Supplementary Materials for

Cytotoxicity of Oleandrin Is Mediated by Calcium Influx and by Increased Manganese Uptake in *Saccharomyces cerevisiae* Cells

Table S1. Effect of oleandrin on the growth of various single-gene knockout mutants of *Saccharomyces cerevisiae*. Strains were inoculated (initial cell density 5×10^5 cells/mL) in SD media containing 100 ng/mL oleandrin (final concentration). Growth was assessed spectrophotometrically (OD₆₆₀) after 16 hours of incubation with shaking (200 rpm) at 30 °C and expressed (%) as the ration between cell density in the presence of oleandrin and cell density in the absence of oleandrin.

Strain	Gene Deleted	Gene Function	Growth in the Presence of Oleandrin (%)
Wild type 1	None	Control strain	49.6 ± 2.8
	Genes int	volved in monovalent cation transport	
ena 1Δ	ENA1	P-type ATPase sodium pump; involved in Na ⁺ and Li ⁺ efflux.	51.2 ± 1.8
nha 1Δ	NHA1	Na+/H+ antiporter; involved in sodium and potassium efflux through the plasma membrane	54.6 ± 2.5
$tok1\Delta$	TOK1	Outward-rectifier potassium channel of the plasma membrane	47.2 ± 3.4
$trk1\Delta$	TRK1	High affinity K ⁺ transporter	53.1 ± 2.4
$trk2\Delta$	TRK2	Trk1 paralog; K ⁺ transporter	51.6 ± 1.9
	Gene	s involved in calcium homeostasis	
$cch1\Delta$	CCH1	Voltage-gated high-affinity Ca²+ channel involved in calcium influx in response to some stresses	78.8 ± 6.9 *
$mid1\Delta$	MID1	Stretch-activated Ca ²⁺ -permeable cation channel; interacts with Cch1	89.6 ± 7.9 **
$pmc1\Delta$	PMC1	Vacuolar Ca ²⁺ -ATPase involved in depleting cytosol of Ca ²⁺ ions.	21.6 ± 1.7 **
$vcx1\Delta$	VCX1	Vacuolar membrane antiporter with Ca ^{2+/} H ⁺ and K ⁺ /H ⁺ exchange activity	43.6 ± 2.9
$yvc1\Delta$	YVC1	Vacuolar cation channel; mediates release of Ca ²⁺ from the vacuole	57.6 ± 4.9
$pmr1\Delta$	PMR1	High affinity Ca2+/Mn2+ P-type ATPase; required for Ca ²⁺ and Mn ²⁺ transport into Golgi	16.8 ± 2.1
	Genes	Involved in Heavy Metal Transport	

$ctr1\Delta$	CTR1	High-affinity copper transporter of plasma membrane	48.6 ± 3.4
$ftr1\Delta$	FTR1	High-affinity iron transporter of the plasma membrane	49.2 ± 4.3
fet4∆	FET41	Low-affinity iron transporter of the plasma membrane	54.6 ± 4.5
$smf1\Delta$	SMF1	Divalent metal ion transporter	91.6 ± 4.9 ***
pho84 Δ	PHO84	High-affinity inorganic phosphate (Pi) transporter and low-affinity divalent metal ion transporter	54.3 ± 3.7
$ztr1\Delta$	ZTR1	High-affinity Zn²+ transporter of the plasma membrane	53.6 ± 3.9
$ztr2\Delta$	ZTR2	Low-affinity Zn ²⁺ transporter of the plasma membrane	54.5 ± 4.2
	Genes	involved response to oxidative stress	
yap1∆	YAP1	Transcription factor; required for oxidative stress tolerance	41.6 ± 5.2
skn7 Δ	SKN7	Transcription factor required for optimal induction of heat-shock genes in response to oxidative stress	43.8 ± 6.1
$msn2\Delta$	MSN2	Stress-responsive transcriptional activator	50.6 ± 6.8
$sod1\Delta$	SOD1	Cu,Zn-Superoxide dismutase	48.6 ± 4.2
$sod2\Delta$	SOD2	Mn-Superoxide dismutase	47.3 ± 4.6
ahp1 Δ	AHP1	Thioredoxin peroxidase with alkyl hydroperoxide reductase activity	28.3 ± 3.2 **
ccp1∆	CCP1	Citocrome c peroxidase	48.6 ± 5.1
cta1 Δ	CTA1	Catalase A	47.3 ± 4.8
$ctt1\Delta$	CTT1	Calalase T	48.6 ± 5.2
$gpx1\Delta$	GPX1	Phospholipid hydroperoxide glutathione peroxidase	513 ± 4.9
gpx2∆	GPX2	Phospholipid hydroperoxide glutathione peroxidase	43.4 ± 4.1
hyr1∆	HYR1	Thiol peroxidase that functions as a hydroperoxide receptor to sense intracellular hydroperoxide levels and transduce a redox signal to the Yap1p transcription factor	49.3 ± 5.7

prx1Δ	PRX1	Mitochondrial peroxiredoxin with thioredoxin peroxidase activity	44.6 ± 6.3
$trr1\Delta$	TRR1	Cytoplasmic thioredoxin reductase	54.6 ± 7.5
$tsa1\Delta$	TSA1	Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant	48.3 ± 4.9
$tsa2\Delta$	TSA2	Stress inducible cytoplasmic thioredoxin peroxidase	41.6 ± 6.2

¹ Wild type is strain BY4741 (*MAT***a**; *his* $3\Delta 1$; *leu* $2\Delta 0$; *met* $15\Delta 0$; *ura* $3\Delta 0$). The isogenic knock-out mutants had the phenotype BY4741 *yfg: kanMX4* except for a null mutation of one single gene deletion. All strains were purchased from EUROSCARF (www.euroscarf.de).