Supplementary Materials

Structure-Activity Relationships for the Anaesthetic and Analgaesic Properties of Aromatic RingSubstituted Ketamine Esters

Ivaylo V. Dimitrov ${ }^{1}$, Martyn G. Harvey ${ }^{2}$, Logan J. Voss ${ }^{2}$, James W. Sleigh ${ }^{2}$ and Michael J. Bickerdike ${ }^{3}$, William A. Denny ${ }^{\text {1,* }}$
1 Auckland Cancer Society Research Centre, School of Medical Sciences; i.dimitrov@auckland.ac.nz
2 Waikato Clinical School, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Martyn.Harvey@waikatodhb.health.nz (M.G.H.); Logan.Voss@waikatodhb.health.nz (L.J.V.); Jamie.Sleigh@waikatodhb.health.nz (J.W.S.)
${ }^{3}$ Kea Therapeutics Ltd, Auckland, New Zealand; Mike@keatx.com
* Correspondence:b.denny@auckland.ac.nz

Supplementary Information (syntheses and characterisation of the compounds of Table 1)

Preparation of the other esters of Table 1 (see example of $15 b$ in text)

Isopropyl 3-((2-oxo-1-phenylcyclohexyl)amino)propanoate (3a). Reaction of amine 21 ($0.14 \mathrm{~g}, 0.74$ mmol) with isopropyl 3-bromopropanoate ($1.15 \mathrm{~g}, 5.90 \mathrm{mmol}$) gave $3 \mathrm{a}(0.1 \mathrm{~g}, 45 \%$), which was
 $7.24(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.93(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.21(\mathrm{~d}$, $J=6.40 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 208.26,171.38,137.11,129.76,128.94,128.62,127.36,72.30,68.03,41.64$, 38.66, 37.36, 35.92, 28.44, 22.42, 21.99; m/z $304.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$304.1907, found 304.1915.

Isopropyl 3-((1-(2-fluorophenyl)-2-oxocyclohexyl)amino)propanoate (4a). Similar reaction of 30b $(0.18 \mathrm{~g}, 0.89 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($2.09 \mathrm{~g}, 10.70 \mathrm{mmol}$) gave ($4 \mathbf{a}$) ($0.37 \mathrm{~g}, 70 \%$), which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.46-7.43(\mathrm{td}, J=7.74 \mathrm{~Hz}, 1.70 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.18(\mathrm{td}, J=7.60 \mathrm{~Hz}, 1.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04$ (ddd, $J=8.10 \mathrm{~Hz}, 3.42 \mathrm{~Hz}$, $1.20 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.72(\mathrm{~m}$, $5 \mathrm{H}), 1.26-1.24(\mathrm{~d}, \mathrm{~J}=9.44 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 209.22,172.54,159.92,129.55-128.64,124.36,116.57$, $116.34,68.05,60.60,39.42,38.96,38.37,35.61,27.97,22.04,21.96$; MS $m / z 322.20\left(\mathrm{MH}^{+}\right)$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FNO}_{3}\left(\mathrm{MH}^{+}\right)$322.1813, found 322.18225 .

Isopropyl 3-((2-oxo-1-(o-tolyl)cyclohexyl)amino)propanoate (6a). Similar reaction of amine 30e (0.7 $\mathrm{g}, 3.44 \mathrm{mmol}$) with isopropyl 3-bromopropanoate ($4.03 \mathrm{~g}, 21.0 \mathrm{mmol}$) gave $\mathbf{6 a}(0.8 \mathrm{~g}, 74 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.54-7.52(\mathrm{dd}, J=5.76 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.24-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.21(\mathrm{~d}, \mathrm{~J}=6.28 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 212.32,172.63,138.06,137.30,132.72,128.74,127.96,125.80,70.62,67.92,40.51,39.79$, $37.76,35.86,29.72,22.62,22.04,21.16 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 318.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 318.2064$, found 318.2069.

Isopropyl 3-((1-(2-methoxyphenyl)-2-oxocyclohexyl)amino)propanoate (7a). Similar reaction of amine $30 \mathrm{~h}(0.2 \mathrm{~g}, 0.90 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($1.6 \mathrm{~g}, 8.2 \mathrm{mmol}$) gave $7 \mathrm{a}(0.16 \mathrm{~g}$, 53%), which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.47-7.45(\mathrm{dd}, J=7.72$ $\mathrm{Hz}, 1.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{td}, J=8.12 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03$ (td, $J=7.57 \mathrm{~Hz}, 1.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-$ 6.91 (dd, $J=8.17 \mathrm{~Hz}, 0.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.52(\mathrm{~m}, 1$ H), 2.42-2.41 (m, 4H), 1.74-1.68 (m, 6H), 1.23-1.21 (d, J=4.84 Hz, 6H), ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.42,172.32$, $157.19,129.05,128.20,120.82,111.70,68.19,37.69,55.19,39.21,38.64,38.17,35.36,28.77,22.05,21.80 ;$ MS m/z $334.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$334.2026, found 334.2029.

Isopropyl 3-((2-oxo-1-(2-(trifluoromethyl)phenyl)cyclohexyl)amino)propanoate (8a). Similar reaction of amine $30 \mathrm{k}(0.25 \mathrm{~g}, 0.72 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($2.20 \mathrm{~g}, 12.00 \mathrm{mmol}$) gave $8 \mathbf{a}(0.36 \mathrm{~g}, 72 \%)$, which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.89-7.87(\mathrm{~d}$, $J=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~d}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{t}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{t}, J=7.60 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 5 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.24(\mathrm{~d}, J=7.04$ $\mathrm{Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 205.12,172.96,139.90,131.89,129.30,128.98,128.28,127.62,68.33,68.01,40.88$, $38.28,38.25,35.00,33.96,24.78,22.12,21.28 ; \mathrm{MS} m / z 372.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$ 372.1781 found 372.1791 .

Isopropyl 3-((2-oxo-1-(2-(trifluoromethoxy)phenyl)cyclohexyl)amino)propanoate (9a). Similar reaction of amine $30 \mathrm{n}(0.15 \mathrm{~g}, 0.55 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($1.07 \mathrm{~g}, 5.50 \mathrm{mmol}$) gave 9a ($0.15 \mathrm{~g} 70 \%$), which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR} \delta 7.95-7.93(\mathrm{~d}, J=7.96 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76-7.72(\mathrm{t}, J=7.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{t}, J=7.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.02-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.12(\mathrm{~m}, 4 \mathrm{H})$, $2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.19(\mathrm{dd}, \mathrm{J}=6.24 \mathrm{~Hz}, 2.12 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.52$, 174.36, 149.87, 134.62, 132.58, 128.65, 127.65, 122.95, 70.53, 67.06, 40.10, 39.56, 26.90, 30.38, 24.36, 22.96, 22.03; MS m/z $388.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 388.1730$ found 388.1730 .

Isopropyl 3-((1-(3-chlorophenyl)-2-oxocyclohexyl)amino)propanoate (10a). Similar reaction of amine 30c ($0.6 \mathrm{~g}, 2.69 \mathrm{mmol}$) with isopropyl 3-bromopropanoate ($4.2 \mathrm{~g}, 21.0 \mathrm{mmol}$) gave $\mathbf{1 0 a}(1.2 \mathrm{~g}$, 80%), which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{dt}, J=5.96 \mathrm{~Hz}, 1.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.34(\mathrm{t}$, $J=5.92 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.21(\mathrm{~d}, J=6.28 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.33,172.38,142.01,135.01,130.24,128.34,127.80,125.60,69.42,68.03,39.78,38.11$, $37.25,35.70,27.60,22.32,22.05$; MS m/z $338.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO}_{3}\left(\mathrm{MH}^{+}\right)$338.1517, found 338.1515 .

Isopropyl 3-((2-oxo-1-(m-tolyl)cyclohexyl)amino)propanoate (11a). Similar reaction of amine 30f $(0.16 \mathrm{~g}, 0.78 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($1.40 \mathrm{~g}, 7.10 \mathrm{mmol}$) gave 11a $(0.6 \mathrm{~g}, 66 \%)$, which was converted as above to the solid HCl salt. $\left.{ }^{1} \mathrm{HNMR}^{(} \mathrm{CDCl}_{3}\right) \delta 2.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.18(\mathrm{~d}, \mathrm{~J}=4.16 \mathrm{~Hz}, 6 \mathrm{H}) ; 13 \mathrm{C}(\mathrm{CDCl} 3) \delta 211.32$, 172.40, 139.24, 138.70, 128.86, 128.47, 127.88, 124.29, 69.70, 67.87, 39.88, 38.18, 36.56, 35.86, 27.86, 22.53, 22.53, 21.84, 21.26; MS m/z $318.30(\mathrm{MH}+)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 318.2064$, found 318.2069.

Isopropyl 3-((1-(3-methoxyphenyl)-2-oxocyclohexyl)amino)propanoate (12a). Similar reaction of amine $30 \mathbf{i}(0.26 \mathrm{~g}, 1.18 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($1.3 \mathrm{~g}, 7.12 \mathrm{mmol}$) gave 12a (0.28 g , 72%), which was converted as above to the solid HCl salt. ${ }^{1}{ }^{1} \mathrm{NNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.84-$ $6.80(\mathrm{~m}, 3 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H})$, 2.38-2.22 (m, 2H), 1.98-1.91 (m, 2H), 1.88-1.68 (m, 5H), 1.22-1.10 (d, J = 9.44 Hz, 6H); ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta$ $210.98,172.39,160.22,141.04,130.02,119.63,113.44,112.58,69.62,67.88,55.46,39.84,38.13,36.69,35.85$, 27.76, 22.51, 22.04; MS m/z $334.20\left(\mathrm{MH}^{+}\right)$, Calculated $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}$ for $\left(\mathrm{MH}^{+}\right) 334.2013$, found 334.2018.

Isopropyl 3-((2-oxo-1-(3-(trifluoromethyl)phenyl)cyclohexyl)amino)propanoate (13a). Similar reaction of amine $301(0.26 \mathrm{~g}, 1.00 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($2.30 \mathrm{~g}, 12.00 \mathrm{mmol}$) gave 13a ($0.25,68 \%$) which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.55-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.01-4.97(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.22(\mathrm{~d}, \mathrm{~J}=6.24 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.24$, $172.42,141.22,131.39,130.98,129.39,124.55,124.05,123.98,69.47,68.11,39.72,38.14,37.99,35.56,27.51$, 22.19, 22.04; MS m/z $372.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 372.1793$ found 372.1794.

Isopropyl 3-((2-oxo-1-(3-(trifluoromethoxy)phenyl)cyclohexyl)amino)propanoate (14a). Similar reaction of amine $\mathbf{3 0 o}(0.26 \mathrm{~g}, 0.95 \mathrm{mmol})$ with isopropyl 3-bromopropanoate $(2.20 \mathrm{~g}, 11.40 \mathrm{mmol})$ gave $14 \mathrm{a}\left(0.27 \mathrm{~g} \mathrm{76} \mathrm{\%}\right.$), which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR} \delta 7.41,7.37(\mathrm{t}, \mathrm{J}=7.92$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.37(\mathrm{t}, \mathrm{J}=$ $6.56 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.18(\mathrm{~m}, 5 \mathrm{H}), 1.24-1.23(\mathrm{~d}, \mathrm{~J}=6.24 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.20$,
$172.39,149.82,142.54,130.26,125.88,125.87,120.11,119.98,69.38,38.06,39.70,38.12,37.72,35.64,27.51$, 22.03, 22.02; MS m/z $388.20\left(\mathrm{MH}+\right.$), Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4}(\mathrm{MH}+) 388.1755$ found 388.1756.

Isopropyl 3-((1-(4-chlorophenyl)-2-oxocyclohexyl)amino)propanoate (15a). Similar reaction of amine $22(1.0 \mathrm{~g}, 4.48 \mathrm{mmol})$ with isopropyl 3-bromopropanoate gave $15 \mathrm{a}(1.2 \mathrm{~g}, 80 \%)$ as pale yellow oil, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.33(\mathrm{t}, J=7.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-$ $2.22(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.20(\mathrm{~d}, J=6.28 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.64,172.38,138.26$, $133.54,129.26,128.79,68.01,41.20,38.55,37.88,35.68,27.66,22.50,22.33,22.04$; MS m/z $338.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO}_{3}\left(\mathrm{MH}^{+}\right) 338.1518$, found 338.1515.

Isopropyl 3-((2-oxo-1-(p-tolyl)cyclohexyl)amino)propanoate (16a). Similar reaction of amine $\mathbf{3 0 g}$ $(0.23 \mathrm{~g}, 1.13 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($2.20 \mathrm{~g}, 11.3 \mathrm{mmol}$) gave $16 \mathrm{a}(0.2 \mathrm{~g}, 56 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.18-7.15(\mathrm{~d}, \mathrm{~J}=8.04 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11-7.09(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 5 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.19(\mathrm{~d}, J=6.24 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.16$, $172.20,137.18,136.09,129.52,126.96,69.27,67.64,39.56,37.92,36.46,35.64,27.64,22.29,21.82,20.98$; MS $m / z 318.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$318.2064, found 318.2080.

Isopropyl 3-((1-(4-methoxyphenyl)-2-oxocyclohexyl)amino)propanoate (17a). Similar reaction of amine $30 \mathbf{j}(0.10 \mathrm{~g}, 0.45 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($1.06 \mathrm{~g}, 5.47 \mathrm{mmol}$) gave $\mathbf{1 7 a}(0.1 \mathrm{~g}$, $66 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.18-7.16(\mathrm{~d}, \mathrm{~J}=8.88 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91-6.88(\mathrm{~d}, \mathrm{~J}=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}$, $4 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.21-1.19(\mathrm{~d}, \mathrm{~J}=6.28 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.21,172.44,159.08,130.98,128.55$, $114.18,69.36,67.98,55.47,39.69,38.20,36.74,35.65,27.83,22.50,22.05$; MS m/z $334.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 334.2013$, found 334.2018.

Isopropyl 3-((2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)amino)propanoate (18a). Similar reaction of amine $30 \mathrm{~m}(0.18 \mathrm{~g}, 0.70 \mathrm{mmol})$ with isopropyl 3-bromopropanoate $(1.64 \mathrm{~g}, 8.40 \mathrm{mmol})$ gave $18 \mathrm{a}(0.18 \mathrm{~g} 69 \%)$ which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.61(\mathrm{~d}$, $J=8.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.7 .39(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 2 \mathrm{H}), 5.00-4.97(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.20(\mathrm{~m}$, $5 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 3 \mathrm{H}) .1 .79-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.24(\mathrm{~d}, \mathrm{~J}=8.22 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.22,172.42$, $144.03,129.35,127.79,125.83,69.50,68.11,39.76,38.64,38.10,37.70,36.84,35.53,27.53,22.20 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $372.20(\mathrm{MH}+)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}(\mathrm{MH}+) 372.1781$ found 372.1790.

Isopropyl 3-((2-oxo-1-(4-(trifluoromethoxy)phenyl)cyclohexyl)amino)propanoate (19a). Similar reaction of amine $\mathbf{3 0 p}(0.48 \mathrm{~g}, 1.76 \mathrm{mmol})$ with isopropyl 3-bromopropanoate ($3.42 \mathrm{~g}, 18.0 \mathrm{mmol}$) gave 19a ($0.50 \mathrm{~g}, 73 \%$), which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR} \delta 7.31-7.29(\mathrm{~d}, J=6.72 \mathrm{~Hz}$, 2H), 7.22-7.19 (d, J = 8.04 Hz, 2H), 5.06-4.94 (m, 1H), 2.72-2.65 (m, 1H), 2.53-2.47 (m, 2H), 2.40-2.36 $(\mathrm{t}, J=6.52 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.24(\mathrm{~d}, \mathrm{~J}=8.22 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta$ 21057, 172.42, 148.54, 138.52, 128.87, 121.14, 69.21, 68.37, 39.73, 38.12, 37.73, 35.66, 27.60, 22.27, 22.04; MS m/z $388.20(\mathrm{MH}+)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 388.1755$ found 388.1752.

Isopropyl 3-((2-oxo-1-(thiophen-2-yl)cyclohexyl)amino)propanoate (20a). Similar reaction of nortiletamine (35) ($0.16 \mathrm{~g}, 0.82 \mathrm{mmol}$) with isopropyl 3-bromopropanoate ($0.96 \mathrm{~g}, 4.90 \mathrm{mmol}$) gave 20a ($0.1 \mathrm{~g}, 40 \%$), which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.90(\mathrm{dd}, J=3.56 \mathrm{~Hz}, 1.12 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.66-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.21(\mathrm{~d}, \mathrm{~J}=6.28 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta$ 209.52, 172.41, 147.98, 127.13, 126.62, 125.32, 67.97, 67.64, 40.68, 39.54, 39.18, 38.37, 35.73, 27.24, 22.06; MS m/z $310.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$310.1471, found 310.1476.

Methyl 5-((2-oxo-1-phenylcyclohexyl)amino)pentanoate (3b). Similar reaction of amine 21 (0.17 g , $0.90 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.22 \mathrm{~g}, 1.1 \mathrm{mmol})$ gave $3 \mathrm{~b}(0.2 \mathrm{~g}, 74 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.58,174.22,139.54,129.00,127.63,127.20,69.82,51.63$,
$41.96,39.92,36.38,34.02,30.36,27.88,22.84,22.52$; MS $m / z 304.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ $\left(\mathrm{MH}^{+}\right) 304.1907$, found 304.1909.

Methyl 5-((1-(2-fluorophenyl)-2-oxocyclohexyl)amino)pentanoate (4b). Similar reaction of amine $30 b(0.14 \mathrm{~g}, 0.68 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.17 \mathrm{~g}, 0.88 \mathrm{mmol})$ gave $4 \mathrm{~b}(0.17 \mathrm{~g}, 77 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.37(\mathrm{td}, J=7.76 \mathrm{~Hz}, 1.72 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1), 7.20-7.16(\mathrm{td}, J=7.64 \mathrm{~Hz}, 1.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.02(\mathrm{ddd}, J=8.12 \mathrm{~Hz}, 3.40 \mathrm{~Hz}, 1.24$ $\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.62-$ $1.55(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.05,174.35,160.00,129.61,128.82,124.42,116.69,116.35,69.64,51.76$, $42.25,39.57,38.99,34.02,30.26,28.48,22.90,22.16$; MS m/z $322.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FNO}_{3}$ $\left(\mathrm{MH}^{+}\right) 322.1813$, found 322.1830.

Methyl 5-((2-oxo-1-(o-tolyl)cyclohexyl)amino)pentanoate (6b). Similar reaction of amine $\mathbf{3 0 e}(0.5 \mathrm{~g}$, 2.40 mmol) with methyl 5-bromovalerate ($0.64 \mathrm{~g}, 3.20 \mathrm{mmol}$) gave $\mathbf{6 b}(0.6 \mathrm{~g}, 76 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.46-7.44(\mathrm{dd}, J=7.64 \mathrm{~Hz}, 1.68 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{dd}, J=7.16 \mathrm{~Hz}, 1.8 \mathrm{~Hz}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 3 \mathrm{H})$, 2.18-2.12 ($\mathrm{t}, \mathrm{J}=8.28 \mathrm{~Hz}, 4 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.42(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 213.26,174.30138 .16,137.46,132.66,127.98,127.60,125.66,70.79,51.60,41.10,40.72$, $39.94,33.90,30.38,30.18,22.76,22.68$; MS m/z $318.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 318.2064$, found 318.2062.

Methyl 5-((1-(2-methoxyphenyl)-2-oxocyclohexyl)amino)pentanoate (7b). Similar reaction of amine $30 h(0.22 \mathrm{~g}, 1.02 \mathrm{mmol})$ with methyl 5-bromovalerate ($0.22 \mathrm{~g}, 1.33 \mathrm{mmol}$) gave $7 \mathrm{~b}(0.24 \mathrm{~g}, 70 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.42-7.39(\mathrm{dd}, J=7.68 \mathrm{~Hz}, 1.68 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.27(\mathrm{td}, J=7.48 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.02(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.16 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.88$ (dd, $J=$ $8.29 \mathrm{~Hz}, 0.92 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.78(\mathrm{~m} \mathrm{1H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 2 \mathrm{H})$, $2.16-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}\right) \delta 211.58,174.34,157.43,129.03128 .76,128.44,120.89,111.82,68.38,55.34,51.64,42.07,39.59$, $39.17,34.06,30.30,29.36,22.86,22.40 ; \mathrm{MS} m / z 334.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 334.2013$, found 334.2017 .

Methyl 5-((2-oxo-1-(2-(trifluoromethyl)phenyl)cyclohexyl)amino)pentanoate (8b). Similar reaction of amine $30 \mathbf{k}(0.27 \mathrm{~g}, 1.05 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.27 \mathrm{~g}, 1.40 \mathrm{mmol})$ gave $8 \mathbf{b}(0.27 \mathrm{~g}$, $72 \%)$, which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.83-7.82(\mathrm{~d}, \mathrm{~J}=8.04 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66-7.64(\mathrm{dd}, J=7.89 \mathrm{~Hz}, 1.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.52(\mathrm{t}, J=7.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{t}, J=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{s}, 3 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.44(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 205.37$, $174.22,140.05,131.74,129.03,128.88,128.49,127.62,68.89,51.75,42.25,40.81,38.34,34.02,30.23,25.21$, 22.71, 21.38; MS m/z $372.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 372.1793$ found 372.1791.

Methyl 5-((2-oxo-1-(2-(trifluoromethoxy)phenyl)cyclohexyl)amino)pentanoate (9b). Similar reaction of amine $\mathbf{3 0 n}(0.11 \mathrm{~g}, 0.40 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.13 \mathrm{~g}, 0.64 \mathrm{mmol})$ gave $\mathbf{9 b}$ ($0.12 \mathrm{~g}, 75 \%$), which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.53-7.52(\mathrm{dd}, J=7.52$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.23(\mathrm{t}, J=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-$ $1.86(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.6-1.52(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 208.59,174.36,147.98,134.08,129.89$, $129.15,128.94,125.96,118.59,69.65,51.77,42.09,39.37,39.03,34.02,30.29,30.29,27.94,22.76,21.67$; MS $m / z 388.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 388.1730$ found 388.1740.

Methyl 5-((1-(3-chlorophenyl)-2-oxocyclohexyl)amino)pentanoate (10b). Similar reaction of amine 30c ($0.6 \mathrm{~g}, 2.69 \mathrm{mmol}$) with methyl 5-bromovalerate ($0.65 \mathrm{~g}, 3.36 \mathrm{mmol}$), gave $\mathbf{1 0 b}(0.77 \mathrm{~g}, 84 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.09(\mathrm{dt}, J=7.44 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.93(\mathrm{~m}$, $2 \mathrm{H}), 1.88-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.72,174.18,142.08$, $135.04,130.26,127.86,127.38,125.47,68.64,51.66,41.94,39.88,36.64,34.00,32.24,27.68,22.80,22.41$; MS $m / z 338.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO}_{3}\left(\mathrm{MH}^{+}\right) 338.1518$, found 338.1513.

Methyl 5-((2-oxo-1-(m-tolyl)cyclohexyl)amino)pentanoate (11b). Similar reaction of amine 30f (0.19 $\mathrm{g}, 0.94 \mathrm{mmol})$ with methyl 5-bromovalerate ($0.23 \mathrm{~g}, 1.2 \mathrm{mmol}$) gave $11 \mathrm{~b}(0.2 \mathrm{~g}, 68 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.07(\mathrm{~d}, J=7.48 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.20(\mathrm{t}, \mathrm{J}=$ $7.64 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.76,174.26$, $139.46,138.72,128.82,128.41,127.80,124.23,69.80,51.65,42.00,39.99,36.28,34.06,30.30,27.90,22.88$, 22.60, 21.84; MS m/z $318.20\left(\mathrm{MH}+\right.$), Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$318.2064, found 318.2063.

Methyl 5-((1-(3-methoxyphenyl)-2-oxocyclohexyl)amino)pentanoate (12b). Similar reaction of amine $\mathbf{3 0 i}((0.16 \mathrm{~g}, 0.73 \mathrm{mmol})$ and methyl 5-bromovalerate $(0.18 \mathrm{~g}, 0.95 \mathrm{mmol})$ gave $\mathbf{1 2 b}(0.18 \mathrm{~g}$, 76%), which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.82-$ $6.76(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.68$ $(\mathrm{m}, 6 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.38,174.25,160.20,141.14,130.01$, $119.55,113.38,112.49,69.70,55.45,51.65,41.94,39.92,36.30,34.04,30.26,27.79,22.86,22.56 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $334.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 334.2013$, found 334.2017.
Methyl 5-((2-oxo-1-(3-(trifluoromethyl)phenyl)cyclohexyl)amino)pentanoate (13b). Similar reaction of amine $301(0.26 \mathrm{~g}, 1.00 \mathrm{mmol})$ with methyl 5-bromovalerate ($0.28 \mathrm{~g}, 1.42 \mathrm{mmol}$) gave 13b
 $7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.58(\mathrm{t}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 210.63,174.36$, $141.23,130.84,129.43,124.58,124.47,123.94,69.64,51.76,41.98,39.83,37.18,33.96,30.18,27.62,22.74$, 21.66; MS m/z $372.30\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 372.1793$ found 372.1792 .

Methyl 5-((2-oxo-1-(3-(trifluoromethoxy)phenyl)cyclohexyl)amino)pentanoate (14b). Similar reaction of amine $\mathbf{3 0 0}(0.23 \mathrm{~g}, 0.84 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.33 \mathrm{~g}, 1.68 \mathrm{mmol})$ gave $\mathbf{1 4 b}$ $(0.26 \mathrm{~g}, 81 \%)$, which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR} \delta 7.42-7.36(\mathrm{t}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.00-$ $1.70(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$ б $210.60,174.36,149.93,142.54$, $130.30,125.56,120.04,119.99,119.36,69.64,62.45,51.76,41.93,39.80,36.98,34.09,30.38,27.62,22.76$, 22.30; MS m/z $388.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 388.1755$ found 388.1753 .

Methyl 5-((2-oxo-1-(p-tolyl)cyclohexyl)amino)pentanoate (16b). Similar reaction of amine $\mathbf{3 0 g}$ (0.18 $\mathrm{g}, 0.88 \mathrm{mmol})$ with methyl 5-bromovalerate gave $\mathbf{1 6 b}(0.20 \mathrm{~g}, 72 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.18-7.15(\mathrm{~d}, \mathrm{~J}=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ $(\mathrm{s}, 3 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.86-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.79,174.26$ 137.36, $136.49,129.72,127.12,69.60,51.64,41.99,39.88,36.39,34.0730 .31,27.90,22.89,22.57,21.26 ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $318.20(\mathrm{MH}+)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$318.2064, found 318.2065.
Methyl 5-((1-(4-methoxyphenyl)-2-oxocyclohexyl)amino)pentanoate (17b). Similar reaction of amine $30 \mathbf{j}(0.10 \mathrm{~g}, 0.45 \mathrm{mmol})$ with methyl 5-bromovalerate ($0.16 \mathrm{~g}, 0.59 \mathrm{mmol}$) gave $\mathbf{1 7 b}(0.1 \mathrm{~g}, 66 \%)$, which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.15-7.12(\mathrm{~d}, \mathrm{~J}=8.88 \mathrm{~Hz}, 2 \mathrm{H})$, $6.91-6.88(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.18$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.83,174.28,158.98,130.94,128.46,114.35,69.36,55.46$, 51.66, 42.02, 39.82, 36.56, 34.06, 30.28, 27.91, 22.90, 22.58; MS m/z $334.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 334.1945$, found 334.2017 .

Methyl 5-((2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)amino)pentanoate (18b). Similar reaction of amine $30 \mathrm{~m}(0.18 \mathrm{~g}, 0.70 \mathrm{mmol})$ with methyl 5-bromovalerate ($0.19 \mathrm{~g}, 0.98 \mathrm{mmol}$) gave $\mathbf{1 8 b}$ $(0.20 \mathrm{~g}, 76 \%)$, which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.63-7.61(\mathrm{~d}, J=8.24$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~d}, \mathrm{~J}=8.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}$, $1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}\right) \delta 210.66,174.17,140.07,127.70,125.92,69.66,51.78,41.99,39.90,36.98,33.98,30.22,27.66$, 22.76, 22.56; MS m/z $372.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right) 372.1781$ found 372.1801.

Methyl 5-((2-oxo-1-(4-(trifluoromethoxy)phenyl)cyclohexyl)amino)pentanoate (19b). Similar reaction of amine $\mathbf{3 0 p}(0.48 \mathrm{~g}, 1.76 \mathrm{mmol})$ with methyl 5-bromovalerate $(0.48 \mathrm{~g}, 2.40 \mathrm{mmol})$ gave 19b $(0.54 \mathrm{~g}, 81 \%)$, which was converted as above to the HCl salt. ${ }^{1} \mathrm{HNMR} \delta 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.88-$ $1.72(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.33(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) \delta 211.00,174.18,148.55,138.56,129.05$, $121.23,69.31,51.76,41.98,39.86,37.02,33.84,30.24,27.70,22.79,22.38$; MS m/z $388.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right) 388.1755$ found 388.1750 .

Methyl 5-((2-oxo-1-(thiophen-2-yl)cyclohexyl)amino)pentanoate (20b). Similar reaction of nortiletamine ($\mathbf{3 5) ~ (~} 0.17 \mathrm{~g}, 0.87 \mathrm{mmol}$) with methyl 5-bromovalerate $(0.22 \mathrm{~g}, 1.1 \mathrm{mmol})$ gave 20 b (0.16 $\mathrm{g}, 62 \%$), which was converted as above to the solid HCl salt. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.27$ (dd, $J=5.1$ $\mathrm{Hz}, 1.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.97$ (dd, $J=5.08 \mathrm{~Hz}, 3.56 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.86$ (dd, $J=3.56 \mathrm{~Hz}, 1.12 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.24(\mathrm{t}, \mathrm{J}=3.04 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.92$ $(\mathrm{m}, 3 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{q}, J=7.57 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}\right) \delta 209.76,174.34,145.62,127.08,125.89,125.46,67.68,51.66,42.20,39.26,39.11,34.06,30.20$, 27.19, 22.89, 22.50; MS m/z $310.20\left(\mathrm{MH}^{+}\right)$, Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$310.1471, found 310.1472.

