

Article Highly Sensitive and Selective Fluorescent Probes for Cu(II) Detection Based on Calix[4]arene-Oxacyclophane Architectures

Alexandra I. Costa ^{1,2}, Patrícia D. Barata ^{1,2}, Carina B. Fialho ^{1,†} and José V. Prata ^{1,2,*}

- ¹ Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; acosta@deq.isel.ipl.pt (A.I.C.); pbarata@deq.isel.ipl.pt (P.D.B.); carina.fialho@tecnico.ulisboa.pt (C.B.F.)
- ² Centro de Química-Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
 * Correspondence: jvprata@deq.isel.ipl.pt; Tel.: +351-218317172
- + Present address: Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Supplementary Materials

Table of Contents

Figure S1. GPC traces of polymers 4 and 5

Figure S2. 1H NMR spectrum of polymer 4

Figure S3. ¹H NMR spectrum of polymer 5

Figure S4a. Emission spectra of polymer 6 upon addition of Cu(ClO₄)₂

Figure S4b. Binding isotherm for the fluorimetric titration of 6 with Cu(II)

Figure S5a. Emission spectra of Calix-OCP-2-CBZ upon addition of Cu(ClO₄)₂

Figure S5b. Binding isotherm for the fluorimetric titration of Calix-OCP-2-CBZ with Cu(II)

Figure S6. Emission spectra of bis-Calix-TriPr-2-CBZ upon addition of Cu(ClO₄)₂

Figure S7. Mechanism of fluorescence quenching by PET

Figure S8. Excitation and emission spectra of polymer 5 upon addition of Cu(ClO₄)₂

Figure S9. Emission spectra of polymer 5 upon addition of Pb(ClO₄)₂

Figure S10. Emission spectra of polymer 5 upon addition of Hg(ClO₄)₂

Figure S11. Emission spectra of Calix-OCP-2-CBZ upon addition Pb(ClO₄)₂

Figure S12. Optimised structure of Calix-OCP-Pb(II) complex (model)

Figure S13. Job plot for complex formation between polymer 4 and Cu(II)

Figure S14a. Emission spectra of polymer 4 upon addition of Pb(ClO₄)₂

Figure S14b. Binding isotherm for the fluorimetric titration of 4 with Pb(II)

Table S1. Experimental values of $\Sigma c/c_{\text{max}}$ of the Job plot for polymer 5

Table S2. Experimental values of $\Sigma c/c_{\text{max}}$ of the Job plot for polymer 4

Figure 1. GPC traces of isolated polymers 4 and 5 against monodisperse polystyrene standards (THF as eluent at 35 °C).

Figure 2. ¹H NMR spectrum of polymer **4** in CDCl₃ (400 MHz, 25 °C); ^asilicone grease; ^{b,c}Apiezon type grease; ^dwater; ^eacetone.

Figure 3. ¹H NMR spectrum of polymer **5** in CDCl₃ (400 MHz, 25 °C); ^asilicone grease; ^bApiezon type grease; ^cwater; ^dacetone.

Figure 4. (a) Emission spectra of polymer 6 (5.0 x 10^{-6} M in CH₃CN) upon addition of increasing amounts (0.25 - 5.8 equiv.) of Cu(ClO₄)₂ (λ_{exc} = 380 nm); (b) Binding isotherm for the fluorimetric titration of 6 with Cu(II) with fitted curve and confidence intervals.

Figure 5. (a) Emission spectra of **Calix-OCP-2-CBZ** (1.0×10^{-7} M in CH₃CN) upon addition of increasing amounts (2.5 - 72.6 equiv.) of Cu(ClO₄)₂ ($\lambda_{exc} = 380$ nm); (b) Binding isotherm for the fluorimetric titration of **Calix-OCP-2-CBZ** with Cu(II) with fitted curve and confidence intervals.

Figure 6. Emission spectra of **bis-Calix-TriPr-2-CBZ** (1.0 x 10^{-5} M in CH₃CN) upon addition of increasing amounts (2.5 - 72.6 equiv.) of Cu(ClO₄)₂ (λ _{exc} = 380 nm). Inset: Plot of *F*₀/*F vs* [Cu(II)].

Figure 7. Cartoon illustrating the mechanism of fluorescence quenching by photoinduced electron transfer (PET).

Figure 8. Excitation (left; monitored at 430 nm) and emission (right; $\lambda_{exc} = 380$ nm) spectra of polymer 5 (5.0 x 10⁻⁶ M in CH₃CN) upon addition of increasing amounts (0.25 - 10 equiv.) of Cu(ClO₄)₂.

Figure S9. Emission spectra of polymer 5 (5.0 x 10^{-6} M in CH₃CN) upon addition of increasing amounts (0.5 - 4.8 equiv.) of Pb(ClO₄)₂ (λ_{exc} = 380 nm). Inset: Plot of F_0/F vs [Pb(II)].

Figure 10. Emission spectra of polymer 5 (5.0 x 10^{-6} M in CH₃CN) upon addition of increasing amounts (0.5 - 4.8 equiv.) of Hg(ClO₄)₂ (λ_{exc} = 380 nm). Inset: Plot of F_0/F vs [Hg(II)].

Figure S11. Emission spectra of **Calix-OCP-2-CBZ** (5.0 x 10⁻⁶ M in CH₃CN) upon addition of increasing amounts (2.5 - 72.6 equiv.) of Pb(ClO₄)₂ (λ_{exc} = 380 nm). Inset: Plot of *F*₀/*F vs* [Pb(II)].

Figure 12. Optimised structure of Calix-OCP-Pb(II) complex (model). DFT calculations run at the B3LYP/6-31G(d) level of theory in vacuum, using the LANL2DZ pseudopotential for Pb [1]. Hydrogens omitted for clarity. Colour codes for elements: red = oxygen, grey = carbon, blue = lead.

Figure 13. Job plot for complex formation between polymer 4 and Cu(II) in CH₃CN (at constant 1.0 x 10^{-5} M total concentration) as obtained from changes in fluorescence (λ_{exc} = 380 nm).

Figure 14. (a) Emission spectra of polymer 4 (5.0 x 10^{-6} M in CH₃CN) upon addition of increasing amounts (5.0 - 72.6 equiv.) of Pb(ClO₄)₂ (λ_{exc} = 380 nm); (b) Binding isotherm for the fluorimetric titration of 4 with Pb(II) with fitted curve and confidence intervals.

Determination of stoichiometry of complexes from Job plots [2]

nCu(II)/mol	x Cu(II)	F	[Polymer 5]/M	(F ₀ -F)/F ₀ x [Polymer 5]/nM	c/c _{max}
0.00E+00	0.00	375.61	1.00E-05	0.00	0.00
2.50E-09	0.13	319.10	8.75E-06	1316.43	0.53
5.00E-09	0.25	265.05	7.50E-06	2207.71	0.89
7.50E-09	0.38	228.09	6.25E-06	2454.67	0.99
1.00E-08	0.50	188.58	5.00E-06	2489.68	1.00
1.25E-08	0.63	160.00	3.75E-06	2152.60	0.86
1.50E-08	0.75	112.83	2.50E-06	1749.05	0.70
1.75E-08	0.88	69.78	1.25E-06	1017.78	0.41
2.00E±08	1.00	18.17	0.00E+00	0.00	0.00
				$\Sigma(c/c_{\max}) =$	5.38

Table 1. Experimental values of $\Sigma c/c_{MAX}$ of the Job plot for polymer 5.

x - molar fraction; F_0 is the fluorescent intensity of polymer **5** in the absence of copper cation; F is the fluorescent intensity recorded in the presence of metal cation; c is the concentration.

nCu(II)/mol	x Cu(II)	F	[Polymer 4]/M	(F0-F)/F0 x [Polymer 4]/nM	c/c _{max}
0.00E+00	0.00	450.90	1.00E-05	0.00	0.00
2.50E-09	0.13	427.24	8.75E-06	450.09	0.23
5.00E-09	0.25	365.43	7.50E-06	1393.65	0.71
7.50E-09	0.38	318.27	6.25E-06	1802.19	0.92
1.00E-08	0.50	270.05	5.00E-06	1965.93	1.00
1.25E-08	0.63	210.15	3.75E-06	1962.81	1.00
1.50E-08	0.75	159.45	2.50E-06	1584.11	0.81
1.75E-08	0.88	75.25	1.25E-06	1020.88	0.52
2.00E-08	1.00	2.23	0.00E+00	0.00	0.00
				$\Sigma(c/c_{\max}) =$	5.18

Table 2. Experimental values of $\Sigma c/c_{MAX}$ of the Job plot for polymer 4.

x - molar fraction; F_0 is the fluorescent intensity of polymer **4** in the absence of copper cation; F is the fluorescent intensity recorded in the presence of metal cation; c is the concentration.

References

- 1. Spartan'14 Molecular Modeling Program, Wavefunction, Inc., Irvine, CA, 2014.
- 2. Olson, E.J.; Bühlmann, P. Getting More out of a Job Plot: Determination of Reactant to Product Stoichiometry in Cases of Displacement Reactions and n:n Complex Formation. *J. Org. Chem.* **2011**, *76*, 8406–8412.