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Abstract: Over the past two decades, combustible cigarette smoking has slowly declined by nearly
11% in America; however, the use of electronic cigarettes has increased tremendously, including
among adolescents. While nicotine is the main addictive component of tobacco products and a
primary concern in electronic cigarettes, this is not the only constituent of concern. There is a growing
market of flavored products and a growing use of zero-nicotine e-liquids among electronic cigarette
users. Accordingly, there are few studies that examine the impact of flavors on health and behavior.
Menthol has been studied most extensively due to its lone exception in combustible cigarettes. Thus,
there is a broad understanding of the neurobiological effects that menthol plus nicotine has on the
brain including enhancing nicotine reward, altering nicotinic acetylcholine receptor number and
function, and altering midbrain neuron excitability. Although flavors other than menthol were
banned from combustible cigarettes, over 15,000 flavorants are available for use in electronic cigarettes.
This review seeks to summarize the current knowledge on nicotine addiction and the various brain
regions and nicotinic acetylcholine receptor subtypes involved, as well as describe the most recent
findings regarding menthol and green apple flavorants, and their roles in nicotine addiction and
vaping-related behaviors.
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1. Introduction

Cigarette smoking remains the leading cause of preventable disease and death worldwide,
with nearly half a million deaths per year in the United States alone [1]. Additionally, more
than 16 million Americans are suffering from a smoking-related disease including diabetes, stroke,
cardiovascular disease, chronic obstructive pulmonary disease, or cancer [1]. Nearly 70% of adult
smokers in the United States have a desire to quit, however, only 7% are successful [2], with an average
of 10 cessation attempts needed for success [3].

In 2009, the Family Smoking Prevention and Tobacco Control Act was put in place to combat
adolescent tobacco use and limit cigarette sales by banning all flavor additives other than menthol
from being added to combustible cigarettes, yet this refrained from addressing other tobacco products
including cigars, chewing tobacco, hookah, and more. As of 2018, mentholated cigarettes made up
36% of all cigarette sales in the United States [4], however, it has been established that regardless of
labeling, even non-mentholated cigarettes contain traces of menthol [5].

Over the past two decades in the United States, combustible cigarette use has declined by nearly
11%, however, one form of nicotine administration has been replaced by another—electronic nicotine
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delivery systems (ENDS) [6]. ENDS, or electronic cigarettes (e-cigarettes), are handheld devices that
vaporize an e-liquid solution, commonly containing varying ratios of propylene glycol and vegetable
glycerin, flavoring chemicals, nicotine, and in some cases additional sweeteners [7–9]. ENDS were
initially intended to be a smoking cessation aid; however, ENDS companies have begun to target a
new market of nicotine users among the adolescent population. According to the National Youth
Tobacco Survey, usage rates continue to rise with over four million high school students and one million
middle school students currently using ENDS products [10,11]. Nicotine dependence is thought to
be intensified among adolescents when flavorants are present, as they mask the aversive sensations
associated with nicotine and may promote pleasure on their own. This occurs primarily through
masking the initial harshness of nicotine/tobacco that is aversive to new and beginning smokers
and therefore increases smoking initiation [12,13]. Although non-menthol flavors are banned in
combustible cigarettes, >15,000 flavor options are available for ENDS products with a 67% increase
in flavor production from 2013 to 2014 [14,15]. In 2019, more than 50% and 60% of high school users
used menthol and fruit flavored ENDS, respectively, and more than half of ENDS users prefer flavored
products [10,11]. This has become a cause for concern with the number of adolescent ENDS users
continuing to rise and the growing popularity of zero-nicotine flavored e-liquids. Yet, little is known
regarding the effects of flavors on nicotine dependence and vaping-related behaviors.

Despite this gap in knowledge, there are numerous reports of menthol’s effect on nicotine addiction,
including menthol’s ability to enhance nicotine reward and reinforcement [16–19]. These effects are
due to menthol-induced nicotinic acetylcholine receptor (nAChR) upregulation [18,20,21], enhanced
dopamine neuron excitability and dopamine release [22,23], and TrpM8-dependent mechanisms [24].
Based on a recent study reporting green apple and other fruity flavors to be the most popular of
ENDS flavorants [9,25], additional reports have identified popular green apple flavorants, farnesol
and farnesene, to not only enhance nicotine reward in a mouse model, but also display rewarding
properties in the absence of nicotine [19,26,27]. These behavioral effects were found to be caused by
changes in nAChR upregulation or stoichiometry, and ventral tegmental area dopamine neuron firing.
Based on these findings, it is critical we further understand how ENDS flavoring chemicals may alter
the addictive properties of nicotine in an attempt to combat the growing ENDS-use epidemic.

This review summarizes the current knowledge base of nicotine addiction and the major
neurobiological and neurophysiological adaptations that contribute to dependence. Additionally,
we summarize the effects of menthol on abuse liability and vaping-related behaviors and include
the major impacts that another popular ENDS flavor, green apple, has on addiction-related behavior.
This includes their effects on nicotine’s actions in the brain and the major neurocircuitry involved in
the induction of addiction.

2. Background of Nicotine Addiction

2.1. Neuronal nAChRs: Structure and Function

nAChRs are ligand-gated ion channels in the Cys-loop superfamily, alongside N1-type
acetylcholine, GABAA (ionotropic form), glycine, and 5-HT3 receptors [28,29]. nAChRs are responsible
for mediating fast synaptic transmission of nerve impulses [30–33]. Human nAChRs are assembled
from various combinations of subunits, including α2–α7 and β2–β4. Assembled subtypes consist of
homomeric pentamers (α7) or heteromeric pentamers (α2–α6 with β2–β4; Figure 1A). Each subunit
comprises of a large N-terminal extracellular domain important for ligand binding, a short C-terminal
extracellular domain, four hydrophobic transmembrane domains (M1–M4), with M2 lining the
channel’s central pore, and a large cytoplasmic loop between M3 and M4 that varies among
different subunit complexes [34] (Figure 1B,C). The cytoplasmic loop is important for receptor
trafficking in both the anterograde and retrograde directions between the endoplasmic reticulum to
the plasma membrane [34–37]. These sites are also critical for protein interactions and serve as a site
for phosphorylation.
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nAChR agonists include the endogenous neurotransmitter, acetylcholine (ACh), as well as various
exogenous molecules. Homomeric receptors have five identical orthosteric ACh-binding sites, whereas
heteromeric receptors contain two or more orthosteric sites at the interfaces between an α and β

subunit (Figure 1A). The binding of two ACh molecules to the orthosteric sites on the receptors induces
a conformational change allowing the channel to open. nAChRs are permeable to monovalent Na+

and K+ ions, as well as divalent Ca2+ ions. Permeability to calcium acts on intracellular cascades that
can play a vital role in neuronal signaling and plasticity [38]. Depending on the subtype assembly
or stoichiometry of nAChRs, Ca2+ permeability varies. For instance, among α4β2 nAChRs, the
high-sensitivity (α4(2)β2(3)) and low-sensitivity (α4(3)β2(2)) nAChR stoichiometries exhibit different
Ca2+ permeabilities [39]; but homomeric α7 nAChRs exhibit the highest Ca2+ permeability of all
nAChR subtypes [40,41]. The net flow of positive ions inward depolarizes the cell membrane causing
an excitatory postsynaptic potential [30]. nAChRs have a very widespread distribution throughout the
brain and are found on presynaptic and postsynaptic neuronal membranes, as well as non-neuronal
cells, such as glial cells [42,43]. nAChRs can control excitatory and inhibitory neurotransmission, which
further excites and/or inhibits target cells [30,44]. Depending on the brain region and cell type, nAChR
subunits form differing complexes that are associated with a variety of pathophysiological conditions.
The most widely expressed neuronal subtypes in the brain are heteromeric α4β2* (* = nAChR may
contain other subunits) and homomeric α7 nAChRs [45–48]. Due to the variability in nAChR formation,
each complex differs functionally with respect to channel opening, closing, and desensitization [47].
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Figure 1. Human nAChR structure and assembly. (A) Homomeric and heteromeric nAChR 
complexes assemble as solely α-subunits or α/β-subunits, respectively. Homomeric nAChRs possess 
five agonist binding sites at each α-α interface while heteromeric nAChRs possess two agonist 
binding sites at the α-β interface but can still be weakly activated by ‘non-canonical’ sites at the α-α 
interface (if present). X indicates other subunits may be present. (B) Single nAChR subunit topology 
consists of an extracellular domain, four transmembrane domains, and an intracellular loop that 
varies in length depending on subtype. (C) Pentameric nAChR complex from a top-side view 
identifying the formation of the transmembrane domains of individual nAChR subunits with respect 
to the nAChR central pore. 
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Figure 1. Human nAChR structure and assembly. (A) Homomeric and heteromeric nAChR complexes
assemble as solely α-subunits or α/β-subunits, respectively. Homomeric nAChRs possess five agonist
binding sites at each α-α interface while heteromeric nAChRs possess two agonist binding sites at
the α-β interface but can still be weakly activated by ‘non-canonical’ sites at the α-α interface (if
present). X indicates other subunits may be present. (B) Single nAChR subunit topology consists of an
extracellular domain, four transmembrane domains, and an intracellular loop that varies in length
depending on subtype. (C) Pentameric nAChR complex from a top-side view identifying the formation
of the transmembrane domains of individual nAChR subunits with respect to the nAChR central pore.

2.2. Nicotine’s Actions in the Brain

Nicotine crosses the blood brain barrier and binds with high affinity to nAChRs widely
distributed throughout the nervous system [32,38,48–50]. This interaction promotes a variety of
neurophysiological changes including chaperone-mediated nAChR upregulation [30,35,37,51–54],
activation of the mesocorticolimbic reward and reinforcement pathways [55,56], enhanced synaptic
plasticity [57–60], and enhanced neuronal firing [53,60–63], ultimately leading to the development of
nicotine addiction [33,64] (Table 1). This will be expounded in detail in the following paragraphs.

Nicotine binding promotes a conformational transition of nAChRs from a resting, closed state to
an open state, allowing signal transduction to occur [65,66]. Initially, high affinity and high-sensitivity
α4β2* and α4α6β2* nAChRs found on ventral tegmental area (VTA) dopamine (DA) neurons are
quickly activated by low nicotine concentrations upon arrival into the midbrain region [67–70]. Further,
nicotine acts on α7 nAChRs on glutamate neurons of local and distal regions resulting in a net excitatory
effect on VTA DA neurons and synaptic strengthening between the two neuronal populations [47,60,71].
In addition to this excitatory transmission through DA and glutamate neurons, activation of the
α4β2* nAChRs found on GABA neurons of the midbrain elicits an inhibitory tone to VTA DA
neurons, reducing the transmission of DA and decreasing reward through the mesolimbic pathway
(dopaminergic tracts from the VTA to the nucleus accumbens (NAc)) [72]. However, the activation of
α4β2* and α7 nAChRs on midbrain DA and glutamate neurons, respectively, promotes a net excitatory
effect on DA neurotransmission from the VTA to the NAc and prefrontal cortex (PFC), leading to the
rewarding and reinforcing aspects of nicotine use [71]. More recently, Yan et al. discovered functional
β2* nAChRs on medial VTA (mVTA) glutamate neurons that further contribute to this net effect [63,73].
In general, nicotine exerts strong effects on the local microcircuits of the VTA, which have differing
acute and chronic effects. This will be discussed further in a later section.
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Table 1. Nicotine’s actions in the brain.

Steps of Nicotine Addiction nAChR Subunits Brain Regions Nicotine
Concentration

Duration of
Administration

Nicotine binding promotes a conformational
transition of nAChRs from a resting, closed

state to an open state, allowing signal
transduction to occur [65,66].

α4β2*,
α4α6β2*,
α6β2β3,

α7

Midbrain Small (<1 µM) Acute

When an individual becomes a long-term
nicotine user, nAChR upregulation occurs. α4, α6, β2, and β3 VTA

20–500 nM Chronic
Upregulated α4β2* nAChRs found on GABA
neurons of the midbrain elicit an inhibitory

tone to VTA DA neurons, reducing the
transmission of DA and contribute to

nicotine-seeking behaviors [72].

α4β2* Midbrain GABA

After long-term exposure to nicotine, α4β2*
nAChRs desensitize quickly, which decreases

the GABAergic transmission onto DA neurons
resulting in the disinhibition of DA neurons.

α4β2* Midbrain GABA

20–500 nM Chronic

The activation of α4*, α6*, and α7 nAChRs on
midbrain DA and glutamate neurons,

respectively, promotes a net excitatory effect on
DA neurotransmission from the VTA to the
NAc and PFC, leading to the rewarding and

reinforcing aspects of nicotine use [71].

α4β2*,
α6β2β3,
α4α6β2*,

α7

VTA

These effects are reinforced by the enhanced
glutamate neurotransmission from distal

regions and local mVTA glutamate neurons to
lateral VTA (latVTA) DA neurons [63,73],
leading to long-term potentiation (LTP).

α7 mVTA, PFC

Summarized details of the various steps (sensitization, upregulation, and desensitization) that take place during
the development of nicotine dependence. The major findings for each step are indicated in the leftmost column.
The specific nAChR subunits and brain region associated with these changes are in the second and third column.
The nicotine concentration and duration of administration that induce these changes are located in the two rightmost
columns. * = nAChR may contain other subunits.

Persistent nicotine exposure further transitions the receptor to a desensitized state, where it is
less responsive to agonist stimulation [34,44,45]. nAChRs are activated and desensitized to a degree
depending on the subtype, brain region, and concentration of nicotine. According to Brody and
colleagues, nAChRs will activate and desensitize at brain nicotine concentrations of 20–100 nM following
cigarette smoking [74]. Following activation, most α4β2* nAChRs desensitize, which decreases the
GABAergic transmission onto DA neurons resulting in the disinhibition of DA neurons (Figure 2C).
These effects are reinforced by the enhanced glutamate neurotransmission from distal regions and
local mVTA glutamate neurons to lateral VTA (latVTA) DA neurons [63,73]. This depolarization and
enhanced action potential firing of glutamatergic neurons leads to long-term potentiation (LTP) and
synaptic strength onto the midbrain DA neurons, which is a key role in the formation of nicotine
dependence [53] (Figure 2). Additionally, although the α4β2* nAChRs present on VTA DA neurons
desensitize similar to VTA GABA neurons, these DA neurons also express α6β2β3* and α4α6β2*
receptors, which do not desensitize as quickly as the high affinity α4β2* nAChRs [55]. Overall, there
continues to be a net excitatory effect on DA release in the presence of nicotine molecules.
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Figure 2. Involvement of ventral tegmental area (VTA) neuron types in nicotine reward and
reinforcement. (A) In the absence of nicotine, glutamate and GABA inputs to VTA dopamine
neurons modulate activity of the mesolimbic reward pathway. (B) Acute nicotine on α7 and α4β2
nAChRs elicits enhanced glutamatergic and GABAergic firing, respectively, onto VTA dopamine
neurons, resulting in a net enhancement of dopaminergic neuron firing and subsequent dopamine
release. (C) Following long-term nicotine use, α4β2 nAChRs desensitize rapidly with acute exposure
to nicotine and result in reduced GABAergic firing while glutamatergic firing is enhanced to stimulate
burst firing of dopaminergic neurons (see also Table 1 for additional details).

When an individual becomes a long-term nicotine user, further neuroadaptations occur. A major
hallmark of nicotine dependence has been the occurrence of nAChR upregulation. This phenomenon
has been understood by many to be a post-translational occurrence, based on no observable changes
in mRNA levels [35,75,76]. Similar to desensitization, upregulation differs in response to nicotine
concentration and time course [77], and is brain-region, cell-type, and nAChR subtype-specific,
given that no upregulation has been noted in the thalamus, high-affinity nAChRs are favored
for plasma upregulation, and only α4, α6, β2, and β3 subunits upregulate. Upregulation occurs
through a process termed pharmacological chaperoning that involves intracellular actions of nicotine
that promote nAChR subunit assembly and enhanced trafficking of nAChRs through the secretory
pathway [35,37,52,76]. This process is a physiological response following nAChR desensitization [45,78]
that takes approximately ten days of long-term use among human and rodents but can also occur
in cultured neuron and cell line preps as well [76,79]. Through the use of fluorescently tagged
nAChRs, changes in nAChR number have been measured without the use of radioligand binding
assays [18,20,35,37,53]. As previously stated, high-affinity α4β2 nAChRs are stabilized during this
process [37,52,80]. With higher nicotine concentrations, further nAChRs are subjected to upregulation
as well.

Given these effects are based on freebase nicotine that is present in combustible cigarettes, it is
critical to point out the distinct differences between the combustible cigarette and the electronic cigarette
that may affect the timespan of these steps towards addiction. With JUUL (pod-based e-cigarette) being
one of the most popular ENDS devices among the adolescent population, studies have begun to surface
identifying what makes JUUL so popular. The major difference between these products is the use of
nicotine salt in JUULs [81]. Nicotine salt differs from nicotine freebase in that it contains benzoic acid in
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order to sufficiently protonate most of the nicotine. The use of nicotine salt results in faster absorption,
increased nicotine strength, and can be palatable at high concentrations, as opposed to nicotine freebase.
Based on the different pharmacokinetic properties of these two nicotine forms, JUUL’s average nicotine
concentration per e-liquid pod is ~60 mg/mL, or 1.5 times the nicotine concentration in a pack of
cigarettes. Although combustible cigarettes range in nicotine concentration, the majority contain 2 mg
of nicotine per cigarette. Additionally, various other ENDS products (tank-based e-cigarette) also
exhibit higher nicotine concentrations than the average cigarette (3–18 mg/mL), however, they are still
much lower than the prefilled JUUL pods. Based on these differences, it is likely that ENDS enhance
the steps of nicotine addiction and are further detrimental to the adolescent brain.

2.3. nAChR Subtypes

2.3.1. α4β2* nAChRs

To date, α4β2* nAChRs have been the most-studied subtype in relation to nicotine
addiction [33,37,45,55,61,82], as demonstrated through genetically modified mouse models [55,56,82,83].
Using knockout mice, Picciotto et al. investigated α4 and β2 subunits and found attenuated nicotine
self-administration and conditioned place preference in the absence of these subunits [83]. However,
when α4 or β2 subunits were re-expressed in the VTA, a prominent brain region associated with drug
reward, it led to recovery of nicotine reinforcement and reward, demonstrating the importance of α4β2*
nAChRs in the formation of nicotine dependence, specifically in the VTA. Alternatively, Tapper et al.
genetically altered mice to express hypersensitive α4* nAChRs [55]. This approach looked beyond the
necessary presence of α4β2* nAChRs in addiction, and instead investigated the specific role(s) that α4
may play in addiction. The presence of hypersensitive α4* not only enhanced the nicotine reward at low
concentrations, it also mediated nicotine-induced locomotion through α4* nAChR sensitization, and
facilitated tolerance to nicotine, deeming its importance in the induction and maintenance of nicotine
dependence. Further, the administration of theβ2* receptor-specific antagonist, dihydro-β-erythroidine
(DhβE) hydrobromide, into the VTA decreases nicotine reward-related behavior as well as blocks the
reinforcing effects of the drug [84,85].

α4β2* nAChRs exist in a high- and low-sensitivity stoichiometry, α4(2)β2(3) and α4(3)β2(2),
respectively [39,86]. Due to its high sensitivity stoichiometry, α4β2* receptors have a high affinity
for low concentrations of nicotine commonly present following cigarette smoke inhalation [33,67,87].
Nicotine-induced upregulation of α4β2* nAChRs has been shown to depend on the specific subunit
composition, with the high-sensitivity stoichiometry to be favored [35,37,80,88]. Further, it is important
to note the more recent identification of genetic etiologies of CHRNA4, CHRNB2, and CHRNB4.
Liu et al. positively correlated these genes with smoking phenotypes including ‘age of smoking
initiation’, ‘cigarettes per day’, and ‘smoking cessation’ [89].

2.3.2. α6β2β3* nAChRs

Given the knowledge that α6* nAChRs are expressed in dopaminergic neurons [90], initial studies
aimed to identify the specific brain regions expressing these subtypes. The expression of α6β2β3*
nAChRs is mostly limited to reward-related brain regions, including the DA neurons of the mesolimbic
tract, making them critical factors in the induction of addiction [91–94]. However, investigations into
the role of α6* nAChRs in addiction have been very limited, with one of the first critical findings being
reported by Pons et al. [56]. Utilizing an intravenous nicotine self-administration paradigm and α6
knock-out mice, Pons et al. discovered the essential role of α6* nAChRs in nicotine reinforcement
by demonstrating the lack of self-administration behaviors in α6 knock-out mice compared to their
wildtype counterparts [56]. Furthermore, re-expression of α6 through a lentiviral vector into the
VTA significantly increased self-administration behaviors to a similar extent as the wildtype control
mice. Nicotine-induced activation of the mesolimbic system is dependent upon the presence of
α4β2* and α6β2β3* nAChRs, as seen through conditioned place preference and self-administration
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assays [56,83,95]. Similar to α4β2* nAChRs, α6* nAChRs consist of two stoichiometric forms, α6β2 or
α6(2)β2(2)β3 [20,35]. The inclusion of the β3 subunit results in a much higher sensitivity to nicotine.
Further, α6β2* nAChRs desensitize to a similar extent as α4β2* nAChRs, however α6β2* nAChRs
recover more quickly [96] and are thus more amenable to nicotine’s long-term effects.

2.3.3. α4α6β2* nAChRs

Despite the wide presence of nAChRs throughout the central nervous system, recent studies point
to α4α6β2* nAChRs as a principle nAChR subtype that mediates nicotine reward. As discussed earlier,
deletions of α4 have shown the importance of this subunit; but additional studies with mouse models
tell us that α4α6β2* nAChRs mediate the rewarding effects of nicotine. Deletion of α4, α6, or β2 nAChR
subunits is sufficient to block the self-administration of nicotine in mice (Pons et al., 2008). The selective
re-expression of these deleted subunits in the VTA was sufficient to reinstate self-administration of
nicotine (Pons et al., 2008). Re-expression of these subunits in neighboring midbrain regions, the
substantia nigra pars reticulata (SNr) and substantia nigra pars compacta (SNc), did not ‘rescue’
nicotine reinforcement. The nicotine-induced enhancement of DA neuron excitability that is required
for reward is dependent upon α4α6β2* nAChRs [69,70]. Here, both Liu et al. and Engle et al.
revealed that the presence of both α4 and α6 were necessary for smoking-relevant concentrations
of nicotine (300 nM) to depolarize nAChRs on VTA DA neurons. This suggests that while studies
revealing the importance of α4 and α6 nAChR subunits independently, the physiological response to
smoking-relevant concentrations of nicotine (≤300 nM) depend on α4α6-containing nAChRs.

2.3.4. α7 nAChRs

Alongside α4β2*, α6β2*, and α4α6β2* nAChRs, the α7 nAChR subtype also plays a prominent
role in the formation of nicotine dependence. This homomeric nAChR subtype is largely present on
glutamatergic neurons in the prefrontal cortex (PFC), hippocampus, and mVTA. Expression of α7
nAChRs in these brain regions play multiple roles in nicotine addiction; they aid in the formation of
functional synapses [49], promote the net excitatory effect on midbrain DA neurons of the reward
pathway [60], and enhance postsynaptic excitation through NMDA receptors in the hippocampus
and prefrontal cortex [49,60]. More recently, a population of functional heteromeric nAChRs has been
discovered on mVTA glutamatergic neurons [63]. This novel finding supports the previous work
demonstrating the intricate connections between VTA glutamate and DA neurons in reward and
reinforcement processing [60,71,97], but further expands this knowledge by observing that nicotine
mediates the excitatory transmission at this connection and thus, amplifies the mesocorticolimbic
reward transmission [63].

The α7 nAChR exhibits different receptor kinetics compared to α4β2* nAChRs, exemplified by
fast activation and desensitization [44]. Due to their desensitization properties, α7 nAChRs recover
very rapidly, demonstrating the net excitation discussed earlier. The net excitation through rapid
recovery following desensitization, and high permeability to calcium, makes α7 nAChRs critical factors
in the induction of long-term potentiation (LTP) [46,98]. Nicotine-induced synaptic plasticity, or LTP,
of glutamatergic neurons in the VTA, PFC, and hippocampus are important in the tolerance and
associative learning of nicotine addiction. Regardless of the fast depolarization of VTA DA neurons
through nicotine’s effect on α4β2*, α6β2*, and α4α6β2* nAChRs, these receptors desensitize fairly
quickly and recover slowly, rendering them inactive to the remaining nicotine molecules circulating
in the brain. Thus, it is the presence of α7 nAChRs and their rapid recovery that contribute to the
long-standing effects of long-term nicotine. Additionally, administration of methyllycaconitine (MLA),
an α7-selective antagonist, did not alter nicotine CPP, but decreased self-administration, confirming α7
nAChRs’ role in reinforcement but not reward [95]. These findings were further verified by the lack of
change in nicotine self-administration behavior between α7-KO and α7-WT mice [56].

It is the reinforcing properties of nicotine that promote dependence, despite the many health
risks. VTA DA neurons receive local and distal (mainly PFC) excitatory glutamatergic inputs that
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further prompts DA release into the NAc, amygdala, and PFC, which makes up the mesocorticolimbic
system [99]. However, when nicotine is persistently present in this system, it causes modification of
neural circuits that promotes drug-induced synaptic plasticity [100]. This phenomenon outlasts the
effects of the presence of nicotine molecules and contributes to the formation of tolerance and memory
consolidation to nicotine. It is the repetitive use and reinforcing properties of nicotine that causes
the brain to form an association between nicotine use and the physiological response to nicotine use.
This association is what drives nicotine dependence by mediating the behavioral effects of nicotine
addiction, including cue-induced craving and reinstatement (in rodents) or relapse (in humans) [101].

2.3.5. α3* and α5* nAChRs

Genetic polymorphisms in the α3/α5/β4 nAChR subunit gene cluster has been linked to increased
risk to nicotine addiction [102,103]. Variation in the amino acid sequence of CHRNA5 results in
reduced α5* nAChR activity and increases the risk for dependence [102,104,105]. Additionally, Fowler
et al. identified a null mutation in the CHRNA5 gene that results in significantly more intravenous
self-administration nicotine consumption, compared to their control mice [106]. Interestingly, they
found that α5* nAChRs are involved in mediating aversive stimuli, titrating nicotine intake, and
mediating somatic signs of withdrawal.

The α5* and α3β4* nAChRs are mostly expressed in the habenulo-IPN pathway, a group
of cholinergic and glutamatergic neurons that project from the medial habenula (MHb) to the
interpeduncular nucleus (IPN) through a bundle of axons termed the fasciculus retroflexus [33,106,107].
Due to their low affinity for nicotine, these subtypes require high concentrations of nicotine to sensitize
them (2 mg/kg or more) [47,106,107]. The opening of α5* or α3β4* nAChRs activates the aversive
pathways involved in the mediation of nicotine intake. The activation of either the habenulo-IPN
pathway or the lateral habenula (LHb) projections to the rostromedial tegmental nucleus (RMTg) and
VTA is a response to the aversive aspects of nicotine, including high doses of nicotine or nicotine
withdrawal (discussed later).

3. Neurocircuitry Involved in Nicotine Addiction

3.1. Ventral Tegmental Area (VTA)

The ventral tegmental area is among the most vital brain regions involved in addiction. The VTA
is a heterogeneous collection of neurons that in part makes up the midbrain. Although primarily
studied for its DA neurons, the VTA also consists of γ-amino butyric acid (GABA) and glutamatergic
neurons [108]. VTA DA neurons have been widely studied in various drug-related experiments for
nearly all drugs of abuse acts on VTA DA neurons to stimulate DA neurotransmission into the ventral
striatum, or nucleus accumbens (NAc)—commonly known as the mesolimbic pathway [68,109–111].
Further, nicotine-induced activation of this pathway stimulates reward, as seen in conditioned place
preference (CPP) assays [26,55,82,112]. Whereas, lesioning of this pathway completely abolishes nicotine
reward-related behavior, nicotine self-administration, and nicotine-induced locomotion [85,113,114].
Additionally, VTA DA neurons project to the prefrontal cortex (PFC) through the mesocortical
pathway, and synapse on cortical pyramidal neurons and GABAergic interneurons. This dopaminergic
pathway is largely associated with drug reinforcement and is commonly activated during nicotine
self-administration studies [115,116]. Together, these paths make up the mesocorticolimbic DA pathway
and are often linked in studies on drugs of abuse, although there are additional projections to various
other brain regions, including the hippocampus and amygdala. Each of these neuronal paths circle
back to the VTA and mediate the activity of the dopaminergic neurons (discussed further in their
corresponding sections).

The VTA also receives afferent projections from numerous parts of the brain that mediate reward or
aversion of certain stimuli. The cholinergic and glutamatergic projections of the laterodorsal tegmental
nucleus (LDTg) and pedunculopontine tegmental nucleus (PPTg) excite the DA neurons of the VTA
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leading to burst firing, enhanced dopamine release, and reward-related behavior (Figure 3) [117–119].
During long-term nicotine exposure, these glutamatergic projections can initiate long-term potentiation
(LTP) in the VTA, promoting a continuous excitatory effect [120]. On the contrary, the medial (MHb)
and lateral habenula (LHb) neurons innervate the interpeduncular nucleus (IPN) and rostromedial
tegmental nucleus (RMTg) GABAergic neurons, respectively, which employ an inhibitory tone onto
VTA DA neurons of the mesolimbic pathway (Figure 3) [121,122]. This net inhibition is stimulated
during aversive stimuli, such as high nicotine concentrations, or during withdrawal [106,107,123].
Additionally, the LHb sends direct projections to the VTA in response to aversive stimuli, including the
absence of an expected reward [124]. These different afferent projections mediate the firing patterns of
VTA DA neurons and influence behavioral outputs.
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Figure 3. Neurocircuitry involved in nicotine addiction. (A) Sagittal mouse brain schematic of the
major brain regions and connections involved in nicotine addiction. (B) Intricate schematic of the above
neurocircuitry. DA: dopaminergic, GABA: GABAergic, GL: glutamatergic, CH: cholinergic neurons.
Blue arrows indicate excitatory projections; red arrows indicate inhibitory projections; and green arrows
indicate modulatory projections.

Although many drugs of abuse studies have focused on DA neurotransmission, GABAergic and
glutamatergic neurons of the VTA are prominent factors in the development of nicotine dependence.
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Opioids, cannabinoids, and benzodiazepines primarily target the VTA GABAergic interneurons,
inhibiting their activity and causing disinhibition and burst firing of the neighboring DA neurons [125].
Both GABAergic and glutamatergic interneurons of the VTA send projections to their neighboring
DA neurons in order to maintain a homeostatic balance of neuronal firing. Following a cigarette or
ENDS puff, nicotine activates the nAChRs found on each of these neuronal populations and increases
neuronal firing [126]. However, in a long-term user, these neuronal firing patterns become altered
following nAChR desensitization (see Figure 2). The α7 nAChRs expressed on glutamatergic neurons
desensitize (and recover) the fastest while β2* nAChRs (α4β2*, α6β2*, and α4α6β2*) desensitize
(and recover) much slower. As stated previously, a long-term nicotine user succumbs to various
neuroadaptations, including nAChR upregulation and altered neuronal firing. Throughout abstinent
periods, the GABAergic neuron firing patterns are enhanced, resulting in a net inhibitory effect on the
DA neurons. This not only reduces baseline DA neurotransmission but also causes a depressive state
that often triggers craving and relapse. In order to relieve this, the user will consume more nicotine,
activate the nAChRs on the various neuronal populations, and increase firing and DA release. With
repeated exposure and stimulation, nicotine renders many of the nAChRs inactive. Based on their
desensitization properties, the GABA neurons (containing α4β2*) have reduced output, resulting in
disinhibition of the VTA DA neurons [71]. Additionally, the fast recovery of α7 nAChRs promotes a
net excitatory effect on these DA neurons. It has long been considered that nicotine exerts its effects
on α7 and β2* nAChRs on VTA glutamate and GABA neurons, respectively, resulting in a mediatory
action on VTA DA neurons. However, recent studies have shown that these glutamate neurons, found
primarily in the mVTA, express α4, α6, and β2 nAChR subunits in a somatodendritic manner [73].
Further, Yan et al. has discovered that of the three major neuronal populations in the mVTA (VGluT2+

(glutamatergic neurons), Gad2+ (GABAergic neurons), and VGluT2+/Gad2+ (glutamatergic/GABAergic
co-releasing neurons)), nicotine enhanced glutamate release into the latVTA via VGluT2+ neurons but
decreased glutamate (and GABA) release via Gad2+ and VGluT2+/Gad2+ neurons [73]. This further
demonstrates the complexity of the VTA, and the various microcircuits involved in reward processing.
It is due to these changes that a person dependent on nicotine requires more nicotine over time to
achieve the rewarding feeling they once felt. Additionally, more studies are identifying the role of
glycine in this microcircuit. Although little work has been performed on glycine’s impact on nicotine
addiction, it has been shown that glycinergic neurotransmission significantly alters ethanol intake
most likely by impacting glutamate release via glycine receptors on glutamatergic terminals of the
VTA [127], however these receptors are also present on GABAergic terminals and have resulted in
reduced GABA release and enhanced dopamine release [128,129]. Accordingly, glycine receptors may
play a role in nicotine’s actions; but this has yet to be determined.

3.2. Substantia Nigra (SN)

The other contributing cluster of neurons that makes up the midbrain is the substantia nigra.
The SN is composed of two subgroups: pars compacta (SNc) and pars reticulata (SNr). The SNc is
composed of dopaminergic, glutamatergic, and GABAergic neurons while the SNr is largely made
up of GABA neurons. The third most extensively studied dopaminergic pathway in the brain aside
from the mesocorticolimbic paths is the nigrostriatal pathway, a dopaminergic tract from the SNc
to the dorsal striatum [130]. Activation of this pathway is involved in the motor loop of the basal
ganglia and has been shown to be acted on by drugs of abuse [131]. The loss of dopaminergic neurons
in this pathway is a pathological classification of Parkinson’s disease, characterized by tremors and
motor deficits.

3.3. Nucleus Accumbens (NAc)

A major output target of VTA DA neurons is the ventral striatum, or the nucleus accumbens
(NAc), which makes up the mesolimbic pathway. This pathway is highly involved in reward-related
effects of drugs of abuse [68,109]. The NAc contains two subregions: the core and the shell, and is
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made up of specialized GABAergic neurons, termed medium spiny neurons (MSNs). MSNs consist
of two types: D1 (direct pathway) and D2 (indirect pathway) based on the DA receptors present,
further explained by Cooper et al. [132]. These neurons receive excitatory projections from the PFC,
hippocampus (HIPP), and the VTA [100] to mediate the reinforcing and drug-seeking behaviors of
nicotine addiction [133,134]. Repeated activation of the afferent glutamatergic projections can lead to
LTP in the NAc, further driving drug-taking behaviors, as demonstrated through reduced AMPAR
and AMPAR/NMDAR ratios on MSNs following drug consumption [100]. The D1 MSNs of the lateral
NAc shell project in a cyclical manner back to the VTA and synapse on VTA GABA neurons [100,135].
These projections further mediate and disinhibit the VTA DA neuron activity, resulting in enhanced
DA release [136,137].

3.4. Prefrontal Cortex (PFC)

Dopaminergic projections from the VTA to the PFC make up the mesocortical pathway involved in
reinforcement and motivational salience [115,132,133]. This pathway has enhanced neurotransmission
during nicotine self-administration, demonstrated by an increase in postsynaptic ionotropic glutamate
receptors in the PFC [138]. PFC lesions significantly reduced nicotine self-administration in rats,
however, to date, this has only been performed in neonates [139]. Additionally, glutamatergic pyramidal
neurons of the PFC project back to the VTA, amygdala, hippocampus, and NAc. The connection
between the PFC and NAc is stimulated during drug seeking and reinstatement [140,141]. Due et al.
has demonstrated PFC activation of smoker’s brains via functional magnetic resonance imaging in
the presence of a smoking-related cue (an image of a person smoking) [142]. Activation of the PFC to
VTA pathway results in enhanced firing of the VTA DA neurons and increases DA release through the
mesolimbic pathway [143], in part due to upregulation of NMDA and AMPA receptor activation [60].

Based on the growing number of adolescent ENDS users, it is important to discuss the effects
of nicotine exposure on the developing brain. More specifically, the PFC is one of the last brain
regions to fully reach maturation in the developing brain, which indicates the executive control
functions, including attention and working memory are not fully developed upon initial nicotine
exposure. Nicotine use or exposure during this critical development period is known to negatively
impact the developing process, resulting in impaired cognition and psychiatric disorders, including
depression [144,145], and also often results in an increased risk for drug abuse behaviors [146].

3.5. Hippocampus (HIPP)

The hippocampus (HIPP) is highly involved in learning and memory, which is of importance
to the tolerance-related aspect of nicotine addiction. The glutamatergic neurons of the HIPP are
simultaneously excited by VTA DA and PFC pyramidal neurons, which induces LTP in the hippocampus.
The strengthening of hippocampal synapses is a key feature to nicotine addiction because of its
underlying mechanism involved in cue-induced drug-seeking behavior often leading to relapse [147].
The changes in synaptic machinery are due to the initial formation of immature glutamatergic synapses
from the HIPP onto NAc MSNs, leading to silent synapses, which promotes no electrical changes on
the inhibitory neurons of the NAc. These immature synapses are due to a large NMDA to AMPA ratio,
however, during nicotine withdrawal, stimulation of active synapses occur in part due to the insertion
of AMPA receptors on the presynaptic glutamate neurons. This alteration leads to the propagation of
inhibitory signals through the reward pathway, ultimately driving drug craving behaviors [148].

3.6. Habenula (Hb)

Although most drugs of abuse studies focus on reward pathways, aversive pathways play an
important role in addiction as well. The habenula consists of a medial (MHb) and lateral (LHb)
portion that has been known to be implemented during nicotine aversion. The most widely studied
aversive pathway is the habenulo-IPN tract, which runs from the MHb to the interpeduncular nucleus.
The excitatory glutamatergic and cholinergic projections of the MHb activate the GABAergic neurons
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of the IPN, which then inhibits the DA neurons of the VTA [149]. This, in turn, leads to decreased
activation of the mesolimbic pathway and thus, reduced reward.

Although many studies have shown the rewarding and reinforcing aspects of nicotine that drive
the drug-seeking and taking behaviors, nicotine is known to have an inverted U-shaped dose response
curve in rodents as well as humans [64]. Due to this dose-dependent effect, nicotine tends to be aversive
at high concentrations. Humans have been shown to titrate the amount of nicotine they consume
when smoking or vaping because of the aversive properties of too much nicotine. The process of
titration occurs through α3/α5/β4* nAChRs, which are only activated in the presence of high nicotine
concentrations (2 mg/kg in a rodent) [47,106,107]. These nAChR subunits are highly populated in
the habenulo-IPN pathway that mediates the aversive properties of nicotine. In the absence of these
subunits, individuals no longer titrate their nicotine consumption and lose the mediatory effects of
this pathway on the negative effects of high doses of nicotine. These subunits are also important
in the manifestation of withdrawal, including the somatic and physical symptoms. Knockout mice
lacking these subunits exhibited fewer somatic withdrawal symptoms [150,151] in chronic nicotine
administered mice.

Further, the less studied but still relevant aversive LHb pathway is a collection of glutamatergic
and cholinergic excitatory neurons that project to the tail of the VTA, the rostromedial tegmental
nucleus (RMTg). The GABAergic neurons of the RMTg then inhibit DA cell firing of the VTA [152].
This pathway is acted on by aversive stimuli, such as the aversive signals associated with nicotine
withdrawal and the absence of an expected reward, in an attempt to suppress the mesocorticolimbic
DA system [153]. Activation of the Hb pathways is important in the development of addiction, for
their influence on drug-seeking and taking behaviors.

4. Flavoring Chemicals in Nicotine Addiction

In the late 1900s, cigarette smoking had little to no restrictions and was acceptable in restaurants,
hospitals, public transportation, and more, making them not only freely accessible but a new trend
among the United States, with 50% of young women and 60–70% of young men being long-term
smokers [154]. This popularity was in part attributed to flavoring additives. Mentholated cigarettes
became a huge success, especially among the adolescent population after the discovery that menthol
provided a cooling sensation in the cigarette smoke. Adolescent cigarette use continued to rise over the
years due to the sweet aroma and taste that “characterizing” flavors provided. It was not until 2009
that the Family Smoking Prevention and Tobacco Control Act (FSPTCA) gave the FDA the authority to
ban “characterizing” flavor additives such as strawberry and vanilla (not including tobacco or menthol)
in combustible cigarettes in an attempt to mitigate adolescent cigarette use [155].

Since the FSPTCA, menthol has been the most widely studied flavor additive, for its popularity and
sole acceptance as a flavorant in combustible cigarettes. Aside from mentholated cigarette popularity
among adolescents, menthol has also long been popular among African Americans, with more than
80% of non-Hispanic black adults using menthol cigarettes [156]. It was recently determined that
African Americans exhibit unique variants that promote a significant increase in the odds of menthol
cigarette smoking [157]. Now that ENDS products are commonly used among those that were life-long
smokers, menthol is still a very prominent flavor in e-liquids. Menthol is known to intensify various
smoking-related behaviors and facilitates first-time nicotine use by masking the aversive properties of
nicotine [158], which may explain the popularity of flavored ENDS and signifies the concerns with
adolescent ENDS use [24,159].

Initially, menthol was considered to be an inert flavor additive, with the focus of tobacco-related
research being on nicotine dependence. It was not until the early 2000s that studies on menthol began
to surface. These initial studies suggested menthol smokers to be more nicotine dependent based on (1)
how quickly they smoke upon waking in the morning compared to non-menthol smokers [160,161] and
(2) the higher nicotine/cotinine levels among menthol smokers versus non-menthol smokers [161,162].
Further, Ahijevych and Garrett identified menthol to be a conditioned stimulus that enhances the
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rewarding and reinforcing properties of nicotine through its positive sensory effects [162], resulting in
drug-craving and drug-taking behaviors. These behaviors were mimicked in female rats that earned
more intravenous nicotine infusions in the presence of an oral menthol cue during self-administration
assays [16]. Conditioned stimuli paired with nicotine enhance the acquisition and maintenance of
nicotine use and are known to be a driving force in nicotine dependence [163]. Menthol has the unique
minty taste profile and a cooling sensory effect that, when combined with nicotine can contribute to
craving and relapse when a person is going through an abstinent period [164]. These sensory cues are
common among other sweet oral flavorants as well, including sucrose and saccharin. Interestingly,
Wickham et al. utilized an intraoral delivery method that resulted in sucrose- and saccharin-induced
phasic DA release, and significantly increased nicotine self-administration behavior [165]. It is these
conditioned sensory cues that often make cessation so difficult.

Based on these initial sensory effects, menthol was studied for its pharmacological impact in
the brain. Menthol was determined to act as a negative allosteric modulator (NAM) of nAChRs
following the observation of reduced nicotine-induced (but not ACh-induced) inward currents
through α4β2* nAChRs expressed in human embryonic kidney (HEK) cells [166]. This finding was
supported by additional electrophysiological characterization utilizing single-channel recordings that
revealed menthol shifted α4β2 nAChRs towards the desensitized conformation state. In separate
investigations, menthol was also determined to act as a noncompetitive antagonist on both α7 and
α3β4* nAChRs [167,168]. A combination of computational docking, site-directed mutagenesis, and
electrophysiology revealed that menthol may exert its effect on nAChRs by binding to the 9′ position
in the transmembrane 2 (M2) helix of nAChRs [22] (Figure 4A). Here, a series of mutations at the
9′ leucine residues (L9′) of the high-sensitivity α4β2 nAChRs were made and characterized with
electrophysiology to investigate the connection between menthol’s pharmacology and the L9′ site [22].
It was concluded that menthol’s inhibitory actions rely on the presence of the L9′ site of the M2
helix and only one menthol molecule is sufficient for α4β2 nAChR inhibition. Another recent study
identified additional menthol binding sites, including the M3-M4 extracellular interface on α4 subunits,
various sites at the M1–M4 interface on β2 subunits, and M2 residues positioned extracellularly [169].
However, these binding sites have not been validated using functional assays. Here, it is important to
distinguish the fact that the concentrations of menthol used to examine its inhibitory activity on nAChRs
is several orders of magnitude higher (>30 µM) than what is considered smoking/vaping-relevant
(<2 µM). The studies that have used low concentrations of menthol (0.5 µM) have determined that
menthol combined with nicotine does enhance nAChR upregulation on VTA dopamine neurons and
also enhances the excitability of these same neurons (discussed further below) [18,22]. A previously
published review has extensively disseminated the recent investigations that have elucidated the
mechanism of menthol’s actions on nicotine reward and reinforcement [158]. To avoid repeating what
has been eloquently explained and summarized previously, we direct interest into the specifics to the
review by Wickham et al. [158].
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GABA neurons (in red) and α4* (LS) and α6* nAChRs on VTA dopamine neurons (in green). This 
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Figure 4. Menthol binding patterns and mechanisms of action. (A) Top panel: Menthol molecule
(in green) binding in the transmembrane 2 (M2) helix lining the central pore of the nAChR. Bottom
panel: A closer look at menthol binding within the 9′ leucine residues of the M2 helix of the nAChR.
(B) Compared to saline, menthol induces upregulation of low-sensitivity (LS) α4* nAChRs on VTA
GABA neurons (in red) and α4* (LS) and α6* nAChRs on VTA dopamine neurons (in green). This
results in reduced neuronal firing based on the desensitization properties of the nAChRs, with a net
excitatory effect of VTA dopamine release. * = nAChR may contain other subunits.

Much like nicotine’s prominent ability to promote nAChR upregulation, menthol was determined
to induce nAChR upregulation in the brainstem, cerebellum, corpus callosum, PFC [21], hippocampus,
striatum [170], and VTA [18,20]. More specifically, Henderson and colleagues observed increased levels
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ofα4 andα6 nAChR subunit expression in VTA neurons following 10-day chronic menthol exposure [20],
as well as increased levels of α4 and α4α6* nAChRs in VTA neurons following 10-day chronic menthol
+ nicotine exposure [18] through osmotic minipumps and daily intraperitoneal injections in mice.
It is important to once again distinguish the concentrations used in these studies [18,20]. However,
unlike nicotine, chronic menthol treatment caused a shift from α4(2)β2(3) (high-sensitivity) to α4(3)β2(2)

(low-sensitivity) nAChRs in cultured cells (Figure 4B) [20]. This stoichiometry shift was accompanied
by reduced VTA DA neuron firing frequency and an attenuation of reward-related behavior, dissimilar
to nicotine. Interestingly, menthol + nicotine not only resulted in α4α6* nAChR upregulation, but also
enhanced VTA DA neuron excitability, and enhanced nicotine reward-related behavior [18].

These neurobiological and neurophysiological alterations via menthol contribute to the behavioral
effects demonstrated in rodent studies. As stated previously, menthol lacks the rewarding properties
that nicotine presents, but menthol has the ability to enhance nicotine reward-related behavior with
rodents in a conditioned place preference assay [18]. Further, to determine menthol’s effect on smoking
initiation, self-administration paradigms have been used to determine menthol’s role in nicotine
acquisition. In numerous studies, menthol facilitated intravenous nicotine self-administration and
increased the rate of nicotine intake compared to control groups [16,17]. This behavior was followed
by enhanced withdrawal-like behaviors, demonstrated through somatic signs and anxiety-related
assays [170], and enhanced menthol-induced reinstatement [16]. Menthol presents a minty and cooling
sensation through a transient receptor potential M8 (TRPM8)-mediated mechanism, which in turn,
masks the aversive and harsh taste of nicotine by shifting nicotine’s inverted U-shaped dose-response
curve to the left and contributing to the enhanced nicotine acquisition behavior. Aside from menthol’s
ability to enhance smoking initiation, chronic menthol enhances the reinforcing properties of nicotine,
leading to enhanced nicotine self-administration and dependence over time [17]. This may partially
be due to menthol’s effect on nicotine metabolism [171]. More specifically, menthol smokers exhibit
reduced nicotine metabolism compared to non-menthol smokers [170,172], likely due to a competitive
effect of menthol on the availability of CYP2A6, the major cytochrome enzyme involved in metabolizing
nicotine [171].

With the common knowledge that smokers of menthol cigarettes exhibit lower cessation rates [173]
and the growing use of flavored ENDS products (see Table 2), studies are beginning to arise on the
role of other flavor additives. Recently these studies have included the popular green apple ENDS
flavorants, farnesol [26] and farnesene [27], for they are structurally similar to menthol in the terpene
class (see Figure 5). According to Espino-Diaz et al., apple biochemistry varies during the maturation
process, with aldehydes primarily making up the apple flavor profile during the beginning, and
following maturity, the flavor profiles transition to primarily alcohols and esters [25]. Farnesol, like
menthol, is a terpene alcohol, which makes them more water soluble than a typical hydrocarbon,
given their hydroxyl functional group. Both farnesene and farnesol differ from menthol given
they are acyclical sesquiterpenes (natural 15-carbon organic compounds consisting of three isoprene
units). Sesquiterpenes, alongside monoterpenes, are the main aroma components that make up
apple flavorants. Additional to these two flavorants, green apple flavor includes numerous other
flavorant compounds including hexyl acetate, ethyl acetate, and methylbutyl acetate [174]. However,
ENDS-related studies on these flavorants have not yet been performed.
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Table 2. Popular flavoring chemicals in e-liquids.

Flavor Chemical Chemical Class Flavor Profile

Vanillin Aldehyde Vanilla, Chocolate, Cotton Candy, Mint, Coffee, Tobacco
Ethyl Vanillin Aldehyde Vanilla, Chocolate, Cotton Candy, Coffee, Tobacco
Ethyl Maltol Alcohol Vanilla, Chocolate, Cotton Candy, Mint, Coffee, Tobacco, Grape, Cherry

Maltol Alcohol Vanilla, Chocolate, Mint, Coffee, Tobacco, Grape
Benzaldehyde Aldehyde Cherry, Bubble Gum
Benzyl Alcohol Alcohol Cherry, Vanilla, Coffee, Tobacco
Ethyl Butyrate Ester Vanilla, Cherry, Bubble Gum, Apple, Tobacco, Grape

Menthol Alcohol Mint
Hexyl Acetate Ester Apple

Ethyl Acetate Ester Bubble Gum, Apple, Grape, Tobacco
Methylbutyl Acetate Ester Bubble Gum, Apple

Farnesol Sesquiterpene Apple
Farnesene Sesquiterpene Apple

Comprehensive list of popular flavoring chemicals including their chemical class association and various flavor
profiles that varying concentrations of these flavoring chemicals can be found in.
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(B) pulegone (peppermint), (C) limonene (citrus), (D) farnesol, (E) farnesene, and (F) geraniol (fruity),
despite the wide array of flavor profiles.

Similar to menthol, both farnesol and farnesene exhibited a significant enhancement of nicotine
reward-related behavior in mice [26,27]. In the case of farnesol, there was an observed sex-dependent
effect as only male mice (at the doses tested) exhibited changes in reward-related behavior. Interestingly,
unlike menthol, both green apple flavorants exhibited significant reward-related behavior in the absence
of nicotine compared to saline-control. The finding that ENDS flavors may produce reward-related
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behavior on their own is a significant contribution to the field of nicotine addiction and may explain
the continued use by adolescents and their strong preference for fruity flavors. This also reveals some
insight into why there may be a rise in vaping of zero-nicotine flavored e-liquids.

Much like the previous menthol findings, Avelar et al., identified farnesol-induced upregulation
of α6* and α4α6* nAChRs on VTA DA neurons and a complementary increase in the firing frequency
of these neurons [26]. Here, it was reported that farnesene, by itself, produced a greater change in
nAChR upregulation and enhancement in firing frequency when compared to farnesol plus nicotine.
They speculated that the differences in the flavorant-induced reward is likely due to the fact that
menthol-alone only upregulates low-sensitivity α6* (not α4α6*) nAChRs and decreases VTA DA
neuron firing [20], whereas farnesol not only increased VTA DA neuron firing but also upregulated
both α6* and α4α6* nAChRs [26]. Desensitization of the α4β2* nAChRs on SNr GABA neurons reduces
the inhibitory outputs, and results in disinhibiting the VTA DA neurons [175]. Based on these previous
findings, farnesol treatment was observed on SNr GABA neurons for their potential downstream
effects on VTA DA neurons [26]. Here, in male mice only, they found a significant downregulation
of α4 subunits on SNr GABA neurons and this contributed to a decrease in the firing frequency of
these neurons.

Similar to the farnesol study, Cooper et al. performed conditioned place preference assays
with mice and observed significant farnesene-induced reward-related behavior [27]. Unlike farnesol,
farnesene exerted its effects through changes in nAChR stoichiometry, not nAChR upregulation.
Through the use of mouse brain slices and cultured neuroblastoma 2a cells, it was determined that
farnesene triggered a stoichiometric shift toward high-sensitivity α4β2 nAChRs on VTA DA neurons.
This was accompanied by a leftward shift in the concentration-response of nicotine-induced inward
currents on VTA DA neurons in a brain slice preparation. Finally, VTA DA neurons in farnesene-treated
mice exhibited an increase in excitatory postsynaptic current frequency and amplitude. Considering
that this finding was the result of a coronal brain-slice preparation, this suggests farnesene alters local
VTA GABAergic or glutamatergic transmission and results in a net increase of excitatory input on to
VTA DA neurons. The above flavorant studies demonstrate the potential risk for the abuse potential of
ENDS flavorants and highlight the need to understand zero-nicotine flavored products.

5. Future Directions

Although flavorant studies are becoming more prevalent, there is still much to be learned.
Currently, menthol and green apple are the only flavors studied for their effects on nicotine
addiction-related behaviors. Given the distinct differences between menthol and green apple, and more
specifically between green apple flavorants: farnesol and farnesene, it is safe to assume that the various
flavor profiles on the market will have differing effects in future studies as well. This is especially true
given that prominent chemical flavorants used in ENDS e-liquids have similar chemical scaffolds as
menthol, farnesene, and farnesol (see Figure 5). It is likely these effects will also differ among specific
classes of flavor chemicals being studied. For example, majority of the flavorants used in these devices
are alcohols or aldehydes, and some flavorants are present in numerous flavor subcategories outside
of their major flavor category (i.e., vanillin (vanilla) flavorant in chocolate, mint, and cotton candy
flavored products; [174]). It will be interesting to determine how heavily used flavorants (like vanillin)
differ from farnesol or farnesene, which are primarily found in apple flavored products. As well as
general differences in chemical classes.

Another important gap in this field of research is the gap in knowledge regarding the difference
between adult, adolescent, and in utero exposure. This is a critical gap to fill considering the constant
rise in adolescent ENDS use. Despite not knowing the age-dependent effects on flavored ENDS use,
it is common knowledge that adolescent nicotine use has a variety of detrimental impacts on the
developing brain including greater tolerance for high doses of nicotine [176], enhanced nicotine reward
sensitivity [177], reduced PFC activation and thus impaired cognitive function [178,179], and enhanced
risk for other drug abuse later in life through a process known as “priming” [146,180]. With the current
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flavor studies resulting in an enhancing effect on nicotine pharmacology, it is likely flavors may also
enhance the above neurological impacts as well. Yet, more information must be gathered.

Currently, menthol and green apple have been studied for their effects on midbrain dopamine
and GABA neurons, however glutamatergic and cholinergic afferents are important contributors to the
activity of the mesocorticolimbic pathway. It would be interesting to determine the role that flavors
may play in glutamate firing, including synaptic plasticity. It is also critical to utilize fast-scan cyclic
voltammetry in the determining of flavorant-induced DA release in the NAc. Although we have
observed flavorant-induced alterations in firing on presynaptic midbrain neurons, it is important to
determine the postsynaptic effects as well.

With crucial evidence pointing to the aversive pathways as a mediator for nicotine addiction, it is
also important to determine if flavors also elicit effects in these specific regions. Flavorants may be
acting on these pathways by reducing the inhibitory transmission from the RMTg and IPN to the VTA,
resulting in net excitation and dopamine release. Furthermore, the habenula consists of more diverse
nAChR subtypes than the midbrain. Flavorants may have a more (or less) pronounced effect on these
subtypes. Regardless, there is plenty of research that still needs to be done in order to fully understand
how these devices and their additives affect a chronic user.

Lastly, although combustible cigarette plus electronic cigarette use (termed ‘dual-use’) has been
explored. These studies have focused more on lung-related and cardiovascular-related impacts, as
opposed to the impacts on the brain. It will be interesting to identify the effect that dual use has
on a chronic user’s brain and whether ENDS use exacerbates the already-addicted brain, or merely
maintains the combustible cigarette-induced neuroalterations.

6. Conclusions

Here, we discussed the major flavorant-induced changes in neurobiology and neurophysiology
that include changes in nAChR function, nAChR subtype assembly, and nAChR upregulation. Together,
these changes cause an impact on reward- and reinforcement-related behavior. Thus far, basic science
investigations into smoking- and vaping-related behavior have only focused on menthol and green
apple flavorants. These studies suggest that there are complex effects that ENDS flavorants exert on
nicotine reward and reinforcement. Based on these findings, and the current knowledge regarding
nicotine, it is important to continue investigating ENDS flavorants to determine their impact on the
neurobiology and neurochemistry of addiction. In parallel, there is a need to understand the toxicology
of these ENDS flavorants as well.
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