Supplementary Materials to:

β^2 -homo-Amino acid scan of μ -selective opioid tetrapeptide TAPP

by: Dagmara Tymecka*, Piotr F. J. Lipiński, Piotr Kosson and Aleksandra Misicka*

Corresponding authors: dulok@chem.uw.edu.pl; (D.T.), misicka@chem.uw.edu.pl (A.M.)

SM-SYN: synthesis

Table SM-SYN-1. Analytical data of the synthesized peptides.

SM-BIN: binding affinity

Table SM-BIN-1. δOR binding affinity of the studied compounds.

SM-MOD: modelling

Table SM-MOD-1. Descriptive summary of the binding poses predicted by docking for TAPP and the derivatives.

Figure SM-MOD-1. Plot of pIC₅₀ against the predicted by docking free energy of binding (mean in the cluster).

Figure SM-MOD-2. Plot of pIC₅₀ against the predicted by docking free energy of binding (lowest in the cluster).

SM-STAB: stability

Figure SM-STAB-1. HPLC chromatogram of a TAPP (1) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-2. HPLC chromatogram of a TAPP (1) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-3. HPLC chromatogram of a $[(R)-\beta^2hTyr^1]$ -TAPP* (8) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-4. HPLC chromatogram of a $[(R)-\beta^2hTyr^1]$ -TAPP* (8) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-5. HPLC chromatogram of a $[(R)-\beta^2h-m-Tyr^1]$ -TAPP* (9) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-6. HPLC chromatogram of a $[(R)-\beta^2h-m-Tyr^1]$ -TAPP* (9) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-7. HPLC chromatogram of a $[(S)-\beta^2hAla^2]$ -TAPP (**10**) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-8. HPLC chromatogram of a $[(S)-\beta^2hAla^2]$ -TAPP (**10**) sample in human plasma, taken at 4 h of stability testing.

Figure SM-STAB-9. HPLC chromatogram of $[(R)-\beta^2 hPhe^3]$ -TAPP (11) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-10. HPLC chromatogram of $[(R)-\beta^2 hPhe^3]$ -TAPP (11) sample in human plasma, taken at 48h of stability testing.

Figure SM-STAB-11. HPLC chromatogram of $[(R)-\beta^2hPhe^4]$ -TAPP (**12**) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-12. HPLC chromatogram of $[(R)-\beta^2hPhe^4]$ -TAPP (12) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-13. HPLC chromatogram of a $[(S)-\beta^2hTyr^1]$ -TAPP* (13) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-14. HPLC chromatogram of a $[(S)-\beta^2hTyr^1]$ -TAPP* (13) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-15. HPLC chromatogram of a $[(S)-\beta^2h-m-Tyr^1]$ -TAPP* (14) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-16. HPLC chromatogram of a $[(S)-\beta^2h-m-Tyr^1]$ -TAPP* (14) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-17. HPLC chromatogram of a $[(R)-\beta^2hAla^2]$ -TAPP (**15**) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-18. HPLC chromatogram of a $[(R)-\beta^2hAla^2]$ -TAPP (**15**) sample in human plasma, taken at 4 h of stability testing.

Figure SM-STAB-19. HPLC chromatogram of a $[(S)-\beta^2hPhe^3]$ -TAPP (**16**) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-20. HPLC chromatogram of a $[(S)-\beta^2hPhe^3]$ -TAPP (**16**) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-21. HPLC chromatogram of a $[(S)-\beta^2hPhe^4]$ -TAPP (17) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-22. HPLC chromatogram of a $[(S)-\beta^2hPhe^4]$ -TAPP (17) sample in human plasma, taken at 48 h of stability testing.

Table SM-SYN-1. Analytical data of the synthesized peptides.

No.		HPLC t _R	HPLC t _R (min)**	molecular formula	HR ESI-MS		
	peptide	(min)*			calculated for [M+H] ⁺	measured for [M+H] ⁺	Diff. [ppm]
1	H-Tyr-D-Ala-Phe-Phe-NH ₂ (TAPP)	20.866	18.017	C ₃₀ H ₃₅ N ₅ O ₅	546.2711	546.2715	0.73
8	H-(R)-β ² hTyr-D-Ala-Phe-Phe-NH _{2 less}	21.160	18.672	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2885	3.21
9	H- (R) - β^2 h- m -Tyr-D-Ala-Phe-Phe-NH ₂ less polar	21.831	19.240	$C_{31}H_{37}N_5O_5$	560.2867	560.2885	3.21
10	H-Tyr-(S)- β^2 hAla-Phe-Phe-NH ₂	20.059	17.340	$C_{31}H_{37}N_5O_5$	560.2867	560.2893	4.64
11	H-Tyr-D-Ala-(<i>R</i>)-β ² hPhe-Phe-NH ₂	19.234	16.234	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2879	2.14
12	H-Tyr-D-Ala-Phe-(<i>R</i>)-β ² hPhe-NH ₂	20.690	18.316	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2889	3.93
13	H-(S)-β ² hTyr-D-Ala-Phe-Phe-NH _{2 more}	19.585	17.019	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2874	1.25
14	H-(S)- β^2 h-m-Tyr-D-Ala-Phe-Phe-NH ₂ more polar	20.039	17.711	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2879	2.14
15	H-Tyr-(R)- β^2 hAla-Phe-Phe-NH ₂	19.496	16.876	$C_{31}H_{37}N_5O_5$	560.2867	560.2880	2.32
16	H-Tyr-D-Ala-(S)-β ² hPhe-Phe-NH ₂	21.037	19.467	$C_{31}H_{37}N_5O_5$	560.2867	560.2879	2.14
17	H-Tyr-D-Ala-Phe-(S)-β ² hPhe-NH ₂	20.611	18.298	C ₃₁ H ₃₇ N ₅ O ₅	560.2867	560.2882	2.68

^{*}linear gradient was applied: 3–97% B for 40 min, phase (A): 0.1% TFA in water; phase (B): 0.1% TFA in ACN.

^{**}linear gradient was applied: 30–97% B for 30 min, phase (A): 0.1% TFA in water; phase (B): 0.1% TFA in MeOH.

Table SM-BIN-1. δOR binding affinity of the studied compounds.

No.	Compound	$IC_{50} [nM]^1$						
140.	Compound	δOR^2						
1	TAPP	616						
backbone expansion without changing the spatial positioning of the side-chain								
8 ³	$[(R)-\beta^2 h Tyr^1]-TAPP*$	>10000						
9 ³	$[(R)-\beta^2 h-m-Tyr^1]-TAPP*$	>10000						
10	$[(S)-\beta^2 hAla^2]-TAPP$	>10000						
11	$[(R)-\beta^2 h Phe^3]-TAPP$	794						
12	$[(R)$ - β^2 hPhe ⁴]-TAPP	708						
backbone expansion with changing the spatial positioning of the side-chain								
13 ³	$[(S)-\beta^2hTyr^1]-TAPP*$	>10000						
14 ³	$[(S)-\beta^2 h-m-Tyr^1]-TAPP*$	>10000						
15	$[(R)-\beta^2 hAla^2]-TAPP$	>10000						
16	$[(S)-\beta^2 h P h e^3]-TAPP$	890						
17	$[(S)-\beta^2 h Phe^4]-TAPP$	417						

¹ IC₅₀, half-maximal inhibitory concentration mean of three determinations in duplicate. ² Radioligand: 0.5 nM [³H]DELT II. ³ Absolute configuration determined *per analogiam* to [(*R*/*S*)-β²hPhe¹]-TAPP (see Section 2.1 in the main text for details)

Table SM-MOD-1. Descriptive summary of the binding poses predicted by docking for TAPP and the derivatives.

No	Structure	Xxx1 interactions	H-bond with Tyr148	Position of Xxx ³ side- chain	Position of Xxx ⁴ side- chain	Interactions of C-terminal amide
	DAMGO in 6DDF	SA1	-	n/a	SD1	n/a
1	TAPP	SA1	-	SC1	SD1	SE1
8	$[(R)-\beta^2 h Tyr^1]-TAPP*$	SA1	-	SC2	SC4	SE2
9	$[(R)-\beta^2 h-m-Tyr^1]-$ TAPP*	SA2	-	SC1	SD1	SE1
10	$[(S)-\beta^2 hAla^2]-TAPP$	SA3	+	SC4	SC3	SE2
11	$[(R)-\beta^2 \text{hPhe}^3]$ -TAPP	SA4	+	to solvent	SD1	SE2
12	$[(R)-\beta^2 \text{hPhe}^4]$ -TAPP	SA4	-	SC4	SD1	SE2
13	$[(S)-\beta^2hTyr^1]-TAPP*$	SA5	-	SD1	SC4	to solvent
14	$[(S)-\beta^2 h-m-Tyr^1]-$ TAPP*	SA6	-	SC1	SD1	SE1
15	$[(R)-\beta^2 hAla^2]-TAPP$	SA6	+	SD1	SD2	SE3
16	$[(S)-\beta^2 \text{hPhe}^3]$ -TAPP	SA7	-	SC4	SC3	solvent
17	$[(S)-\beta^2 h Phe^4]-TAPP$	SA1	-	SC5	SD1	SE2

SA1, dispersive contacts: Ile296, His297, Val300

SA2, dispersive contacts: Met151

SA3, H-bond: Ile296 (backbone); dispersive contacts: Ile296, Val300, Ile322

SA4, H-bond: Lys233 (backbone); dispersive contacts: Val300

SA5, dispersive contacts: Ile296, Val300, Val236

SA6, H-bond: Ile296 (backbone); dispersive contacts: Val236, Ile296 SA7, H-bond: Trp293 (indole); dispersive contacts: Ile 296, Val300

SC1, dispersive contacts: Asn127, Trp318, His319

SC2, intramolecular stack NH+···Xxx³

SC3, dispersive contacts: Cys217

SC4, dispersive contacts: Leu219

SC5, intramolecular stack Xxx⁴···Xxx³

SD1, dispersive contacts: Trp133, Ile144, Cys217

SD2, dispersive contacts: Val300, Trp318

SE1, H-bond: Thr218 SE2, H-bond: Asp216 SE3, H-bond: Glu229

Figure SM-MOD-1. Plot of pIC₅₀ against the predicted by docking free energy of binding (mean in the cluster).

Figure SM-MOD-2. Plot of pIC₅₀ against the predicted by docking free energy of binding (lowest in the cluster).

Figure SM-STAB-1. HPLC chromatogram of a TAPP (1) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-2. HPLC chromatogram of a TAPP (1) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-3. HPLC chromatogram of a $[(R)-\beta^2hTyr^1]$ -TAPP* (8) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-4. HPLC chromatogram of a $[(R)-\beta^2hTyr^1]$ -TAPP* (8) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-5. HPLC chromatogram of a $[(R)-\beta^2h-m-Tyr^1]$ -TAPP* (9) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-6. HPLC chromatogram of a $[(R)-\beta^2h-m-Tyr^1]$ -TAPP* (9) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-7. HPLC chromatogram of a $[(S)-\beta^2hAla^2]$ -TAPP (10) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-8. HPLC chromatogram of a $[(S)-\beta^2hAla^2]$ -TAPP (10) sample in human plasma, taken at 4 h of stability testing.

Figure SM-STAB-9. HPLC chromatogram of $[(R)-\beta^2 hPhe^3]$ -TAPP (11) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-10. HPLC chromatogram of $[(R)-\beta^2 hPhe^3]$ -TAPP (11) sample in human plasma, taken at 48h of stability testing.

Figure SM-STAB-11. HPLC chromatogram of $[(R)-\beta^2hPhe^4]$ -TAPP (12) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-12. HPLC chromatogram of $[(R)-\beta^2 h P h e^4]$ -TAPP (12) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-13. HPLC chromatogram of a $[(S)-\beta^2hTyr^1]$ -TAPP* (13) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-14. HPLC chromatogram of a $[(S)-\beta^2hTyr^1]$ -TAPP* (13) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-15. HPLC chromatogram of a $[(S)-\beta^2h-m-Tyr^1]$ -TAPP* (14) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-16. HPLC chromatogram of a $[(S)-\beta^2h-m-Tyr^1]$ -TAPP* (14) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-17. HPLC chromatogram of a $[(R)-\beta^2hAla^2]$ -TAPP (15) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-18. HPLC chromatogram of a $[(R)-\beta^2hAla^2]$ -TAPP (15) sample in human plasma, taken at 4 h of stability testing.

Figure SM-STAB-19. HPLC chromatogram of a $[(S)-\beta^2 hPhe^3]$ -TAPP (16) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-20. HPLC chromatogram of a $[(S)-\beta^2hPhe^3]$ -TAPP (16) sample in human plasma, taken at 48 h of stability testing.

Figure SM-STAB-21. HPLC chromatogram of a $[(S)-\beta^2hPhe^4]$ -TAPP (17) sample in human plasma, taken at the start of stability testing.

Figure SM-STAB-22. HPLC chromatogram of a $[(S)-\beta^2hPhe^4]$ -TAPP (17) sample in human plasma, taken at 48 h of stability testing.