SUPPLEMENTARY MATERIALS

Flavonoids and Terpenoids with PTP-1B Inhibitory Properties from the Infusion of *Salvia amarissima* Ortega#

Eric Salinas-Arellano^{1,#}, Araceli Pérez-Vásquez¹, Isabel Rivero-Cruz¹, Rafael Torres-Colin², Martin González Andrade³, Manuel Rangel-Grimaldo¹ and Rachel Mata^{1,*}

 ¹ Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; ersalinass@hotmail.com (E.A.-S.); perezva@unam.mx (A.P.-V.); riveroic@unam.mx (I.R.-C.); manuel_erg_p9@hotmail.com (M.R-G.); rachel@unam.mx (R.M.)
 ² Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; rafael.torres@ib.unam.mx (R.T.-C.)
 ³ Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; martin@bq.unam.mx (M.G.A.)
 * Correspondence: rachel@unam.mx; Tel.: + 52-55-56225289

#Taken in part from the PhD thesis of Eric Salinas-Arellano

Contents

Spectroscopic and spectrometric data of compounds (1–6)

Figure S1. ¹H NMR spectrum of Amarisolide (compound 1, 400 MHz, CD₃OD)

Figure S2. ¹³C NMR spectrum of Amarisolide (compound 1, 100 MHz, CD₃OD)

Figure S3. ¹H NMR spectrum of 5,6,4'-Trihidroxy-7,3'-dimethoxyflavone (compound 2, 700 MHz, CD₃OD)

Figure S4. ¹³C NMR spectrum of 5,6,4'-Trihidroxy-7,3'-dimethoxyflavone (compound 2, 175 MHz, CD₃OD)

Figure S5. ¹H NMR spectrum of 6-Hydroxyluteolin (compound **3**, 700 MHz, CD₃OD)

Figure S6. ¹³C NMR spectra of 6-Hydroxyluteolin (compound **3**, 175 MHz, CD₃OD)

Figure S7. ¹H NMR spectrum of Rutin (compound 4, 400 MHz, CD₃OD)

Figure S8. ¹H NMR spectrum of Rosmarinic acid (compound **5**, 700 MHz, CD₃OD)

Figure S9. ¹³C NMR spectrum of Rosmarinic acid (compound **5**, 175 MHz, CD₃OD)

Figure S10. ¹H NMR spectrum of Isoquercitrin (compound **6**, 700 MHz, CD₃OD)

Figure S11. ¹³C NMR spectrum of Isoquercitrin (compound 6, 175 MHz, CD₃OD)

Figure S12. IR spectrum of Amarisolide G (compound 8a,b)

Figure S13. ¹H NMR spectrum of Amarisolide G (compound **8a,b**, 700 MHz, DMSO-*d*₆)

Figure S14. ¹³C NMR spectrum of Amarisolide G (compound 8a,b, 175 MHz, DMSO-d₆)

Figure S15. ¹H-¹H COSY spectrum of Amarisolide G (compound **8a**,**b**)

Figure S16. ¹H-¹³C HSQC spectrum of Amarisolide G (compound **8a**,**b**)

Figure S17. ¹H-¹³C HMBC spectrum of Amarisolide G (compound **8a**,**b**)

Figure S18. TOCSY spectrum of Amarisolide G (compound 8a,b)

Figure S19. Total ion current chromatogram of the essential oil of *S. amarissima* (Sa-Batch 1). Peak identification: 10, (*E*)-Pinocarvyl acetate; 11, δ -elemene; 12, α -bourbonene; 13, β -caryophyllene; 14, α -caryophyllene; 15, germacrene D; 16, β -selinene; 17, spathulenol.

Figure S20. Total ion current chromatogram of the essential oil of *S. amarissima* (Sa-Batch 1). Peak identification: 9, 3-Methoxy-*p*-cymene; 10, (*E*)-pinocarvyl acetate; 12, α -bourbonene; 13, β -caryophyllene; 14, α -caryophyllene; 15, germacrene D; 16, β -selinene; 17, spathulenol.

Figure S21. EIMS spectrum of 3-Methoxy-*p*-cymene (compound 9)

Figure S22. EIMS spectrum of (*E*)-Pinocarvyl acetate (compound 10)

Figure S23. EIMS spectrum of δ -Elemene (compound 11)

Figure S24. EIMS spectrum of α -Bourbonene (compound 12)

Figure S25. EIMS spectrum of β -Caryophyllene (compound 13)

Figure S26. EIMS spectrum of α -Caryophyllene (compound 14)

Figure S27. EIMS spectrum of Germacrene D (compound 15)

Figure S28. EIMS spectrum of β -Selinene (compound 16)

Figure S29. EIMS spectrum of Spathulenol (compound 17)

Figure S30. Residues of interaction to 4 Å of compounds 1,7 and UA at the catalytic site of PTP1B.

Figure S31. Residues of interaction to 4 Å of compounds 1, 7 and UA at the allosteric site of PTP1B.

Spectroscopic and spectrometric data of compounds (1–7)

Amarisolide (1). ¹H-NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.35 (dd, J = 1.7 Hz, H-15), 7.28 (dd, J = 1.3 Hz, H-16), 6.76 (d, J = 6.3 Hz, H-3), 6.33 (dd, J = 1.8, 0.9 Hz, H-14), 4.62 (dt, J = 6.4, 2.2 Hz, H-2), 4.46 (d, J = 7.7 Hz, H-1'), 4.41 (d, J = 8.2 Hz, H-19a), 4.02 (dd, J = 8.2, 2.0 Hz, H-19b), 3.83 (dd, J = 11.8, 2.3 Hz, H-6'a), 3.51 (dd, J = 11.8, 6.6 Hz, H-6'b), 3.33 (d, J = 9.0 Hz, H-3'), 3.27 (m, H-5'), 3.14 (m, H-2', H-4'), 2.64 (td, J = 13.6, 4.4 Hz, H-12a), 2.47 (d, J = 13.4 Hz, H-10), 2.33 (td, J = 13.5, 5.0 Hz, H-12b), 1.86 (m, H-6a), 1.79 (ddd, J = 12.2, 8.9, 4.8 Hz, H-1a), 1.63 (m, H-7), 1.61 (m, H-8), 1.41 (m, H-11), 1.37 (m, H-1b), 1.30 (m, H-6b), 0.88 (d, J = 6.7 Hz, H-17), 0.61 (s, H-20); ¹³C-NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ (ppm): 170.2 (C-18), 143.3 (C-4), 142.4 (C-15), 138.3 (C-16), 130.3 (C-3), 125.7 (C-13), 110.8 (C-14), 101.9 (C-1'), 76.9 (C-5'), 76.7 (C-3'), 74.1 (C-2'), 71.2 (C-19), 70.5 (C-4'), 69.7 (C-2), 61.6 (C-6'), 45.7 (C-5), 39.6 (C-10), 37.8 (C-8,C-9), 33.5 (C-6), 27.4 (C-7), 26.1 (C-1), 26.0 (C-11), 17.0 (C-12), 16.6 (C-20), 14.5 (C-17).

5,6,4'-*Trihydroxy*-7,3'-*dimethoxyflavone* (2). ¹H-NMR (700 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.59 (dd, J = 8.3, 2.2 Hz, H-6'), 7.57 (d, J = 2.1 Hz, H-2'), 6.98 (d, J = 8.2 Hz, H-5'), 6.91 (s, H-8), 6.71 (s, H-3), 4.04 (s, 7-OCH₃), 4.02 (s, 3'-OCH₃); ¹³C-NMR (175 MHz, CD₃OD) $\delta_{\rm C}$ (ppm): 182.9 (C-4), 165.1 (C-2), 154.5 (C-7), 150.7 (C-9), 150.6 (C-4'), 148.1 (C-5), 145.8 (C-5'), 130.1 (C-6), 122.4 (C-1'), 120.4 (C-2'), 115.4 (C-3'), 112.6 (C-6'), 105.2 (C-10), 102.5 (C-3), 90.6 (C-8), 55.5 (7-OCH₃), 55.3 (3'-OCH₃) [11].

6-hydroxyluteolin (3). ¹H-NMR (700 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.42 (dd, *J* = 8.4, 2.3 Hz, H-6'), 7.40 (d, *J* = 2.3 Hz, H-2'), 6.88 (d, *J* = 8.4 Hz, H-5'), 6.83 (s, H-3), 6.58 (s, H-8); ¹³C-NMR (175 MHz, CD₃OD) $\delta_{\rm C}$ (ppm): 183.9 (C-4), 166.8 (C-2), 155.3 (C-9), 151.5 (C-7,C-4'), 147.7 (C-5), 146.9 (C-3'), 131.2 (C-6), 121.6 (C-1'), 120.1 (C-6'), 116.6 (C-5'), 113.0 (C-2'), 106.1 (C-10), 102.6 (C-3), 91.8 (C-8).

Rutin (4). ¹H-NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.65 (d, J = 2.2 Hz, H-2'), 7.62 (dd, J = 8.4, 2.2 Hz, H-6'), 6.86 (d, J = 8.4 Hz, H-5'), 6.38 (d, J = 2.1 Hz, H-6), 6.19 (d, J = 2.1 Hz, H-8), 5.08 (d, J = 7.6 Hz, H-1''), 4.50 (d, J = 1.7 Hz, H-1'''), 3.79 (dd, J = 11.0, 1.5 Hz, H-5''), 3.61 (dd, J = 3.5, 1.7 Hz, 5'''), 3.35-3.54 (m, H-2'', H-3'', H-4'', H-6'', H-2'''-H-4'''), 1.11 (d, J = 6.2 Hz, 6''').

Rosmarinic acid (5). ¹H-NMR (700 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.53 (d, J = 15.9 Hz, H-7), 7.05 (d, J = 2.1 Hz, H-2), 6.94 (dd, J = 8.2, 2.1 Hz, H-6), 6.79 (d, J = 8.1 Hz, H-5), 6.78 (d, J = 2.2 Hz, H-2'), 6.70 (d, J = 8.0 Hz, H-5'), 6.65 (dd, J = 8.1, 2.0 Hz, H-6'), 6.29 (d, J = 15.8 Hz, H-8), 5.10 (d, J = 8.0 Hz, H-8'), 3.10 (dd, J = 14.3, 3.2 Hz, H-7'a), 2.95 (dd, J = 14.3, 9.5 Hz, H-7'b); ¹³C-NMR (175 MHz, CD₃OD) $\delta_{\rm C}$ (ppm): 177.0 (C-9'), 169.0(C-9), 149.3 (C-4), 146.6 (C-7), 146.6 (C-3), 145.8 (C-3'), 144.7 (C-4'), 130.8 (C-1'), 127.8 (C-1), 122.8 (C-6), 121.6 (C-6'), 117.4 (C-2'), 116.3 (C-5'), 116.1 (C-5), 115.4 (C-2), 115.0 (C-8), 77.4 (C-8'), 38.5 (C-7'); ESI-MS m/z 359.23 [M – H]⁻.

Isoquercitrin (6). ¹H-NMR (700 MHz, CD₃OD) $\delta_{\rm H}$ (ppm): 7.73 (d, J = 2.1 Hz, H-2'), 7.60 (dd, J = 8.4, 2.1 Hz, H-6'), 6.88 (dd, J = 8.4 Hz, H-5'), 6.35 (d, J = 2.0 Hz, H-8), 6.17 (d, J = 2.0 Hz, H-6), 5.21 (d, J = 7.7 Hz, H-1''), 3.70 (dd, J = 11.9, 2.4 Hz, H-6a''), 3.60 (dd, J = 11.8, 5.2 Hz, H-6b''), 3.50 (dd, J = 9.2, 7.8 Hz, H-3''), 3.44 (t, J = 9.0 Hz, H-5''), 3.24 (m, H-2'', H-4''); ¹³C-NMR (175 MHz, CD₃OD) $\delta_{\rm C}$ (ppm): 177.7 (C-4), 167.4 (C-7), 161.5 (C-5), 157.3 (C-2), 157.3 (C-9), 148.6 (C-4'), 144.6 (C-3'), 134.1 (C-3), 121.7 (C-6'), 121.7 (C-1'), 116.1 (C-2'), 114.6 (C-5'), 103.5 (C-1''), 103.2 (C-10), 99.4 (C-6), 94.0 (C-8), 77.0 (C-5''), 76.8 (C-2''), 74.3 (C-3''), 69.8 (C-4''), 61.1 (C-6'').

Pedalitin (7). Yellow powder; m.p. 300–301 °C; R_T2.82 min; ESI-MS *m/z* 315.48 [M – H]⁻ [7].

Figure S1. ¹H NMR spectrum of Amarisolide (compound **1**, 400 MHz, CD₃OD)

Figure S2. ¹³C NMR spectrum of Amarisolide (compound 1, 100 MHz, CD₃OD)

Figure S3. ¹H NMR spectrum of 5,6,4'-Trihidroxy-7,3'-dimethoxyflavone (compound **2**, 700 MHz, CD₃OD)

Figure S4. ¹³C NMR spectrum of 5,6,4'-Trihidroxy-7,3'-dimethoxyflavone (compound 2, 175 MHz, CD₃OD)

Figure S6. ¹³C NMR spectra of 6-Hydroxyluteolin (compound **3**, 175 MHz, CD₃OD)

Figure S7. ¹H NMR spectrum of Rutin (compound **4**, 400 MHz, CD₃OD)

Figure S8. ¹H NMR spectrum of Rosmarinic acid (compound **5**, 700 MHz, CD₃OD)

Figure S9. ¹³C NMR spectrum of Rosmarinic acid (compound **5**, 175 MHz, CD₃OD)

Figure S10. ¹H NMR spectrum of Isoquercitrin (compound **6**, 700 MHz, CD₃OD)

Figure S11. ¹³C NMR spectrum of Isoquercitrin (compound **6**, 175 MHz, CD₃OD)

Figure S12. IR spectrum of Amarisolide G (compound 8a,b)

Figure S13. ¹H NMR spectrum of Amarisolide G (compound **8a**,**b**, 700 MHz, DMSO-*d*₆)

Figure S14. ¹³C NMR spectrum of Amarisolide G (compound **8a**,**b**, 175 MHz, DMSO-*d*₆)

Figure S15. ¹H-¹H COSY spectrum of Amarisolide G (compound **8a**,**b**)

Figure S16. ¹H-¹³C HSQC spectrum of Amarisolide G (compound 8a,b)

Figure S17. ¹H-¹³C HMBC spectrum of Amarisolide G (compound **8a**,**b**)

Figure S18. TOCSY spectrum of Amarisolide G (compound **8a**,**b**)

Figure S19. Total ion current chromatogram of the essential oil of *S. amarissima* (Sa-Batch 1). Peak identification: **10**, (*E*)-Pinocarvyl acetate; **11**, δ -elemene; **12**, α -bourbonene; **13**, β -caryophyllene; **14**, α -caryophyllene; **15**, germacrene D; **16**, β -selinene; **17**, spathulenol.

Figure S20. Total ion current chromatogram of the essential oil of *S. amarissima* (Sa-Batch 1). Peak identification: 9, 3-Methoxy-*p*-cymene; 10, (*E*)-pinocarvyl acetate; 12, α -bourbonene; 13, β -caryophyllene; 14, α -caryophyllene; 15, germacrene D; 16, β -selinene; 17, spathulenol.

Figure S21. EIMS spectrum of 3-Methoxy-*p*-cymene (compound 9)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
978	480.894	1219	1215	4.40	$C_{11}H_{16}O$	164

Figure S22. EIMS spectrum of (*E*)-Pinocarvyl acetate (compound 10)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
-		(experimental)	(literature)			Weight
910	521.365	1313	1312	5.98	$C_{12}H_{18}O_2$	194

Figure S23. EIMS spectrum of δ -Elemene (compound 11)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
900	528.065	1329	1326	1.99	$C_{15}H_{24}$	204.35

Peak True - sample "RM8AEPF:1", peak 2, at 528.065 s

Figure S24. EIMS spectrum of α -Bourbonene (compound 12)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
900	549.165	1378	1374	4.24	$C_{15}H_{24}$	204.35

Figure S25. EIMS spectrum of β -Caryophyllene (compound 13)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
933	563.765	1413	1414	15.05	$C_{15}H_{24}$	204.35

Peak True - sample "RM8AEPF:1", peak 4, at 563.765 s 1000-500 -- 14 -Т -1-1 Т =

Figure S26. EIMS spectrum of α -Caryophyllene (compound 14)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
910	576.665	1447	1446	7.68	$C_{15}H_{24}$	204.35

31

Figure S27. EIMS spectrum of Germacrene D (compound 15)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
910	587.365	1476	1476	25.09	$C_{15}H_{24}$	204.35

Peak True - sample "RM8AEPF:1", peak 6, at 587.365 s

Figure S28. EIMS spectrum of β -Selinene (compound 16)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
980	592.965	1491	1489	28.35	$C_{15}H_{24}$	204.35

Figure S29. EIMS spectrum of Spathulenol (compound 17)

Similarity	$T_R(\mathbf{s})$	R_I	R_I	Area (%)	Formula	Molecular
		(experimental)	(literature)			Weight
999	625.265	1576	1576	11.59	$C_{15}H_{24}O$	220

Figure S30. Residues of interaction to 4 Å of compounds 1,7 and UA at the catalytic site of PTP1B.

Figure S31. Residues of interaction to 4 Å of compounds 1, 7 and UA at the allosteric site of PTP1B.

Molinspiration bioactivity score v2018.03 GPCR ligand 0.49 Ion channel modulator 0.36 Kinase inhibitor -0.08 Nuclear receptor ligand 0.48 Protease inhibitor 0.28 Enzyme inhibitor 0.71

 $\frac{Get\ data\ as\ text}{paste}$ (for copy / paste).

Get 3D geometry BETA

Figure S32. Prediction of biological properties of compounds 1, using servers Molinspiration and server Swiss TargetPrediction.

Molinspiration bioactivity

score v2018.03
GPCR ligand 0.10
Ion channel modulator 0.24
Kinase inhibitor
0.24
Nuclear receptor ligand
0.18
Protease inhibitor 0.32
Enzyme inhibitor
0.19

 $\underline{\mbox{Get data as text}}$ (for copy / paste).

Get 3D geometry BETA

Figure S33. Prediction of biological properties of compounds 7, using servers Molinspiration and server Swiss TargetPrediction.

Molinspiration bioactivity

score v2018.03
GPCR ligand
0.28
Ion channel modulator 0.03
Kinase inhibitor 0.50
Nuclear receptor ligand
0.89
Protease inhibitor
0.23
Enzyme inhibitor
0.69

 $\underline{\mbox{Get data as text}}$ (for copy / paste).

Get 3D geometry BETA

Figure S34. Prediction of biological properties of compounds AU, using servers Molinspiration and server Swiss TargetPrediction.