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Abstract: This review provides an updated atomic-level perspective regarding the enzyme
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), linking the more recent data
on this enzyme with a structure/function interpretation. This enzyme catalyzes one of the most
important steps in cholesterol biosynthesis and is regarded as one of the most important drug targets in
the treatment of hypercholesterolemia. Taking this into consideration, we review in the present article
several aspects of this enzyme, including its structure and biochemistry, its catalytic mechanism and
different reported and proposed approaches for inhibiting this enzyme, including the commercially

available statins or the possibility of using dimerization inhibitors.

Keywords: HMG-CoAR; structure; biochemistry; regulation; statins; dimerization inhibitors.

1. Introduction

Cholesterol (Figure 1) is a molecule of vital importance to most life forms and an essential structural
component of eukaryotic cells. Nevertheless, this compound is commonly associated with several

heart conditions, which leads to a public perception of cholesterol as an “evil” molecule.
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Figure 1. (a) 2D; and (b) 3D structures of the cholesterol molecule.

The chemical structure of this sterol, with the formal name cholest-5-en-33-o0l, was firstly
determined in 1932 by Windaus [1]. This molecule, along with other sterols, contains a core
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cyclopentanoperhydrophenanthrene ring system (i.e., four fused rings, three of which are six-carbon rings
and one with five carbons) and is planar, rigid and water insoluble, due its large hydrophobic hydrocarbon
body. Cholesterol is also an amphiphilic molecule due to its hydrophilic head, which includes the
hydroxyl group [2,3]. These properties allow this compound to be the major sterol present in animal
tissues and to play a vital role in the proper functioning of our cells. Besides being an important
structural lipid that can be found in the cellular membrane of most eukaryotic cells, cholesterol also
works as a precursor to several steroid hormones [3,4].

Membranes, at a cellular level, are responsible for the separation of the cytosol from the external
medium. They comprise very different components, although in a simplistic way they can be represented
as a double layer of phospholipids. These complex systems also allow the transference of compounds
through them and carry out other important functions.

The importance of cholesterol in cellular membranes can be estimated by comparing the fluidity
of membranes with their cholesterol content. As cholesterol is a somewhat rigid molecule, membranes
with a higher cholesterol composition tend to be more rigid and packed, and those with less tend to be
more fluid [2]. The fluidity of membranes is diminished not only due to the rigidity of cholesterol,
but can also be influenced by the interaction of this molecule with the different membrane lipids
(e.g., the creation of cholesterol-sphingolipid rafts makes membranes slightly thicker and more
ordered) [3,5]. Additionally, this membrane lipid also aids the cell in other homeostasis processes,
such as endocytosis [3].

As mentioned above, cholesterol is also a precursor of natural steroid hormones produced in our
body, providing them with their core ring system, such as the hormones produced in the adrenal gland
and the sex hormones (Figure 2).

OH

Figure 2. 2D structures of: (a) cholesterol; and some of its precursors: (b) aldosterone; (c) cortisol;
(d) testosterone; (e) progesterone; and (f) vitamin-D3.

The adrenal gland is located just above the kidneys and its main role is to produce and release two
classes of hormones: corticosteroids and catecholamines. Only corticosteroid hormones are derived
from cholesterol, and these can be further divided into two different classes: mineralocorticoids
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and glucocorticoids. Mineralocorticoids (e.g., aldosterone (Figure 2b)) are hormones related to the
reabsorption of ions such as Cl-, Na+ and HCO3- by the kidney. On the other hand, glucocorticoids
(e.g., cortisol (Figure 2c)) are a centerpiece for the metabolism of carbohydrates in the body,
being responsible for the regulation of the levels of glucose. Both male and female sex glands
also produce molecules that can be derived from cholesterol. These can be divided into androgens,
such as testosterone (Figure 2d), which are responsible for the development of male characteristics,
and estrogens and progestogens (Figure 2e), which are responsible for the development of female
characteristics. Additionally, cholesterol can also be used as a precursor in the synthesis of bile salts
and vitamin D (Figure 2f) [3,4].

Cholesterol present in our bodies derives from two different sources: it can be either synthesized
de novo in our cells or obtained through the ingestion and absorption of certain foods, such as beef and
pork meat, eggs and cheese. Although many people regularly eat these foods, there really is no absolute
need to ingest them for the sole purpose of obtaining more cholesterol, since cholesterol homeostasis
is regulated by the interplay between de novo synthesis/ingestion and the excretion or conversion
of cholesterol into bile acids [6,7]. This means that, when low quantities of cholesterol are ingested,
absorption and synthesis will be upregulated. Likewise, if the dietary intake is high, its excretion
will increase [6,7]. This is a simplified approach to the cholesterol regulation mechanism, as it can
change with several other external factors, e.g., aging [8]. As mentioned above, cholesterol has gained
a bad reputation among the general population, especially due to its association with cardiovascular
diseases (CVD). According to the World Health Association (WHO), CVDs accounted for 31% of
the 57 million deaths that occurred in 2016 [9]. In the top 10 leading causes of death (worldwide) in
2016, ischemic heart disease (IHD) was number one, accounting for 16.6% of total deaths, followed by
stroke and other cerebrovascular diseases (10.2%) [10]. The association between these diseases with
hypercholesterolemia leads to a strong perception of cholesterol as a malignant compound by the
general public.

Cholesterol is known to be associated with atherosclerosis, which is one of the main causes of
CVDs [7,11]. Atherosclerosis derives from the accumulation of plaque, composed by fat, cholesterol,
calcium and other substances found in the bloodstream, on the inside walls of arteries [12-14]. Itis a
complex process, which involves a chronic inflammatory response on the walls of arteries to oxidized
low-density lipoproteins (LDL). This leads to a pathogenic accumulation of LDL in blood vessels
and the formation of atherosclerotic plaques, which results in the constriction of blood vessels [12,13].
Lipoproteins are produced by our body in order to dilute cholesterol and other fats, which are
water-insoluble, in our bloodstream. With the aid of apolipoproteins, it is possible to package these
insoluble materials into protein-covered molecular assemblies. However, whenever there is a higher
lipid content in these complexes, LDL (the often called “bad cholesterol”) is formed.

Even though CVDs are associated with the cholesterol content, it is important to note that
high levels of cholesterol are not directly the cause of these diseases, and that people with the
inability to produce this molecule have serious diseases, such as Smith—Lemli-Opitz syndrome and
desmosterolosis [7,11].

2. Biosynthesis of Cholesterol and the Role of HMG-CoA

Cholesterol synthesis (Figure 3) is performed by multiple cells in the human body, whenever the
cholesterol content attained by ingestion is low. This complex process is normally performed in the
cytoplasm, and the major contributors are the liver and intestinal tissues. The cells are, by themselves,
capable of producing enough cholesterol for our needs [15-17]. This process is heavily regulated at
several points throughout its progression, and the reaction intermediaries can be deviated to the
production of other compounds and to perform other body functions [18]. This process requires several
steps, which can be summarized in four stages: synthesis of mevalonate (Figure 3a); conversion of
mevalonate to activated isoprenes (Figure 3b); formation of squalene (Figure 3c); and ring closure of
squalene to form the sterol ring system (Figure 3d) [19,20].
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Figure 3. Summary of cholesterol biosynthesis. (a) Synthesis of mevalonate from acetate; (b) Conversion
of mevalonate to activated isoprenes; (c) formation of squalene; (d) conversion of squalene to form the
ring steroid nucleus.

In a more detailed mechanism, the synthesis of cholesterol starts with the condensation of two
acetyl-coenzyme A (acetyl-CoA) molecules to form the intermediate acetoacetyl-CoA. This process
is catalyzed by a thiolase enzyme, known as acetyl-CoA acetyltransferase (ACAT). Hereinafter,
the reaction of two acetoacetyl-CoA molecules catalyzed by HMG-CoA synthase (HMG-CoAS) allows
for the formation of 3 hydroxy-3-methylglutaryl CoA (HMG-CoA), which is subsequently reduced
to mevalonate by the enzyme HMG-CoA reductase (HMG-CoAR) and two NADPH molecules that
function as cofactors (Figure 4). This latter reaction is the rate-limiting step of the overall synthesis of
cholesterol, and it has been extensively studied since it defines the course of the reaction, known as the
committed step, using HMG-CoAR as a regulatory enzyme.
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Figure 4. Diagram of the mevalonate pathway;, the first stage in the biosynthesis of cholesterol.

The next step in the biosynthesis of cholesterol is the conversion of the intermediate mevalonate into
two activated isoprenoids—isopentenyl-5-pyrophosphate and dimethylallyl pyrophosphate (IPP)—by
the addition of three ATP molecules (Figure 3b). The obtained isoprenoids are used to synthesize several
biomolecules, such as cholesterol, ubiquinone and sterol-based hormones in animals; carotenoids in
plants; and cell-wall components (such as undecaprenyl phosphate) in eubacteria [19,21-25].

A successive condensation reaction of activated isoprenes allows for the formation of a 30-carbon
molecule, known as squalene (Figure 3c), whose linear structure can be linked to the cyclic steroids and
act as the biochemical precursor of all steroids. The synthesis of cholesterol is achieved by the mono
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oxidation of squalene into an epoxide using a NADPH molecule, followed by the cyclization of the
intermediate to form a 4-ring compound, the lanosterol molecule, which is converted into cholesterol
after multiple subsequent reactions.

Since cholesterol biosynthesis is an energetically complex and expensive process (involves 18 ATP
molecules), it is only natural to assume that it is carefully regulated. In mammals, its regulation is
controlled by the intracellular cholesterol concentration and the presence of the hormones insulin and
glucagon [19]. As mentioned above, the most important checkpoint is the conversion of HMG-CoA
to mevalonate, a step catalyzed by HMG-CoAR. The importance of this enzyme to the mevalonate
pathway has been evaluated through various experimental works, such as the work of Chappell et al.,
in which, after introducing a constitutively expressed HMG-CoAR gene from a hamster into tobacco
plants, the activity of the enzyme became unregulated and the accumulation of sterols increased
3-10-fold [26]. The studies surrounding this enzyme were performed to assess not only its importance in
the biosynthesis of cholesterol and other steroids, but also to understand how it works and is regulated.

3. Structure of HMG-CoA Reductase

HMG-CoAR is a very important enzyme in the production and regulation of several essential
compounds. As discussed above, mevalonate will lead to the formation of isoprenoids, which are a
metabolite of major importance in several different organisms, ranging from bacteria to plants and
animals [21,27]. For this reason, these organisms also have similar enzymes that perform analogous
reactions. HMG-CoAR can be found in eukaryotes and some prokaryotes, with some differences
observed. With a sequence analysis of this protein, it was possible to point out two different classes.
Class I enzymes (EC: 1.1.1.34) are present in most archaea and eukaryotes and are inserted in the
membrane of the endoplasmic reticulum (ER) [27,28]. Class Il HMG-CoAR (EC: 1.1.1.88), on the other
hand, is completely soluble in the cytoplasm and is found in some archaea and prokaryotes [29].

In a more detailed view, Class I enzymes have a transmembrane domain, ranging from residues
1 to 339; a cytosolic domain in which the active site is located (residues 460-888); and are connected by a
linker region, which is comprised by residues 340459 (the description of the residues is associated with
human protein) [30]. Class II contains only the catalytic domain of the Class I enzyme, thus resulting
in a 428-residue polypeptide [31-33]. This results in sequence identities ranging 14-20% [27,30,33].
Despite this low sequence homology between classes, as well as a different protein architecture, both
enzymes have comparable positions for the active sites residues and a highly conserved catalytic
portion (Figure 5) [30,33]. The study that led to the early development and understanding of the
mevalonate pathway used this feature, as the first Class Il HMG-CoAR enzyme was obtained from the
eubacterium Pseudomonas mevalonii [34,35]. This enzyme was a useful model for the characterization of
the active site residues, even preceding crystallographic information [34-38].

Class | 559 691 735 767 866

Human PMATTEGCLVA NYCTDKKPAAI IGGYNAHAANI IACGQDAAQNV HLVKSHMIHNR
Bovine PMATTEGCLVA NYCTDKKPAAI TIGGYNAHAANI TACGQDAAQNV HLVKSHMIHNR
Pig PMATTEGCLVA NYCTDKKPAAV IGGYNAHAANI IACGQDAAQNV HLVKSHMIHNR
Rabbit PMATTEGCLVA NYCTDKKPAAV TIGGYNAHAANY IACGQDAAQNV HLVKSHMIHNR
Class Il 83 221 267 283 381

P. mevalonii PLVVEEPSIVA NLADLRLARAQ AATHNKGIMNG VATGNDWRAVE GIQRGHMALHA
S. aureus PMMVEEPSVVA NHATASVVKVQ AATHNKGVMNG LATGNDTRGAE GIQQGHMSLQY
S. salivarius  PMVTEEPSVVA NLATESLVTAT AATHNKGIFNG TIATGNDWRAVE GIQAGHMKLQA
L. quinlivanii PLAVEETSIIA NLNDQKLTTAK AATHNKGVMNG IATGNDWRAVE GIVKGHMRLHI

Figure 5. HMGCRs sequence alignment around the main catalytic residues, which are highlighted in
yellow. The numbering is related to the human enzyme for Class I and with the Pseudomonas mevalonii
one for Class II. Residues colored in grey are conserved between classes and those colored in light blue
are conserved within the same class.
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The tridimensional structural information for the human HMGCR (Figure 6) was solved for the
first time in 2000 by Istvan et al. [38]. Currently, there are 22 structures for the catalytic domain of the
human enzyme available on the Protein Data Bank, which sum up to more than 40 if we also count
those from other organisms. These structures contain those of the enzyme alone as well as complexes
between HMGCR and HMG-CoA, NADP+ and different statins (Table 1).

Figure 6. Structure of the tetramer and respective dimer of the human HMGCR, showing both CoA
and NADPH (PDB entry 1DQA); chains are colored according with the letters: chain A is in magenta,
chain B in blue, chain C in light green and chain D in orange.

Table 1. Currently known HMGCR crystal structures available in the Protein Data Bank, organized
chronologically, starting with the most recently available.

PDB Organism Year Resolution (A) Chain Length Ligand(s) Ref.
6HR8  Methanothermococcus 2019 2.9 427 NADPH, PEG [39]
6HR7 thermolithotrophicus 24 427 P6G, DTT
6EEV 1.5 429 MEV
6EEU Delftia acidovorans 2018 1.9 429 - [40]
6DIO 2.1 429 NAD
5WPK Streptococcus 2018 2.3 426 PE4, HMG [41]
5WPJ pneumoniae 2.0 426 NADPH
416Y 15 428 MEV
416W 1.7 428 1CO
416A Pseudomonas 1.9 428 HMG
21
4164 mevalonii 2013 1.8 428 - 211
4156 1.5 428 1Cz
414B 1.7 428 NAD, 1CO, 1CV
3QAU Do . 2.3 458 -
3QAE Escherichia coli 2011 23 458 ) n.a.
3CDB 2.3 441 9HI
3CDA 2.1 441 8HI
3CD7 Homo sapiens 2.1 441 882 [42]
3CD5 24 441 7HI
3CDO0 2008 2.4 441 6HI
3CCZ 1.7 441 5HI
3CCW Homo sapiens 2.1 441 4HI [42]

3CCT 2.1 441 3HI
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Table 1. Cont.

PDB Organism Year Resolution (A) Chain Length Ligand(s) Ref.
2R4F Homo sapiens 2008 1.7 441 RIE [43]
3BGL Homo sapiens 2008 2.2 441 RID [44]
20Q6C 2.0 441 HR1

2Q6B Homo sapiens 2007 2.0 441 HR2 [45]
2Q1L 2.1 441 882

1T02 Pseudomonas 2003 2.6 428 Lovastatin [46]

mevalonii

1R71 Pseudomonas 2.2 428 -

1R31 mevalonii 2003 2.1 428 MEV, CoA na
1HWL 2.1 467 ADP, Rosuvastatin
THWK 2.2 467 ADP, Atorvastatin

1HW] . 2.3 467 ADP, Cerivastatin

H 7

THWI oMo sapiens 2001 23 467 ADP, Fluvastatin L]
1HW9 2.3 467 ADP, Simvastatin

1THWS8 2.1 467 ADP, Compactin

1DQA Homo sapiens 2.0 467 MAH, CoA, [38]

NADP
2000

1DQ9 , 2.8 467 HMG

1DQ8 Homo sapiens 2.1 467 CoA, DTT,MAH 1%
1QAY Pseudomonas 1999 2.8 428 MEV, NAD [45]
1QAX mevalonii 2.8 428 HMG, NAD

As referred above, the Class I protein is divided in three different domains: the membrane-anchor,
a linker and a catalytic domain. From the human HMGCR structures, which only include the catalytic
domain, it is possible to observe a tetramer produced by four identical monomers. The monomers form
dimers in which each subunit is coiled around the other in an intricate way. Each tetramer contains
four active sites, two in each dimer, which are made up of residues from both subunits. The monomer
itself can be divided into three different subdomains (Figure 7): A small, x-helical amino-terminal
N-domain, residues 460-527; a large central L-domain that binds to HMG-CoA, residues 528-590 and
694-872 (Figure 7b); and a small carboxyl-terminal S-domain that binds to NADPH, residues 591-682
(Figure 7c¢) [30,33,49,50].

The dimer interfaces are extensive, and all domains of the monomer participate in interactions
that join the subunits together. The most broad interactions are located in the three following regions
(Figure 8): (i) the loop that connects the L-domain and the S-domain, residues 682-694, called the
cis-loop, which is essential for the formation of the HMG-binding site and the connection with the
NADPH-binding region; (ii) the region in the L-domain where an intramolecular 3-sheet is formed,
and the two strands of this 3-sheet are characterized by a highly conserved sequence, ENVIGX3I/LP;
and (iii) a four a-helix bundle formed by helices La6 and L7 (two from each monomer), which
fold in an antiparallel fashion with the corresponding helices from the neighboring and equivalent
subunit [49].

The core active site of this enzyme for the reduction of HMG-CoA is found in the cis-loop, and the
key catalytic residues are Lys691, Glu559, Asp767 and His866 [30,33].

Despite the fact that the HMG-CoAR tetramer was only observed on crystallized structures of
the catalytic domain alone, other studies suggest that this configuration is maintained even in the
full-length human HMG-CoAR, containing both catalytic and transmembrane domains [38]. In the
full-length protein, the N-domain is essential for establishing the connections between the catalytic
portion of HMG-CoAR and the membrane domain [30,38].
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a)

Figure 7. (a) Demonstration of the monomer subdomains. The structures follow the representation and
color code of the dimer in Figure 6, as chain A and B are colored in magenta and blue (transparent to
better see details), respectively. The chain A monomer is subdivided into its subdomains, highlighted in
orange is the N-domain; in green the L-domain; in violet the S-domain; and the molecules represented
are CoA (in light blue) and NADPH (in yellow). (b,c) Close-up representations of the CoA and
NADPH-binding regions, respectively (PDB entry 1DQA).

Figure 8. Demonstration of the dimer interfaces. These structures follow the representation and color
code of the dimer in Figure 7, as chain A and B are colored in magenta and blue (transparent to better
see details), respectively. (a) The monomer—-monomer interactions are detailed by chain; and (b) the
characterization of the regions where the interactions are stronger, where the cis-loop, is in black;
the -sheet in violet; and the four a-helix complex in brown (PDB entry 1DQA).

Contrary to the catalytic portion of the HMG-CoAR, the transmembrane domain is not very well
conserved in eukaryotes (Figure 9). In mammals, the membrane spanning region forms eight helices
that are inserted in the membrane; contrarily, plants and yeast contain two and seven, respectively [38].
Mammalian enzymes contain a 167-residue segment which is sensitive to sterols. This segment has a
sequence identity of approximately 25% with other cholesterol-related membrane proteins that sense
cholesterol abundance or transport cholesterol [49,51-54].
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Variable Average Conserved

Figure 9. Representation of the conservation score obtained for the catalytic portion of human
HMG-CoAR (PDB code 1DQA), using the software ConSurf-DB [55]. It is possible to observe in magenta
highly conserved residues, typically with some structural and/or functional importance; the residues
with low conservation are in cyan.

Active Site Architecture and Catalytic Mechanism of HMG-CoA Reductase

The description of the active site of HMG-CoAR, enzyme responsible for the reduction of
HMG-CoA to mevalonate, is briefly depicted above. In short, the active site of this enzyme is formed
by two different subunits that form a dimer when bound together. The catalytic domain remains
unchanged even with the formation of the tetramer.

The active site of the HMG-CoAR enzyme is a large cavity which is located at the monomer-monomer
interface. This active site can be divided into three different binding subsites: one for HMG, one for CoA
and one for NADPH.

The binding site of CoA (Figure 10B) is positioned in the L-domain of one monomer. The ADP
moiety of CoA binds near the surface of the enzyme, in a pocket lined with positively charged residues.
The residues that are involved in the CoA binding pocket are Ser565, Asn567, Arg568, Lys722, Ser865,
His866 and Tyr479 (this last residue comes from the neighboring monomer). The side chain of Tyr479
is of particular importance, as it interacts with the adenine base of CoA through m—7 stacking while its
hydroxyl group makes a hydrogen bond with the 3’-phosphate of the ribose moiety [49].

The NADPH (Figure 10C) binds to the S-domain of the opposing subunit in which the HMG-CoA
binding pocket is located. Residues Ser626, Arg627, Phe628, Asp653, Met655, Gly656, Met657, Asn658
and Val805 come from the S-domain and residues Asn870 and Arg871 from the neighboring monomer.
In the presence of NADPH, a conformational change in the C-terminus of the enzyme is observed
which leads to the closure of the active site [49].

Lastly, the HMG binding site (Figure 10A) is located at the interface of the two monomers.
This binding pocket is formed by residues Ser684, Asp690, Lys691, Lys692 and Asp767 from one
subunit and Glu559, Lys735, Asn755, Leu853 and His866 from the other. This is also the catalytic site of
the enzyme. The currently accepted mechanism of HMG-CoA is present in Figure 11.
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Figure 10. Representation of: (A) the active site of HMG-CoAR; (B) the binding sites of the HMG
portion of HMG-CoA; and (C) the binding sites of NADP (PDB entry 1DQ9).
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Figure 11. Currently accepted catalytic mechanism of HMG-CoAR [56]. The catalytic residues are
Lys691, Glu559, Asp767 and His866; chain A is highlighted in pink and chain B is highlighted in blue.
Glu559 and His866 are restored in a following step by deprotonation of adjacent water molecules.
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As observed in the mechanism shown in Figure 11, the enzyme HMG-CoAR enables the reduction
of thioesterified HMG-CoA to mevalonate, using two molecules of NADPH for successive hydride
transfers. The first step results in the formation of mevaldyl-CoA hemi-thioacetal, followed by the
formation of the mevaldehyde, which occurs with the collapse of the thiohemiacetal and formation
of CoA-SH (protonation of the thiol anion by Hys866). In the final step, the second NADPH reduces
mevaldehyde to mevalonate [20,27,33,48,49,56].

The perception of this complex mechanism has changed through the years. In an earlier work,
Tabernero et al. proposed a similar mechanism to the one depicted in Figure 11 for the P. mevalonii
enzyme, in which Lys267 was proposed to be the general acid that stabilizes the mevaldyl-CoA
intermediate [48]. As shown in Figure 6 and their work, it is not obvious to find the correct association
between this residue from P. mevalonii and other HMG-CoARs using sequence homology. This was also
observed by Haines et al., as their alignment is different from ours and the previous work [27]. In this
latter work, they observed that the reduction of mevaldyl-CoA was performed with the aid of Glu83
(which is equivalent to Glu559 in the human enzyme), instead of Lys267. This work is supported by
the position of the active site human residues as: (i) negatively charged intermediates can be stabilized
by the positive charge of Lys691; (ii) the proximity between one of the side chain oxygens of Glu559
and the carbonyl oxygen of HMG suggests that this residue is protonated; (iii) the negatively charged
Asp767 plays a critical role, as it is close enough to the glutamate to influence its pKa value, as well as
being able to stabilize through ionic interactions the Lys691 side chain in the active; and (iv) the His866
can make a hydrogen bond with CoA thiol [27]. The mechanism proposed in Figure 11 follows the
line of an QM/MM study, in which several approaches were tested. Oliveira et al. concluded that the
correct mechanism is similar to the one proposed by Tabernero, however some structural features of
Haines were used [56]. The presence of a neutral Glu559 in the active site allows for this residue to
be more distant from the positively charged His866, as Glu559 and Asp767 form a hydrogen bond.
Thus, Glu599 is no longer in an appropriate position to stabilize the mevaldyl-CoA intermediate, as
previously suggested [27]. From the models tested by Oliveira et al., the one with the neutral Glu599
presented the lowest activation free energy for the reaction mechanism in Figure 11, in which the
protonation of mevaldyl-CoA is performed by Lys691 [56].

Considering the structural differences between both classes of HMG-CoAR, and, consequently
the different positions of the catalytic residues, it is safe to assume that the reaction mechanisms will
be different. P. mevalonii enzyme is responsible for the reverse reaction of the human variant, and it
has been shown that it is possible for this prokaryote to grow on mevalonate only [57]. The cis-loop
found in Class I reductases, which is key for the positioning of the catalytic residues, is missing in this
version of the protein. Instead, the position of His381 (analogous to His866) is approximated to the
active site by the closure of the flap domain, i.e., the C-terminal 50 residues of Class II. This motion
also alters the binding of the substrate and the cofactor [49,58].

4. Regulation of HMG-CoAR

HMG-CoAR is one of the most regulated enzymes in our body. The regulation can be achieved
in four different ways: transcription of the enzyme’s gene [59-64]; translation of its mRNA [65];
degradation of the functional enzyme [66—73]; and modulation of its activity [74-76].

The transcription of HMG-CoAR gene and the rate of synthesis of this enzyme is controlled by
the sterol regulatory element binding proteins (SREBPs). These proteins are commonly anchored in the
ER membrane in a complex that is coupled with another two proteins, the SREBP cleavage activating
protein (SCAP) and insulin induced gene protein (INSIG). The latter two proteins act as sterol sensors
and render SREBPs inactive when they are bound together [3,50,61]. The complexed form occurs when
a high concentration of cholesterol (or other sterols) is present in the cell. SCAP binds to cholesterol,
which leads to a structural change that is stabilized by the INSIG proteins present in the ER. Upon the
decrease of the cellular concentration of sterols, INSIG unbinds SCAP, which in turn escorts SREBP,
with the aid of secretory proteins, to the Golgi complex [51,62-64].
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Inside the Golgi complex, SREBP is sliced in two positions by specific proteolytic cleavages.
This cleavage releases the N-terminal basic helix-loop-helix domain, which is now free to enter
the nucleus behaving as a transcriptional factor and is able to recognize certain sequences of DNA
called sterol-regulatory elements (SRE). When this transcription factor binds to them, it promotes the
transcription of the HMG-CoAR gene, as well as other proteins used for lipid synthesis [63-65].

In addition to the transcriptional regulation, HMG-CoAR is also regulated via post-translational
mechanisms. Following the increase in cellular sterol content, the degradation of HMG-CoAR is
activated. INSIG once again has a key role in this process. When the levels of sterol are high enough, both
SCAP and HMG-CoAR compete to bind INSIG. When SCAP binds to SREBP, the proteolytic release is
shut down, and, when HMG-CoAR binds to INSIG, Lys248 of the human HMG-CoAR is ubiquitinated
and the protein is then quickly degraded through a ubiquitin-proteasome mechanism [66,67,75].
More recently, it has been suggested that C4-dimethylated sterol intermediates produced during the
mevalonate pathway can suppress SREBP cleavage and promote HMG-CoAR degradation, whereas
cholesterol is a relatively weak inducer [77,78].

The catalytic activity of HMG-CoAR can also be modulated by phosphorylation [79,80].
Next to His866, one of the active site residues, there is a Ser872, which can be phosphorylated.
The phosphorylation of this residue leads to the decrease of the catalytic activity of HMG-CoAR, since it
decreases the affinity of the enzyme to NADPH. The position of the serine, so close to the catalytic
histidine, is well conserved in superior eukaryotes, which suggests that the phosphoserine can interfere
with the ability of histidine to protonate coenzyme A thioanion before it is released from the active
site [75,76]. Alternatively, it is supposed that the phosphoserine can also prevent the closure of a
C-terminal region, which is responsible for facilitating catalysis. The subsequent dephosphorylation of
this serine completely restores the catalytic activity of HMG-CoAR [38,49].

5. HMG-CoAR Inhibitors

To try to diminish the escalating number of deaths caused directly or indirectly by the high
levels of blood cholesterol, researchers started to investigate the best way to help reduce these levels.
In fact, simply controlling the ingestion of cholesterol containing food was not enough to control
its concentration in the blood [47,81]. Initial treatments to hyperchloremia used several approaches,
such as bile-acids sequestrants, nicotinic acid, fibrates and probucol. The search for better cholesterol
lowering drugs was maintained, due to the relative low efficiency of these medications.

5.1. Statins: The Most Common Inhibitor

In the mid 1970s, compactin, the first HMG-CoAR inhibitor, was discovered by Endo and
coworkers, and the drug was tested for its efficiency as a cholesterol lowering medicine [82-84]. As the
results were favorable, development of new and improved statins rose exponentially and soon after
statins became the most used drug to control high levels of blood cholesterol, thereby reducing heart
attacks and prolonging life in humans with atherosclerosis [85-87].

Statins are potent competitive inhibitors of HMG-CoAR and can be divided in two types, according to
their origin [49,88,89]. Type I statins (Figure 12b), e.g., lovastatin, pravastatin and simvastatin, are natural
fungal products and Type II statins (Figure 12c) are fully synthetic. All statins have similar structures
to HMG (Figure 12a) and are covalently linked to a rigid hydrophobic group. When administered,
the HMG-like moiety of these drugs is in an inactive form, which is later hydrolyzed in-vivo by cellular
enzymes, i.e., esterases [90]. Type Il statins are characterized by the presence of larger hydrophobic regions
and attached fluorophenyl groups, as it is possible to observe in Figure 12¢ [91].
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Figure 12. Structures of: (a) HMG-CoA; (b) Type I statins; and (c) Type II statins.

The ability of statins to inhibit HMG-CoAR arises from their similarity with the substrate,
which leads to a competition towards the HMG binding site of the enzyme between HMG-CoA and
statins. Even though the hydrophobic part of statins differs greatly from CoA portion of the substrate,
it also blocks the access of HMG-CoA to the binding site (Figure 13). Thus, the affinity of this enzyme
for statins is slightly higher than its affinity for the substrate [92].

Figure 13. Demonstration of the active site residues when a statin (atorvastatin) is bounded (PDB code
1HWK): (a) only atorvastatin is presented in yellow; and (b) HMG-CoA is also bound to more easily
compare the inhibitor with the natural substrate (PDB entry IHWK and 1DQ9). These structures follow
the representation and color code of the dimer in Figure 6, as chain A and B are colored in magenta and
blue (transparent to better see details), respectively.

The usage of statins may lead to some beneficial effects to the patients, such as plaque stabilization
and anti-inflammatory and antithrombotic effects, among others [93]. These pleiotropic effects have



Molecules 2020, 25, 3891 14 of 21

and continue to be studied to repurpose statins in the treatment of other diseases, such as cancer [94]
and regeneration of bone defects [95]. Nevertheless, there are several adverse side effects linked to
statins [96], including skeletal muscle-related toxicity, cataracts, vascular lesions in the central nervous
system and testicular degeneration and new-onset type 2 diabetes mellitus [97-99], or even lethal
ones, e.g., thabdomyolysis. Fatalities due to this disease led to the withdrawal of cerivastatin from the
market in 2001 [100]. The mechanisms through which these adverse effects develop is still not quite
understood and remains a topic of debate to this day. It is suggested that many of these side effects
are due to the depletion of mevalonate-derived intermediates, which is a direct consequence of the
inhibition of HMG-CoAR and the interruption of the mevalonate pathway. Despite all the possible
side effects, this did not preclude atorvastatin from being the one of the most profitable and prescribed
drugs in the world this millennium, which demonstrates that high blood concentration of cholesterol
is a very serious problem that humankind is facing today [101,102].

The research on the side effects derived from the prescription of statins has been one of the
major objectives of researchers in recent years, and it has been demonstrated that these drugs are
also beneficial in fighting diseases other than hypercholesterolemia. For example, the inhibition of
HMG-CoAR and subsequent depletion of melavonate-derived isoprene metabolites, which are essential
for cell proliferation in both normal and tumor cells, has led to the conclusion that statins can be used
as anticarcinogens [94,103-108]. In Alzheimer’s disease, the presence of hypertension, elevated plasma
total cholesterol, low-density lipoprotein cholesterol levels (LDL) and atherosclerosis accelerate the
progression and aggravate the symptoms. This means that, even though statins are usually prescribed
to patients with high blood levels of cholesterol, they can also be a useful tool in the fight against other
prevalent diseases [109,110].

5.2. Alternative Approaches

Statins have been used as the main inhibitors of HMG-CoAR for more than 30 years, despite the
concerns that surround the adverse side effects that they can induce. However, there is still a need for
further improvements in the treatment of hypercholesterolemia, which may or may not involve the
usage of statins.

Several new methodologies have been reported for lowering blood cholesterol, which are
focused on the inhibition of the synthesis of cholesterol [111-113], reducing its absorption [114-116],
inducing reductase degradation [69-73] and limiting the synthesis of LDL [117-119]. SR-12813 and
apomine (SR-45023A) are synthetic compounds that have been demonstrated to be powerful tools in
this particular task by inducing HMG-CoAR degradation [69,70,72]. Another alternative is the chemical
breakdown of HMG-CoAR using small-molecules proteolysis through the use chimeras (PROTACsS)
with subsequent inhibition in cholesterol production [73].

These approaches seem promising, and in the future one of them may become the preferred
treatment, but currently the interruption of the mevalonate pathway through the inhibition of
HMG-CoAR continues to be the most favored method.

Similar to statins, auranofin (AuRF), an anticancer agent, has been shown to inhibit HMG-CoAR,
with half maximal inhibitory concentration at micromolar levels [120]. Peptide drugs, which are currently
gaining more visibility in several therapeutic areas, have also shown some promising results as inhibitors
of this enzyme, particularly the tetrapeptide PMAS, which has been shown to effectively inhibit
HMG-CoAR (IC5 = 68 uM) [121]. It has also been demonstrated that meroterpenoids, ganoleucoins and
triterpenes, compounds obtained from the medicinal mushroom Ganoderma leucocontextum, can have
some activity towards the inhibition of this enzyme [122,123]. Infusions from Vernonia condensata Baker,
and bay leaf (Syzygium polianthum) extracts, which were known to have the ability to reduce cholesterol
levels, have also been a matter of study in recent years. In both cases, it was found that the preparations
obtained from these plants contained compounds capable of binding HMG-CoAR and reducing its
activity. In the case of Vernonia condensata Baker infusions, it was found this activity was due to
caffeoylquinic acids [124], whereas, in the case of bay leaves, it was due to the presence of the phenolic
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compounds present in the extracts [125]. While it is true that most of these molecules show ICs values
much higher than that of common statins (in the micromolar range, as opposed to nanomolar for the
statins), these can be a starting point for the study and introduction of a new class of statins.

Another interesting way to inhibit HMG-CoAR is by precluding the dimerization process.
As discussed in Section 3, the enzyme consists of a “dimer of dimers”, in which each dimer contains
two active sites. Therefore, preventing the formation of the different dimers avoids the formation of the
active sites and, consequently, the formation of an active enzyme. To date, no dimerization inhibitors
of HMG-CoAR are known, however there was a recent study that highlighted new druggable binding
pockets that can be used for this purpose [126].

6. Conclusions

Cholesterol plays an essential role in cellular growth, membrane synthesis and differentiation.
However, in the 1950s and 1960s, it became apparent that elevated concentrations of plasma cholesterol
were a major risk factor for the development of coronary heart disease, which led to the early development
of drugs that could reduce plasma cholesterol. One possibility was to reduce cholesterol biosynthesis,
by inhibiting the rate-limiting enzyme in the cholesterol biosynthetic pathway, HMG-CoAR.

Currently, there is an impressive portfolio of studies regarding HMG-CoAR, and the details
regarding the structure and catalytic mechanism of the enzyme are nowadays better understood.

Statins are the most popular HMG-CoAR inhibitors, particularly the fungal derivatives lovastatin,
simvastatin and pravastatin and the synthetic fluvastatin and atorvastatin. These compounds are in
the majority of cases well tolerated and have a finite and relatively safe side effect profile. Within the
next few years, it is expected that statins will continue to be the main prescribed drug to treat
hypercholesterolemia. However, the combination of statins with certain drugs can increase the risk of
hepatotoxicity and myotoxicity effects, turning their use in some patients not favorable. Taking this into
account, the development and application of new methods to inhibit HMG-CoAR is likely to play an
increasingly important role in the treatment of hypercholesterolemia.

Author Contributions: Conceptualization, N.M.ES.C. and S.ES.; writing—original draft preparation, D.S.G. and
C.M.S.P; writing—review and editing, N.M.ES.C. and S.ES.; supervision, N.M.ES.C. and S.ES. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Applied Molecular Biosciences Unit (UCIBIO), which is financed by
national funds from FCT (UIDB/04378/2020), as by the RSB-TS project (PTDC/QUI-QFI/31689/2017).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Windaus, A. Uber die konstitution des cholesterins und der gallensduren. Biol. Chem. 1932, 213, 147-187.
[CrossRef]

2. Sheppard, AJ; O’Dell, R.G.; Pennington, J.A.T. CHOLESTEROL | Properties and determination.
In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003;
pp. 1220-1226. ISBN 978-0-12-227055-0.

3. Nelson, D.L.; Lehninger, A.L.; Cox, M.M. Lehninger Principles of Biochemistry; W.H. Freeman: New York, NY, USA,
2008; ISBN 9781429208925.

4. Arnold, D.R.; Kwiterovich, P.O. CHOLESTEROL | Absorption, Function, and Metabolism. In Encyclopedia of
Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 1226-1237.
ISBN 978-0-12-227055-0.

5. Maxfield, ER.; van Meer, G. Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 2010, 22,
422-429. [CrossRef] [PubMed]

6.  Lecerf, ]JM.; de Lorgeril, M. Dietary cholesterol: From physiology to cardiovascular risk. Br. ]. Nutr.
2011, 106, 6-14. [CrossRef] [PubMed]

7.  Alphonse, P.AS,; Jones, PJ.H. Revisiting human cholesterol synthesis and absorption: The reciprocity
paradigm and its key regulators. Lipids 2016, 51, 519-536. [CrossRef]


http://dx.doi.org/10.1515/bchm2.1932.213.3-4.147
http://dx.doi.org/10.1016/j.ceb.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20627678
http://dx.doi.org/10.1017/S0007114511000237
http://www.ncbi.nlm.nih.gov/pubmed/21385506
http://dx.doi.org/10.1007/s11745-015-4096-7

Molecules 2020, 25, 3891 16 of 21

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

McAuley, M.T.; Wilkinson, D.J.; Jones, J.J.; Kirkwood, T.B. A whole-body mathematical model of cholesterol
metabolism and its age-associated dysregulation. BMC Syst. Biol. 2012, 6, 130. [CrossRef]

WHO. Noncommunicable Diseases Country Profiles 2018; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-151462-0.
Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region. Available online:
https://www.who.int/healthinfo/global_burden_disease/estimates/en/ (accessed on 12 January 2020).
Ravnskov, U.; de Lorgeril, M.; Diamond, D.M.; Hama, R.; Hamazaki, T.; Hammarskjold, B.; Hynes, N.;
Kendrick, M.; Langsjoen, P.H.; Mascitelli, L.; et al. LDL-C does not cause cardiovascular disease:
A comprehensive review of the current literature. Expert Rev. Clin. Pharmacol 2018, 11, 959-970. [CrossRef]
Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868-874. [CrossRef]

Ravnskov, U.; McCully, K.S. Review and hypothesis: Vulnerable plaque formation from obstruction of Vasa
vasorum by homocysteinylated and oxidized lipoprotein aggregates complexed with microbial remnants
and LDL autoantibodies. Ann. Clin. Lab. Sci 2009, 39, 3-16.

Wolf, D.; Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019, 124, 315-327. [CrossRef]
Hussain, M.M.; Strickland, D.K.; Bakillah, A. The mammalian low-density lipoprotein receptor family.
Annu. Rev. Nutr. 1999, 19, 141-172. [CrossRef]

Willnow, T.E. The low-density lipoprotein receptor gene family: Multiple roles in lipid metabolism.
J. Mol. Med. 1999, 77, 306-315. [CrossRef] [PubMed]

Colca, J.R.; Kletzien, R.F. Current and emerging strategies for treating dyslipidemia and macrovascular
disease. In Advances in Pharmacology; Enna, S.J., Williams, M., Eds.; Academic Press: Oxford, UK, 2009;
Volume 57, pp. 237-251. ISSN 1054-3589.

Parks, L.W. Metabolism of sterols in yeast. CRC Crit Rev. Microbiol. 1978, 6, 301-341. [CrossRef] [PubMed]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature 1990, 343, 425-430. [CrossRef]
[PubMed]

Cerqueira, N.M.ES.A ; Oliveira, E.F; Gesto, D.S.; Santos-Martins, D.; Moreira, C.; Moorthy, H.N.; Ramos, M.].;
Fernandes, P.A. Cholesterol biosynthesis: A mechanistic overview. Biochemistry 2016, 55, 5483-5506. [CrossRef]
[PubMed]

Steussy, C.N.; Critchelow, C.J.; Schmidt, T.; Min, ].K.; Wrensford, L.V.; Burgner, ] W., 2nd; Rodwell, VW.;
Stauffacher, C.V. A novel role for coenzyme A during hydride transfer in 3-hydroxy-3-methylglutaryl
-coenzyme A reductase. Biochemistry 2013, 52, 5195-5205. [CrossRef]

Holstein, S.A.; Hohl, R.J. Isoprenoids: Remarkable diversity of form and function. Lipids 2004, 39, 293-309.
[CrossRef]

Johnson, E.A.; Schroeder, W.A. Microbial carotenoids. Adv. Biochem Eng. Biotechnol 1996, 53, 119-178.
[CrossRef]

Reusch, VM, Jr. Lipopolymers, isoprenoids, and the assembly of the gram-positive cell wall. Crit. Rev. Microbiol.
1984, 11, 129-155. [CrossRef]

Matsumoto, Y.; Yasukawa, J.; Ishii, M.; Hayashi, Y.; Miyazaki, S.; Sekimizu, K. A critical role of mevalonate
for peptidoglycan synthesis in Staphylococcus aureus. Sci. Rep. 2016, 6, 22894. [CrossRef]

Chappell, J.; Wolf, F; Proulx, J.; Cuellar, R.; Saunders, C. Is the reaction catalyzed by 3-Hydroxy-3
-methylglutaryl coenzyme a reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol
1995, 109, 1337-1343. [CrossRef]

Haines, B.E.; Wiest, O.; Stauffacher, C.V. The increasingly complex mechanism of HMG-CoA reductase.
Acc. Chem. Res. 2013, 46, 2416-2426. [CrossRef] [PubMed]

Koning, A.J.; Roberts, C.J.; Wright, R.L. Different subcellular localization of Saccharomyces cerevisiae
HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane
proliferations. Mol. Biol. Cell 1996, 7, 769-789. [CrossRef] [PubMed]

Hedl, M.; Tabernero, L.; Stauffacher, C.V.; Rodwell, V.W. Class II 3-hydroxy-3-methylglutaryl coenzyme A
reductases. . Bacteriol. 2004, 186, 1927-1932. [CrossRef] [PubMed]

Friesen, J.A.; Rodwell, VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases.
Genome Biol. 2004, 5, 248. [CrossRef] [PubMed]

Beach, M.J.; Rodwell, V.W. Cloning, sequencing, and overexpression of mvaA, which encodes Pseudomonas
mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Bacteriol. 1989, 171, 2994-3001. [CrossRef]
[PubMed]


http://dx.doi.org/10.1186/1752-0509-6-130
https://www.who.int/healthinfo/global_burden_disease/estimates/en/
http://dx.doi.org/10.1080/17512433.2018.1519391
http://dx.doi.org/10.1038/nature01323
http://dx.doi.org/10.1161/CIRCRESAHA.118.313591
http://dx.doi.org/10.1146/annurev.nutr.19.1.141
http://dx.doi.org/10.1007/s001090050356
http://www.ncbi.nlm.nih.gov/pubmed/10090593
http://dx.doi.org/10.3109/10408417809090625
http://www.ncbi.nlm.nih.gov/pubmed/365459
http://dx.doi.org/10.1038/343425a0
http://www.ncbi.nlm.nih.gov/pubmed/1967820
http://dx.doi.org/10.1021/acs.biochem.6b00342
http://www.ncbi.nlm.nih.gov/pubmed/27604037
http://dx.doi.org/10.1021/bi400335g
http://dx.doi.org/10.1007/s11745-004-1233-3
http://dx.doi.org/10.1007/bfb0102327
http://dx.doi.org/10.3109/10408418409105475
http://dx.doi.org/10.1038/srep22894
http://dx.doi.org/10.1104/pp.109.4.1337
http://dx.doi.org/10.1021/ar3003267
http://www.ncbi.nlm.nih.gov/pubmed/23898905
http://dx.doi.org/10.1091/mbc.7.5.769
http://www.ncbi.nlm.nih.gov/pubmed/8744950
http://dx.doi.org/10.1128/JB.186.7.1927-1932.2004
http://www.ncbi.nlm.nih.gov/pubmed/15028676
http://dx.doi.org/10.1186/gb-2004-5-11-248
http://www.ncbi.nlm.nih.gov/pubmed/15535874
http://dx.doi.org/10.1128/JB.171.6.2994-3001.1989
http://www.ncbi.nlm.nih.gov/pubmed/2656635

Molecules 2020, 25, 3891 17 of 21

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Bochar, D.A.; Stauffacher, C.V.; Rodwell, V.W. Sequence comparisons reveal two classes of 3-hydroxy-3
-methylglutaryl coenzyme A reductase. Mol. Genet. Metab. 1999, 66, 122-127. [CrossRef]

Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys.
2011, 505, 131-143. [CrossRef]

Jordan-Starck, T.C.; Rodwell, V.W. Role of cysteine residues in Pseudomonas mevalonii 3-hydroxy-3
-methylglutaryl-CoA reductase. Site-directed mutagenesis and characterization of the mutant enzymes.
J. Biol. Chem. 1989, 264, 17919-17923.

Jordan-Starck, T.C.; Rodwell, V.W. Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-CoA reductase.
Characterization and chemical modification. J. Biol. Chem. 1989, 264, 17913-17918.

Darnay, B.G.; Wang, Y.; Rodwell, V.W. Identification of the catalytically important histidine of 3-hydroxy
-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 1992, 267, 15064-15070.

Omkumar, R.V,; Darnay, B.G.; Rodwell, V.W. Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA
reductase activity by phosphorylation. Role of serine 871. |. Biol. Chem. 1994, 269, 6810-6814. [PubMed]
Istvan, E.S.; Palnitkar, M.; Buchanan, S.K.; Deisenhofer, J. Crystal structure of the catalytic portion of human
HMG-CoA reductase: Insights into regulation of activity and catalysis. EMBO . 2000, 19, 819-830. [CrossRef]
[PubMed]

Vogeli, B.; Shima, S.; Erb, T.].; Wagner, T. Crystal structure of archaeal HMG-CoA reductase: Insights into
structural changes of the C-terminal helix of the class-I enzyme. FEBS Lett. 2019, 593, 543-553. [CrossRef]
[PubMed]

Ragwan, E.R.; Arai, E.; Kung, Y. New crystallographic snapshots of large domain movements in bacterial
3-hydroxy-3-methylglutaryl coenzyme a reductase. Biochemistry 2018, 57, 5715-5725. [CrossRef]

Miller, B.R.; Kung, Y. Structural features and domain movements controlling substrate binding and cofactor
specificity in class I HMG-CoA reductase. Biochemistry 2018, 57, 654—662. [CrossRef]

Sarver, R.W.; Bills, E.; Bolton, G.; Bratton, L.D.; Caspers, N.L.; Dunbar, J.B.; Harris, M.S.; Hutchings, R.H.;
Kennedy, R.M.; Larsen, S.D.; et al. Thermodynamic and structure guided design of statin based inhibitors of
3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Med. Chem. 2008, 51, 3804-3813. [CrossRef]
Pfefferkorn, J.A.; Choi, C.; Larsen, S.D.; Auerbach, B.; Hutchings, R.; Park, W.; Askew, V.; Dillon, L.;
Hanselman, J.C.; Lin, Z.; et al. Substituted pyrazoles as hepatoselective HMG-CoA reductase inhibitors:
Discovery of (3R,5R)-7-[2-(4-Fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2H-pyrazol-3-yl]
-3,5-dihydroxyheptanoic Acid (PF-3052334) as a candidate for the treatment of hyper. J. Med. Chem. 2008, 51,
31-45. [CrossRef]

Park, WK.C.; Kennedy, R M,; Larsen, S.D.; Miller, S.; Roth, B.D.; Song, Y.; Steinbaugh, B.A.; Sun, K.; Tait, B.D;
Kowala, M.C,; et al. Hepatoselectivity of statins: Design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA
reductase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 1151-1156. [CrossRef]

Pfefferkorn, J.A.; Song, Y.; Sun, K.L.; Miller, S.R.; Trivedi, B.K.; Choi, C.; Sorenson, R.J.; Bratton, L.D.;
Unangst, P.C.; Larsen, S.D.; et al. Design and synthesis of hepatoselective, pyrrole-based HMG-CoA
reductase inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 4538-4544. [CrossRef]

Tabernero, L.; Rodwell, V.W.; Stauffacher, C.V. Crystal structure of a statin bound to a class II
hydroxymethylglutaryl-CoA reductase. J. Biol. Chem. 2003, 278, 19933-19938. [CrossRef]

Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science
2001, 292, 1160-1164. [CrossRef] [PubMed]

Tabernero, L.; Bochar, D.A.; Rodwell, VW.; Stauffacher, C.V. Substrate-induced closure of the flap
domain in the ternary complex structures provides insights into the mechanism of catalysis by
3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl. Acad. Sci. USA 1999, 96, 7167. [CrossRef]
[PubMed]

Istvan, E.S.; Deisenhofer, J. The structure of the catalytic portion of human HMG-CoA reductase.
Biochim. Biophys. Acta 2000, 1529, 9-18. [CrossRef]

Berg, ] M.; Tymoczko, ].L.; Gatto, G.J.; Stryer, L. Biochemistry, 8th ed.; W.H. Freeman: New York, NY, USA,
2015; ISBN 1464126100. ISBN 9781464126109.

Brown, M.S.; Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes,
cells, and blood. Proc. Natl. Acad. Sci. USA 1999, 96, 11041-11048. [CrossRef] [PubMed]

Kuwabara, P.E.; Labouesse, M. The sterol-sensing domain: Multiple families, a unique role? Trends Genet.
2002, 18, 193-201. [CrossRef]


http://dx.doi.org/10.1006/mgme.1998.2786
http://dx.doi.org/10.1016/j.abb.2010.09.028
http://www.ncbi.nlm.nih.gov/pubmed/8120043
http://dx.doi.org/10.1093/emboj/19.5.819
http://www.ncbi.nlm.nih.gov/pubmed/10698924
http://dx.doi.org/10.1002/1873-3468.13331
http://www.ncbi.nlm.nih.gov/pubmed/30702149
http://dx.doi.org/10.1021/acs.biochem.8b00869
http://dx.doi.org/10.1021/acs.biochem.7b00999
http://dx.doi.org/10.1021/jm7015057
http://dx.doi.org/10.1021/jm070849r
http://dx.doi.org/10.1016/j.bmcl.2007.11.124
http://dx.doi.org/10.1016/j.bmcl.2007.05.096
http://dx.doi.org/10.1074/jbc.M213006200
http://dx.doi.org/10.1126/science.1059344
http://www.ncbi.nlm.nih.gov/pubmed/11349148
http://dx.doi.org/10.1073/pnas.96.13.7167
http://www.ncbi.nlm.nih.gov/pubmed/10377386
http://dx.doi.org/10.1016/S1388-1981(00)00134-7
http://dx.doi.org/10.1073/pnas.96.20.11041
http://www.ncbi.nlm.nih.gov/pubmed/10500120
http://dx.doi.org/10.1016/S0168-9525(02)02640-9

Molecules 2020, 25, 3891 18 of 21

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Pfeffer, S.R. NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes.
J. Biol. Chem. 2019, 294, 1706-1709. [CrossRef]

Zhang, Y.; Bulkley, D.P; Xin, Y.; Roberts, K.J.; Asarnow, D.E.; Sharma, A.; Myers, B.R.; Cho, W.; Cheng, Y.;
Beachy, P.A. Structural basis for cholesterol transport-like activity of the hedgehog receptor patched. Cell
2018, 175, 1352-1364.e14. [CrossRef]

Ben Chorin, A.; Masrati, G.; Kessel, A.; Narunsky, A.; Sprinzak, J.; Lahav, S.; Ashkenazy, H.; Ben-Tal, N.
ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB
proteins. Protein Sci. 2020, 29, 258-267. [CrossRef]

Oliveira, E.F; Cerqueira, N.M.ES.A.; Ramos, M.].; Fernandes, PA. QM/MM study of the mechanism
of reduction of 3-hydroxy-3-methylglutaryl coenzyme A catalyzed by human HMG-CoA reductase.
Catal. Sci. Technol. 2016, 6, 7172-7185. [CrossRef]

Gill, J.F, Jr.; Beach, M.]J.; Rodwell, V.W. Mevolonate utilization in Pseudomonas sp. M. Purification and
characterization of an inducible 3-hydroxy-3-methylglutaryl coenzyme A reductase. J. Biol. Chem. 1985, 260,
9393-9398.

Frimpong, K.; Rodwell, V.W. Catalysis by Syrian hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
Proposed roles of histidine 865, glutamate 558, and aspartate 766. J. Biol. Chem. 1994, 269, 11478-11483.
[PubMed]

Osborne, T.E; Gil, G.; Goldstein, J.L.; Brown, M.S. Operator constitutive mutation of 3-hydroxy-3
-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element.
J. Biol. Chem. 1988, 263, 3380-3387. [PubMed]

Rajavashisth, T.B.; Taylor, A.K.; Andalibi, A.; Svenson, K.L.; Lusis, A.J. Identification of a zinc finger protein
that binds to the sterol regulatory element. Science 1989, 245, 640-643. [CrossRef] [PubMed]

Horton, ].D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and
fatty acid synthesis in the liver. . Clin. Invest. 2002, 109, 1125-1131. [CrossRef] [PubMed]

Rawson, R.B.; DeBose-Boyd, R.; Goldstein, ].L.; Brown, M.S. Failure to cleave sterol regulatory element-binding
proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of
SREBP cleavage-activating protein. J. Biol. Chem. 1999, 274, 28549-28556. [CrossRef] [PubMed]

Yang, T.; Espenshade, P.J.; Wright, M.E.; Yabe, D.; Gong, Y.; Aebersold, R.; Goldstein, J.L.; Brown, M.S.
Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein
that facilitates retention of SREBPs in ER. Cell 2002, 110, 489-500. [CrossRef]

Goldstein, J.L.; Rawson, R.B.; Brown, M.S. Mutant mammalian cells as tools to delineate the sterol
regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys.
2002, 397, 139-148. [CrossRef]

Brown, M.S,; Ye, ].; Rawson, R.B.; Goldstein, J.L. Regulated intramembrane proteolysis: A control mechanism
conserved from bacteria to humans. Cell 2000, 100, 391-398. [CrossRef]

Sever, N.; Yang, T.; Brown, M.S.; Goldstein, J.L.; DeBose-Boyd, R.A. Accelerated degradation of HMG CoA
reductase mediated by binding of insig-1 to its sterol-sensing domain. Mol. Cell 2003, 11, 25-33. [CrossRef]
Sever,N.; Song, B.L.; Yabe, D.; Goldstein, J.L.; Brown, M.S.; DeBose-Boyd, R.A. Insig-dependent ubiquitination
and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and
geranylgeraniol. J. Biol. Chem. 2003, 278, 52479-52490. [CrossRef]

Faust, J.R.; Luskey, K.L.; Chin, D.J.; Goldstein, J.L.; Brown, M.S. Regulation of synthesis and degradation of
3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in
UT-1 cells. Proc. Natl. Acad. Sci. USA 1982, 79, 5205-5209. [CrossRef] [PubMed]

Berkhout, T.A.; Simon, H.M.; Patel, D.D.; Bentzen, C.; Niesor, E.; Jackson, B.; Suckling, K.E. The novel
cholesterol-lowering drug SR-12813 inhibits cholesterol synthesis via an increased degradation of
3-hydroxy-3-methylglutaryl-coenzyme a reductase. J. Biol. Chem. 1996, 271, 14376-14382. [CrossRef]
[PubMed]

Roitelman, J.; Masson, D.; Avner, R.; Ammon-Zufferey, C.; Perez, A.; Guyon-Gellin, Y.; Bentzen, C.L.;
Niesor, E.J. Apomine, a novel hypocholesterolemic agent, accelerates degradation of 3-hydroxy-3
-methylglutaryl-coenzyme A reductase and stimulates low density lipoprotein receptor activity. J. Biol. Chem.
2004, 279, 6465-6473. [CrossRef] [PubMed]


http://dx.doi.org/10.1074/jbc.TM118.004165
http://dx.doi.org/10.1016/j.cell.2018.10.026
http://dx.doi.org/10.1002/pro.3779
http://dx.doi.org/10.1039/C6CY00356G
http://www.ncbi.nlm.nih.gov/pubmed/7908908
http://www.ncbi.nlm.nih.gov/pubmed/3343249
http://dx.doi.org/10.1126/science.2562787
http://www.ncbi.nlm.nih.gov/pubmed/2562787
http://dx.doi.org/10.1172/JCI0215593
http://www.ncbi.nlm.nih.gov/pubmed/11994399
http://dx.doi.org/10.1074/jbc.274.40.28549
http://www.ncbi.nlm.nih.gov/pubmed/10497220
http://dx.doi.org/10.1016/S0092-8674(02)00872-3
http://dx.doi.org/10.1006/abbi.2001.2615
http://dx.doi.org/10.1016/S0092-8674(00)80675-3
http://dx.doi.org/10.1016/S1097-2765(02)00822-5
http://dx.doi.org/10.1074/jbc.M310053200
http://dx.doi.org/10.1073/pnas.79.17.5205
http://www.ncbi.nlm.nih.gov/pubmed/6957860
http://dx.doi.org/10.1074/jbc.271.24.14376
http://www.ncbi.nlm.nih.gov/pubmed/8662919
http://dx.doi.org/10.1074/jbc.M308094200
http://www.ncbi.nlm.nih.gov/pubmed/14627708

Molecules 2020, 25, 3891 19 of 21

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Jiang, S.-Y,; Li, H,; Tang, J.-J.; Wang, J.; Luo, J.; Liu, B.; Wang, ]J.-K.; Shi, X.-J.; Cui, H-W.,; Tang, J.; et al.
Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation
and lowers cholesterol. Nat. Commun. 2018, 9, 5138. [CrossRef] [PubMed]

Toyota, Y.; Yoshioka, H.; Sagimori, I.; Hashimoto, Y.; Ohgane, K. Bisphosphonate esters interact with
HMG-CoA reductase membrane domain to induce its degradation. Bioorg. Med. Chem. 2020, 28, 115576.
[CrossRef]

Li, M.-X,; Yang, Y.; Zhao, Q.; Wu, Y,; Song, L.; Yang, H.; He, M.; Gao, H.; Song, B.-L.; Luo, J.; et al.
Degradation versus Inhibition: Development of proteolysis-targeting chimeras for overcoming statin-induced
compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. J. Med. Chem. 2020, 63,
4908-4928. [CrossRef]

Beg, Z.H.; Stonik, J.A.; Brewer, H.B,, Jr. In vivo modulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme
A reductase, reductase kinase, and reductase kinase kinase by mevalonolactone. Proc. Natl. Acad. Sci. USA
1984, 81, 7293-7297. [CrossRef]

Panda, T.; Devi, V.A. Regulation and degradation of HMGCo-A reductase. Appl. Microbiol. Biotechnol.
2004, 66, 143-152. [CrossRef]

Omkumar, R.V.; Rodwell, V.W. Phosphorylation of Ser871 impairs the function of His865 of Syrian hamster
3-hydroxy-3-methylglutaryl-CoA reductase. J. Biol. Chem. 1994, 269, 16862-16866.

Chen, L.; Ma, M.-Y,; Sun, M,; Jiang, L.-Y.; Zhao, X.-T.; Fang, X.-X.; Man Lam, S.; Shui, G.-H.; Luo, J.; Shi, X.-].;
et al. Endogenous sterol intermediates of the mevalonate pathway regulate HMGCR degradation and
SREBP-2 processing. |. Lipid Res. 2019, 60, 1765-1775. [CrossRef]

Song, B.-L.; DeBose-Boyd, R.A. Insig-dependent ubiquitination and degradation of 3-Hydroxy-3-methylglutaryl
coenzyme a reductase stimulated by 8- and y-Tocotrienols. J. Biol. Chem. 2006, 281, 25054-25061. [CrossRef]
[PubMed]

Clarke, PR.; Hardie, D.G. Regulation of HMG-CoA reductase: Identification of the site phosphorylated by
the AMP-activated protein kinase in vitro and in intact rat liver. EMBO ]. 1990, 9, 2439-2446. [CrossRef]
Sato, R.; Goldstein, J.L.; Brown, M.S. Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA
reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis
induced by ATP depletion. Proc. Natl. Acad. Sci. USA 1993, 90, 9261-9265. [CrossRef] [PubMed]

Hegsted, D.M. Serum-cholesterol response to dietary cholesterol: A re-evaluation. Am. J. Clin. Nutr. 1986, 44,
299-305. [CrossRef]

Brown, M.S.; Faust, J.R.; Goldstein, J.L.; Kaneko, I.; Endo, A. Induction of 3-hydroxy-3-methylglutaryl
coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive
inhibitor of the reductase. J. Biol. Chem. 1978, 253, 1121-1128. [PubMed]

Endo, A.; Kuroda, M.; Tanzawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A
reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett.
1976, 72, 323-326. [CrossRef]

Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis
produced by Penicillium citrinium. J. Antibiot. 1976, 29, 1346-1348. [CrossRef]

Moorthy, N.S.H.N.; Cerqueira, N.M.ES.A.; Ramos, M.].; Fernandes, P.A. Ligand based analysis on HMG-CoA
reductase inhibitors. Chemom. Intell. Lab. Syst. 2015, 140, 102-116. [CrossRef]

Gotto, A.M., Jr. Results of recent large cholesterol-lowering trials and implications for clinical management.
Am. ]. Cardiol. 1997, 79, 1663-1666. [CrossRef]

Hua, X.; Nohturfft, A.; Goldstein, J.L.; Brown, M.S. Sterol resistance in CHO cells traced to point mutation in
SREBP cleavage-activating protein. Cell 1996, 87, 415-426. [CrossRef]

Istvan, E.S. Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
Am. Heart J. 2002, 144, S27-S32. [CrossRef] [PubMed]

Alberts, AW.; Chen, J.; Kuron, G.; Hunt, V,; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.;
Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A
reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957-3961. [CrossRef]
[PubMed]

Tobert, J.A. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov.
2003, 2, 517-526. [CrossRef] [PubMed]


http://dx.doi.org/10.1038/s41467-018-07590-3
http://www.ncbi.nlm.nih.gov/pubmed/30510211
http://dx.doi.org/10.1016/j.bmc.2020.115576
http://dx.doi.org/10.1021/acs.jmedchem.0c00339
http://dx.doi.org/10.1073/pnas.81.23.7293
http://dx.doi.org/10.1007/s00253-004-1720-5
http://dx.doi.org/10.1194/jlr.RA119000201
http://dx.doi.org/10.1074/jbc.M605575200
http://www.ncbi.nlm.nih.gov/pubmed/16831864
http://dx.doi.org/10.1002/j.1460-2075.1990.tb07420.x
http://dx.doi.org/10.1073/pnas.90.20.9261
http://www.ncbi.nlm.nih.gov/pubmed/8415689
http://dx.doi.org/10.1093/ajcn/44.2.299
http://www.ncbi.nlm.nih.gov/pubmed/624722
http://dx.doi.org/10.1016/0014-5793(76)80996-9
http://dx.doi.org/10.7164/antibiotics.29.1346
http://dx.doi.org/10.1016/j.chemolab.2014.11.009
http://dx.doi.org/10.1016/S0002-9149(97)00218-X
http://dx.doi.org/10.1016/S0092-8674(00)81362-8
http://dx.doi.org/10.1067/mhj.2002.130300
http://www.ncbi.nlm.nih.gov/pubmed/12486413
http://dx.doi.org/10.1073/pnas.77.7.3957
http://www.ncbi.nlm.nih.gov/pubmed/6933445
http://dx.doi.org/10.1038/nrd1112
http://www.ncbi.nlm.nih.gov/pubmed/12815379

Molecules 2020, 25, 3891 20 of 21

91.

92.

93.
94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Singh, N.; Tamariz, J.; Chamorro, G.; Medina-Franco, J.L. Inhibitors of HMG-CoA reductase: Current and
future prospects. Mini Rev. Med. Chem. 2009, 9, 1272-1283. [CrossRef]

Wang, C.Y,; Liu, P.Y.; Liao, ] K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical
results. Trends Mol. Med. 2008, 14, 37—44. [CrossRef]

Weitz-Schmidt, G. Statins as anti-inflammatory agents. Trends Pharmacol. Sci. 2002, 23, 482-487. [CrossRef]
Hassanabad, A.F. Current perspectives on statins as potential anti-cancer therapeutics: Clinical outcomes
and underlying molecular mechanisms. Transl. Lung Cancer Res. 2019, 8, 692-699. [CrossRef]

Roca-Millan, E.; Gonzalez-Navarro, B.; Izquierdo-Gémez, K.; Mari-Roig, A.; Jané-Salas, E.; Lopez-Lopez, J.;
Velasco-Ortega, E. The application of statins in the regeneration of bone defects. Systematic review and
meta-analysis. Materials 2019, 12, 2992. [CrossRef]

Ward Natalie, C.; Watts Gerald, F; Eckel Robert, H. Statin toxicity. Circ. Res. 2019, 124, 328-350. [CrossRef]
Golomb, B.A.; Evans, M.A. Statin adverse effects: A review of the literature and evidence for a mitochondrial
mechanism. Am. . Cardiovasc. Drugs 2008, 8, 373—418. [CrossRef]

Skottheim, I.B.; Gedde-Dahl, A.; Hejazifar, S.; Hoel, K.; Asberg, A. Statin induced myotoxicity: The lactone
forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur. J. Pharm. Sci. 2008, 33,
317-325. [CrossRef] [PubMed]

LaRosa, J.C. Low-density lipoprotein cholesterol reduction: The end is more important than the means.
Am. ]. Cardiol. 2007, 100, 240-242. [CrossRef] [PubMed]

Graham, D.].; Staffa, J.A.; Shatin, D.; Andrade, S.E.; Schech, S.D.; La Grenade, L.; Gurwitz, J.H.; Chan, K.A.;
Goodman, M.].; Platt, R. Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering
drugs. JAMA 2004, 292, 2585-2590. [CrossRef] [PubMed]

Fuentes, A.V,; Pineda, M.D.; Venkata, K.C.N. Comprehension of top 200 prescribed drugs in the US as a
resource for pharmacy teaching, training and practice. Pharmacy 2018, 6, 43. [CrossRef]

Oliveira, E.F; Santos-Martins, D.; Ribeiro, A.M.; Bras, N.F; Cerqueira, N.S.; Sousa, S.F.; Ramos, M.].;
Fernandes, P.A. HMG-CoA Reductase inhibitors: An updated review of patents of novel compounds and
formulations (2011-2015). Expert Opin. Ther. Pat. 2016, 26, 1257-1272. [CrossRef]

Mo, H.; Jeter, R.; Bachmann, A.; Yount, S.T.; Shen, C.L.; Yeganehjoo, H. The potential of isoprenoids in
adjuvant cancer therapy to reduce adverse effects of statins. Front. Pharmacol. 2018, 9, 1515. [CrossRef]
Demierre, M.E; Higgins, P.D.; Gruber, S.B.; Hawk, E.; Lippman, S.M. Statins and cancer prevention.
Nat. Rev. Cancer 2005, 5, 930-942. [CrossRef]

Hindler, K.; Cleeland, C.S.; Rivera, E.; Collard, C.D. The role of statins in cancer therapy. Oncologist 2006, 11,
306-315. [CrossRef]

Pisanti, S.; Picardi, P.; Ciaglia, E.; D’ Alessandro, A.; Bifulco, M. Novel prospects of statins as therapeutic
agents in cancer. Pharmacol Res. 2014, 88, 84-98. [CrossRef]

Clendening, J.W.; Penn, L.Z. Targeting tumor cell metabolism with statins. Oncogene 2012, 31, 4967-4978.
[CrossRef]

Bjarnadottir, O.; Romero, Q.; Bendahl, PO,; Jirstrom, K.; Ryden, L.; Loman, N.; Uhlen, M.; Johannesson, H.;
Rose, C.; Grabau, D.; et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast
cancer trial. Breast Cancer Res. Treat. 2013, 138, 499-508. [CrossRef] [PubMed]

Wang, Q.; Yan, J.; Chen, X;; Li, J.; Yang, Y.; Weng, J.; Deng, C.; Yenari, M.A. Statins: Multiple neuroprotective
mechanisms in neurodegenerative diseases. Exp. Neurol. 2011, 230, 27-34. [CrossRef] [PubMed]

Zhang, J.; Liu, Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell 2015, 6, 254-264.
[CrossRef] [PubMed]

Ridker, PM.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.; Kastelein, ].].P.; Koenig, W.; Libby, P.;
Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with
elevated c-reactive protein. N. Engl. ]. Med. 2008, 359, 2195-2207. [CrossRef] [PubMed]

Hiyoshi, H.; Yanagimachi, M.; Ito, M.; Yasuda, N.; Okada, T.; Ikuta, H.; Shinmyo, D.; Tanaka, K.; Kurusu, N.;
Yoshida, I.; et al. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol
pathway in rat hepatocytes. J. Lipid Res. 2003, 44, 128-135. [CrossRef]

Hiyoshi, H.; Yanagimachi, M.; Ito, M.; Ohtsuka, L; Yoshida, I.; Saeki, T.; Tanaka, H. Effect of ER-27856,
a novel squalene synthase inhibitor, on plasma cholesterol in rhesus monkeys: Comparison with
3-hydroxy-3-methylglutaryl-coa reductase inhibitors. J. Lipid Res. 2000, 41, 1136-1144.

van Heek, M.; Davis, H. Pharmacology of ezetimibe. Eur. Heart |. Suppl. 2002, 4, J5-J8. [CrossRef]


http://dx.doi.org/10.2174/138955709789878105
http://dx.doi.org/10.1016/j.molmed.2007.11.004
http://dx.doi.org/10.1016/S0165-6147(02)02077-1
http://dx.doi.org/10.21037/tlcr.2019.09.08
http://dx.doi.org/10.3390/ma12182992
http://dx.doi.org/10.1161/CIRCRESAHA.118.312782
http://dx.doi.org/10.2165/0129784-200808060-00004
http://dx.doi.org/10.1016/j.ejps.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18294823
http://dx.doi.org/10.1016/j.amjcard.2007.02.089
http://www.ncbi.nlm.nih.gov/pubmed/17631077
http://dx.doi.org/10.1001/jama.292.21.2585
http://www.ncbi.nlm.nih.gov/pubmed/15572716
http://dx.doi.org/10.3390/pharmacy6020043
http://dx.doi.org/10.1080/13543776.2016.1216977
http://dx.doi.org/10.3389/fphar.2018.01515
http://dx.doi.org/10.1038/nrc1751
http://dx.doi.org/10.1634/theoncologist.11-3-306
http://dx.doi.org/10.1016/j.phrs.2014.06.013
http://dx.doi.org/10.1038/onc.2012.6
http://dx.doi.org/10.1007/s10549-013-2473-6
http://www.ncbi.nlm.nih.gov/pubmed/23471651
http://dx.doi.org/10.1016/j.expneurol.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20406638
http://dx.doi.org/10.1007/s13238-014-0131-3
http://www.ncbi.nlm.nih.gov/pubmed/25682154
http://dx.doi.org/10.1056/NEJMoa0807646
http://www.ncbi.nlm.nih.gov/pubmed/18997196
http://dx.doi.org/10.1194/jlr.M200316-JLR200
http://dx.doi.org/10.1016/S1520-765X(02)90076-3

Molecules 2020, 25, 3891 21 of 21

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

Rosenblum, S.B.; Huynh, T.; Afonso, A.; Davis, H.R,, Jr.; Yumibe, N.; Clader, J.W.; Burnett, D.A. Discovery
of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone
(SCH 58235): A designed, potent, orally active inhibitor of cholesterol absorption. J. Med. Chem. 1998, 41,
973-980. [CrossRef]

Garcia-Calvo, M.; Lisnock, J.; Bull, H.G.; Hawes, B.E.; Burnett, D.A.; Braun, M.P.; Crona, ].H.; Davis, H.R., Jr.;
Dean, D.C; Detmers, P.A_; et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl.
Acad. Sci. USA 2005, 102, 8132-8137. [CrossRef]

Rudel Lawrence, L.; Lee Richard, G.; Parini, P. ACAT2 Is a target for treatment of coronary heart disease
associated with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1112-1118. [CrossRef]
Meuwese, M.C.; de Groot, E.; Duivenvoorden, R.; Trip, M.D.; Ose, L.; Maritz, EJ.; Basart, D.C.; Kastelein, J.J.;
Habib, R.; Davidson, M.H.; et al. ACAT inhibition and progression of carotid atherosclerosis in patients with
familial hypercholesterolemia: The CAPTIVATE randomized trial. JAMA 2009, 301, 1131-1139. [CrossRef]
[PubMed]

Lada, A.T.; Davis, M.; Kent, C.; Chapman, J.; Tomoda, H.; Omura, S.; Rudel, L.L. Identification of ACAT1-
and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: Individual ACAT uniqueness.
J. Lipid Res. 2004, 45, 378-386. [CrossRef] [PubMed]

Tian, S.; Siu, E-M.; Lok, C.-N.; Fung, YM.E.; Che, C.-M. Anticancer auranofin engages 3-hydroxy-3
-methylglutaryl-coenzyme A reductase (HMGCR) as a target. Metallomics 2019, 11, 1925-1936. [CrossRef]
[PubMed]

Lin, S.-H.; Chang, D.-K.; Chou, M.-].; Huang, K.-J.; Shiuan, D. Peptide inhibitors of human HMG-CoA
reductase as potential hypocholesterolemia agents. Biochem. Biophys. Res. Commun. 2015, 456, 104-109.
[CrossRef]

Zhang, J.; Ma, K,; Han, J.; Wang, K.; Chen, H.; Bao, L.; Liu, L.; Xiong, W.; Zhang, Y.; Huang, Y.; et al. Eight new
triterpenoids with inhibitory activity against HMG-CoA reductase from the medical mushroom Ganoderma
leucocontextum collected in Tibetan plateau. Fitoterapia 2018, 130, 79-88. [CrossRef]

Wang, K.; Bao, L.; Ma, K; Zhang, J.; Chen, B.; Han, J.; Ren, J.; Luo, H.; Liu, H. A novel class of a-glucosidase
and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of
ganomyecin I in KK-Ay mice. Eur. |. Med. Chem. 2017, 127, 1035-1046. [CrossRef]

Arantes, A.A.; Falé, P.L.; Costa, L.C.B.; Pacheco, R.; Ascensao, L.; Serralheiro, M.L. Inhibition of HMG-CoA
reductase activity and cholesterol permeation through Caco-2 cells by caffeoylquinic acids from Vernonia
condensata leaves. Rev. Bras. Farmacogn. 2016, 26, 738-743. [CrossRef]

Hartanti, L.; Yonas, S.M.K.; Mustamu, J.J.; Wijaya, S.; Setiawan, H.K.; Soegianto, L. Influence of extraction
methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA reductase inhibitory activity.
Heliyon 2019, 5, e01485. [CrossRef]

Gesto, D.S.; Cerqueira, N.M.; Ramos, M.].; Fernandes, P.A. Discovery of new druggable sites in the
anti-cholesterol target HMG-CoA reductase by computational alanine scanning mutagenesis. J. Mol. Model.
2014, 20, 2178. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1021/jm970701f
http://dx.doi.org/10.1073/pnas.0500269102
http://dx.doi.org/10.1161/01.ATV.0000166548.65753.1e
http://dx.doi.org/10.1001/jama.301.11.1131
http://www.ncbi.nlm.nih.gov/pubmed/19293413
http://dx.doi.org/10.1194/jlr.D300037-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/14617738
http://dx.doi.org/10.1039/C9MT00185A
http://www.ncbi.nlm.nih.gov/pubmed/31631207
http://dx.doi.org/10.1016/j.bbrc.2014.11.042
http://dx.doi.org/10.1016/j.fitote.2018.08.009
http://dx.doi.org/10.1016/j.ejmech.2016.11.015
http://dx.doi.org/10.1016/j.bjp.2016.05.008
http://dx.doi.org/10.1016/j.heliyon.2019.e01485
http://dx.doi.org/10.1007/s00894-014-2178-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Biosynthesis of Cholesterol and the Role of HMG-CoA 
	Structure of HMG-CoA Reductase 
	Regulation of HMG-CoAR 
	HMG-CoAR Inhibitors 
	Statins: The Most Common Inhibitor 
	Alternative Approaches 

	Conclusions 
	References

