

To decrease the sensitivity of CL-20, the CL-20/TKX-50 cocrystal explosive was prepared by
solvent-nonsolvent method. The surface electrostatic potentials of CL-20 and TKX-50 were analyzed
and the possible non-covalent bonding between cocrystal molecules was predicted [34]. Results shown
that the prepared CL-20/TKX-50 cocrystal has a flat sheet shape, the formation, disappearance, shift and
change of intensity of peaks been proved the formation of a new lattice structure. The crystal
morphology of CL-20 and TKX-50 is nearly spherical shape, and the particle size distribution is
relatively uniform, and the particle size is 1 µm. However, the morphology of CL-20/TKX-50 cocrystal
shows a long and thin lamellar structure, which is quite different from that of CL-20 and TKX-50, and
the particle size of CL-20/TKX-50 cocrystal is 10 µm, indicating that the cocrystal process can not only
change the morphology of the original crystal, but also prove the formation of a new crystal (Figure 13).
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4. Energetic Performance

In order to study the thermal decomposition properties of CL-20/TNT cocryatal explosives,
the samples of CL-20/TNT cocryatals were tested by DSC (TA Instruments, New Castle, DE, USA) at
the heating rate of 10 ◦C·min−1, the curve shown in Figure 14. As is shown there are three stages of the
thermal decomposition process of CL-20/TNT cocrystal, the maximum endothermic peak temperature
is 143.5 ◦C, which is higher than that of the melting point of TNT (81 ◦C [37]). With the increase of
temperature, the hydrogen bond between the cocrystal molecules breaks and the molecular structure
is destroyed [38]. There are two processes of exothermic decomposition at 222.6 ◦C and 250.1 ◦C,
respectively. Compared with the maximum exothermic peak value of CL-20 (321.5 ◦C [33]) and TNT
(245 ◦C [39]), the exothermic peak of CL-20/TNT cocrystal shifts, indicating that the cocrystal changes
the thermal decomposition characteristics of the raw materials and endows the cocrystal with unique
thermal decomposition behavior.
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Liao, 2012.

The impact sensitivity value of CL-20/TNT cocrystal is H50 = 28 cm. Compared with CL-20
(H50 = 15 cm), the impact sensitivity of CL-20 is significantly reduced by 87%. Low-sensitivity TNT and
high-sensitivity CL-20 combine to form a cocrystal at the molecular scale through eutectic technology,
which changes the internal composition and crystal structure of explosives compared with traditional
methods. In addition, due to the intermolecular hydrogen bond, on the one hand, it increases the
stability of the molecular system of the cocrystal, on the other hand, it improves the anti-vibration
of the cocrystal molecule to the mechanical external force, so the desensitization effect is obvious.
Through the eutectic technology, it can effectively realize the desensitization of high sensitive explosive
and improve its safety performance.

The crystal morphology, particle size and sensitivity of prepared CL-20/HMX cocrystal were
characterized [6]. The thermal decomposition process of cocrystal explosives had only one exothermic
decomposition stage with peak temperatures of 248.3 ◦C. The enthalpy for the exothermic decomposition
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of the cocrystal (2912.1 J·g−1) was remarkably higher than that of the physical mixture of CL-20 and HMX
(1327.3 J·g−1) (Figure 15). The friction sensitivity of CL-20/HMX cocrystal explosive was 84%, which
was decreased by 16% compared with original CL-20, and the characteristic height of the cocrystal was
increased by 28.6 cm and 11.5 cm compared with original CL-20 and HMX, respectively (Table 8). The
compatibility of CL-20/HMX cocrystal with components of solid propellant shown that the prepared
CL-20/HMX cocrystal was compatible with NG/BTTN, AP and Al powder, while incompatible with
HGAP, N-100.
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Table 8. The mechanical sensitivities of different samples.

Samples F/% H50/cm P/MPa D/m·s−1

CL-20 100 [6,7] 19.3, 13.1 [20]; 13.1
[7]; 15 [8,9,34] 44.9 [34]; 43 [8] 9385 [34]; 9500 [8]

HMX 28 [6]; 84 [7] 36.4 [6]; 19.6 [7];
27.2 [9]; 13.9 [34] 39.6 [34] 9048 [34]

Ball milling of CL-20 72 [7] 42.3 [7]

Ball milling of HMX 60 [7] 47.8 [7]

CL-20/HMX mixture 96 (mole ratio is
2:1) [7]

15.4 (mole ratio is
2:1) [7], 20.1 [9]

Ball milling of CL-20/HMX
mixture (mole ratio is 2:1) 68 [7] 43.5 [7]

Micro/nano CL-20/HMX
cocrystal 60 [7] 47.6 [7], 32.6 [9]

Ultrafine CL-20/HMX
cocrystal 84 [6] 47.9 [6]

TNT 102 [8], 157.2 [20] 21 [8] 6900 [8]

CL-20/TNT cocrystal 28 [8], 49.3 [20] 35 [8] 8600 [8]

CL-20/TNT mixture 18.8 [20]

TKX-50 55.4 [34] 41.0 [34] 8524 [34]

CL-20/TKX-50 mixture 26.0 [34]

CL-20/TKX-50 cocrystal 34.0 [34] 43.8 [34] 9264 [34]

H50 is characteristic drop height, cm; F is friction sensitivity, %; D is detonation velocity, m·s−1; P is detonation
pressure, MPa. The hammer weight: (2.500 ± 0.002) kg, sample weight: (35 ± 1) mg for impact sensitivity in [7,20],
the hammer weight: (1.5 ± 0.01) kg, sample weight: (20 ± 1) mg, pressure: (2.45 ± 0.07) MPa, swing angle: (80 ± 1)0

for friction sensitivity in [7]; the hammer weight: 2 kg, sample weight: 30 mg for impact sensitivity, for friction
sensitivity in [6]; the hammer weight: 2 kg, sample weight: (30 ± 1) mg in [8]; the hammer weight: 5 kg, sample
weight: (35 ± 1) mg in [9,34].
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At the same time, the DSC curves of CL-20/HMX cocrystal were prepared by means of mechanical
ball milling, and compared with the CL-20/HMX mixture [7]. The mechanical sensitivity of the
micro/nano CL-20/HMX energetic cocrystal materials was reduced obviously compared to that of raw
HMX, while the energy output property was equivalent to that of raw CL-20.

In order to compare the effect of the prepared CL-20/TKX-50 cocrystal on the thermal decomposition
of each component, the DSC curves of CL-20, TKX-50, CL-20/TKX-50 mixture and CL-20/TKX-50
cocrystal were investigated [34] (Figure 16). The exothermic decomposition peaks of CL-20 and
TKX-50 were 240.2 and 234.8 ◦C, respectively, and there were two exothermic decomposition peaks in
the decomposition process of the CL-20/TKX-50 mixture, indicating that the decomposition process
of the CL-20/TKX-50 mixture is obviously a simple superposition of CL-20 and TKX-50. The first
decomposition peak appears at 229.8 ◦C, corresponding to the exothermic decomposition of part of
TKX-50; the second peak appears at 242.5 ◦C, corresponding to the exothermic decomposition of CL-20.
For the CL-20/TKX-50 cocrystal decomposition, with the increase of temperature, the first exothermic
decomposition peak of CL-20/TKX-50 cocrystal appears at 171.6 ◦C, which can be attributed to the
destruction of hydrogen in the cocrystal structure and the decomposition of a small amount of TKX-50.
Subsequently, a large number of cocrystal products begin to decompose, and the second exothermic
decomposition peak appeared at 222.8 ◦C, indicating the formation of hydrogen bond and the existence
of a new structure between CL-20/TKX-50 cocrystal molecules.
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In addition, the DSC curves of CL-20, DNB, CL-20/DNB cocrystal were shown in Figure 17.
There are three (one is endothermic melting and two exothermic decompositions) thermal
decomposition stages. The melting temperature of cocrystal is 136.4 ◦C, 44.7 ◦C higher than that of raw
material DNB (91.7 ◦C) in the melting stage, indicating that the cocrystal decomposes into liquid DNB
at this point. There are two exothermic peaks at 216.9 ◦C and 242.9 ◦C in the exothermic decomposition
stage, which was attributed to the exothermic decomposition of two single components after cocrystal
decomposition. Moreover, the crystal density of CL-20/DNB is higher than that of CL-20/TNT, and the
sensitivity of DNB is lower than that of TNT. Thus, the sensitivity of CL-20/DNB is lower than that of
CL-20/TNT. In addition, the cost of the DNB is significantly lower than that of TNT. Therefore, the
cocrystal may become an excellent explosive with high-energy, insensitive and low-cost prospective
ingredients in explosives and propellants.
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The impact sensitivity, the calculated detonation of the CL-20, TKX-50, CL-20/TKX-50 mixture and
CL-20/TKX-50 cocrystal are shown in Table 8. The characteristic drop height of CL-20/TKX-50 cocrystal
is lower than that of TKX-50, but significantly higher than that of CL-20, β-HMX and CL-20/TKX-50
mixture, indicating that the impact sensitivity of CL-20/TKX-50 cocrystal is much lower. The detonation
velocity and detonation pressure of CL-20/TKX-50 cocrystal are slightly lower than that of CL-20, but the
detonation performance is obviously improved compared with β-HMX, indicating CL-20/TKX-50
cocrystal has good detonation performance.

5. Existing Problems and Challenges

As we all know, it is of great significance for the preparation of energetic materials with high-energy
and low-sensitivity to use eutectic technology to modify the single high-energy explosives. While the
development of an energetic cocrystal is still in the exploratory stage, the main challenges for cocrystal
at present are as follows: (1) the optimal preparation method of energetic cocrystal still needs to be
simplified and simulated. The solvent evaporation method is mainly used to explore the preparation
conditions of cocrystal by experience at present and many experiments with different stoichiometric
ratios cannot meet the engineering requirements. (2) The effective cocrystal formation principle and
formation mechanism of energetic compounds under the guidance of thermodynamics are not fully
revealed, which greatly hinders the controllable construction of energetic cocrystal compounds [40].
The main challenges for us in the future are possibly: (1) the design and formation mechanism of
energetic cocrystal can be draw lessons from the other research fields, the cocrystal is formed by
self-assembly of hydrogen bonding and π–π stacking interactions; (2) on the basis of the existing mature
eutectic technology, a safe, efficient and practical synthesis method suitable for energetic cocrystal
should be improved, promoting the theoretical research of cocrystal formation, and simulate and
design the formation of energetic cocrystal from the theoretical level [41].
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