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Abstract: A facile approach was successfully developed for synthesis of cellulose nanocrystals
(CNC)-supported magnetic CuFe2O4@Ag@ZIF-8 nanospheres which consist of a paramagnetic
CuFe2O4@Ag core and porous ZIF-8 shell. The CuFe2O4 nanoparticles (NPs) were first prepared in
the presence of CNC and dispersant. Ag NPs were then deposited on the CuFe2O4/CNC composites
via an in situ reduction directed by dopamine polymerization (PDA). The CuFe2O4/CNC@Ag@ZIF-8
nanocomposite was characterized by TEM, FTIR, XRD, N2 adsorption-desorption isotherms, VSM,
and XPS. Catalytic studies showed that the CuFe2O4/CNC@Ag@ZIF-8 catalyst had much higher
catalytic activity than CuFe2O4@Ag catalyst with the rate constant of 0.64 min−1. Because of the
integration of ZIF-8 with CuFe2O4/CNC@Ag that combines the advantaged of each component,
the nanocomposites were demonstrated to have an enhanced catalytic activity in heterogeneous
catalysis. Therefore, these results demonstrate a new method for the fabrication of CNC-supported
magnetic core-shell catalysts, which display great potential for application in biocatalysis and
environmental chemistry.

Keywords: CuFe2O4 nanoparticles; cellulose nanocrystals; Ag nanoparticles; ZIF-8 catalysis;
4-nitrophenol reduction

1. Introduction

Functional nanocomposites represent an important class of nanomaterials and have attracted
increased research interest due to their superior properties compared with individual components [1].
As an important member of nanocomposites family, the magnetic nanocatalyst is very attractive
because it provides a convenient way to remove and recycle the nanocatalyst from the reaction
system [2]. MFe2O4 ferrite, which is a well-known ternary spinel structure with M2+ ions on B sites and
Fe3+ ions located equally among A and B sites, has high thermal, mechanical, and chemical stability
and versatile catalytic, electric, and magnetic properties, and it exhibits promise for applications
in electronics, lithium ion batteries, sensors, catalysis, and diagnostic medicine [3,4]. CuFe2O4

possesses high electronic conductivity, high thermal stability, and high activity for the hydrogenation of
4-nitrophenol (4-NP), which is a toxic and inhibitory in nature, to yield industrially important anilines
like 4-aminophenol [5–7].
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More often, hybrid composites are fabricated through an in-situ method, where the templates
have a high affinity towards metal ions that allows for the synthesis of metallic nanoparticles [8].
Cellulose nanocrystals (CNC) are derived from abundant cellulosic resources such as plants and
microbial cellulose via sulfuric acid hydrolysis [9,10]. CNC have well-defined size and morphology,
high specific surface area, high aspect ratio, high crystalline order, chirality, high mechanical strength,
and controllable surface chemistry [11], which are appealing in a plethora of materials to catalytic
applications. As reported in our previous research [12], the CuFe2O4/CNC nanocomposites show good
dispersity and it has been suggested that the nanocomposites do catalyze 4-NP reduction.

To further improve the catalytic activity, various core/shell-structured magnetic nanocatalysts
have been applied in nanocatalysis [13–16]. The as-obtained CuFe2O4 based core-shell nanocomposites
showed excellent catalytic activity, magnetic separation, and magnetic carrying in nanocatalysis.
Recently, the Ag modified magnetic composites have gained increasing attention because of the high
catalytic activity of the Ag component, the good magnetic responsiveness of the magnetic core, and the
relatively facile fabrication process [17–19]. Various noble metals, including Au, Pd, and Pt have been
widely employed as catalysts for the reduction of 4-NP to 4-AP by NaBH4 in aqueous media [20–23].
Moreover, Ag is more suitable for large-scale application than other noble metals (Au, Pd, and Pt)
because of its low price [24]. Dopamine can self-polymerize under specific conditions to form a
polydopamine (PDA) complex which has the ability of adhering onto the surface of various materials
due to the strong stickiness [25–27] and the abundant catechol groups on the PDA complex can reduce
metal into metal directly [28,29]. In this regard, Ag catalysts supported on ferrite, Fe3O4, Fe3O4@PDA,
etc., have been used as magnetic catalysts for catalytic reduction. Recently, Wu et, al. fabricated
Fe3O4@PDA-Ag nanocomposites and used them as an efficient catalyst for methylene blue reduction
owing to Ag nanoparticles (NPs) [27]. CNC, crystalline cellulose nanofibers, and their derivatives,
were good supports for the preparation of supported Ag NPs [11,30]. Moreover, CNC have eminent
colloidal stability due to the interelectrostatic repulsions of the negatively charged sulfate ester groups
on CNC [31,32]. These sulfate groups have been proven to favor stabilization and nucleation of Ag
NPs in a recent research [11]. However, the introduction of CNC in magnetic catalyst is uncommon.
The catalyst with CNC combines the advantages of magnetic and catalytic.

The ZIF-8 framework (Zn(MeIM)2, MeIM = 2-methylimidazole) holds an intersecting 3D structure,
high thermal and chemical stabilities, and large pore size and surface area, which are desirable for
depositing metal NPs [33]; it can also rapid adsorb chemical pollutants from aqueous solutions. ZIF-8
has uniform but tunable cavities, tailorable chemistry, and is suited to stabilizing noble metal-NPs
without blocking their surfaces, making them very attractive in catalysis [7]. Furthermore, proper
design and construction of ZIF-8 nanocomposites by integrating functional materials (such as metal
NPs, metal oxides, and polymers) are expected to present synergistically boosted catalytic activity,
enhanced stability, and prolonged lifetimes [34,35] which would open new opportunity for fabricating
highly efficient hierarchical core-shell catalysts [36].

Herein, we report the synthesis of cellulose nanocrystals (CNC) supported magnetic
CuFe2O4@Ag@ZIF-8 nanocomposites. It consists of a paramagnetic CuFe2O4/CNC @Ag core and a
porous ZIF-8 shell via a facile method. CNC was used as a template and dispersant for the incorporate
with CuFe2O4 NPs and an absorbent via π–π stacking interactions of 4-NP. In addition, we used PDA
as an intermediate, which can not only protect the CuFe2O4 NPs from corrosion in harsh environments
and immobilize Ag NPs, but also induce the growth of ZIF-8 on the surface of the CuFe2O4/CNC@Ag.
The as-synthesized CuFe2O4/CNC@Ag@ZIF-8 nanocomposites showed outstanding catalytic activity
and reusability for the reduction of 4-NP. To our best knowledge, this is the first report on the integration
of ZIF-8 with CuFe2O4/CNC@Ag into one nanostructure to significantly improve not only the intrinsic
catalytic performances of Ag active species, but also the recyclability of catalysts.
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2. Results and Discussion

2.1. Characterization of CuFe2O4/CNC@Ag and CuFe2O4/CNC@Ag@ZIF-8 Nanocomposites

The general schemes for the synthesis of the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites are
illustrated in Scheme 1, which mainly involved three steps: (1) Firstly, one-pot solvothermal synthesis
of cellulose nanocrystals supports CuFe2O4 NPs, and the network of cellulose nanocrystals can
significantly enhance the dispersion stability. (2) Secondly, as a result of its unique self-adhesive and
reductive nature, the PDA layer shows sufficient reductive capacity to reduce Ag+ ions without the
need for additional reducing agent [37]. By then, Ag NPs with sizes ranging from 20 to 30 nm in
sphere shapes can be uniformly formed along the CuFe2O4 and CNC networks surface with the aid of
adhesive and reductive PDA layer under alkaline conditions. (3) Thirdly, using Zn(NO3)2·2H2O and
2-methylimidazole as precursors, the ZIF-8 shell with controllable thickness was coated on the surface
of CuFe2O4/CNC@Ag. The composite is prepared by layer-by-layer.
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Transmission electron microscopy (TEM) measurements revealed that the CuFe2O4 NPs had good
monodispersity in the CNC network with a mean size of about 250 nm (Figure 1A). The pristine CNC)
had a length of ca. 200–250 nm and a width of 15–20 nm, which is typical for CNC [38]. CuFe2O4

NPs shown in Figure 1A were well dispersed in the presence of CNC substrate, which supported
the conclusion that CNC can act as a good dispersant/support of nanoparticles, preventing the NPs’
aggregation due to the excellent properties of CNC [38]. Figure 1B showed that uniform and dense Ag
NPs, with an average size of 25 nm successfully distributed on the PDA surface, and no free Ag NPs
were observed. The CNC networks became dark after coating PDA. The thin PDA shell layers formed
around the CuFe2O4/CNC cores showed an average size of about 20 nm (Figure 1C), displaying a
distant core-shell structure. Figure 1E confirmed that the boundary between the ZIF-8 and PDA was
obscure, which was attributed to the slight mass difference of the two components. Compared with
CuFe2O4/CNC@Ag, CuFe2O4/CNC@Ag@ZIF-8 nanocomposites had a distinct core-shell structure;
the thickness of ZIF-8 shell surrounding the CuFe2O4/CNC@Ag was approximately 45 nm, and there
was a controllable particle diameter ranging from 350 to 400 nm. Figure 1F displays a lattice resolved
HRTEM image of CuFe2O4 nanocrystal on CNC. The distinct lattice fringes with interplanar spacings
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of 0.25 and 0.235 nm match well the (311) crystal plane of the CuFe2O4 cubic spinel structure [39] and
the (111) plane of Ag, respectively [40].
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Figure 1. TEM images of the (A) CuFe2O4/CNC nanocomposites; (B,C) CuFe2O4/CNC@Ag
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nanoparticles (NPs) and Ag NPs.

HAADF-STEM also confirmed the typical nanostructure of the nanocomposites (Figure 2A).
The EDX mapping of the Cu and Fe elements revealed that CuFe2O4 was mainly located within the
nanocomposites (Figure 2B). The diameters of the N element map were larger than that of the Cu
and Fe, which further supported the fact that the PDA were successfully coated. The Ag element
was distributed around the CuFe2O4 because the density in the center was very low. In addition,
the corresponding EDX spectra supported the conclusion that Ag NPs were embedded in the CNC
substrate [38], forming the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites. The diameters of the Zn
element map were larger than that of the Ag, which further supported the fact that the Ag NPs were
protected by ZIF-8. The Ag element was distributed on C element, which confirmed that Ag NPs were
located on PDA shell (Figure 2C–I). On the basis of the TEM and EDX mapping, it could be concluded
that the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites with core-shell structure had been successfully
achieved in Figure 2J.
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Figure 2. Representative high-angle annular dark field scanning TEM (HAADF-STEM) images and
energy-dispersive X-ray (EDX) elemental mapping of Cu, Fe, Zn, Ag, C, O, and N (A–I) and the EDX
spectrum (J) of the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites.

Figure 3A presents the FTIR spectra of (a) CuFe2O4/CNC, (b) CuFe2O4/CNC@PDA,
(c) CuFe2O4/CNC@Ag, and (d) CuFe2O4/CNC@Ag@ZIF-8. In line (a), the adsorption peaks at
430 cm−1, 580 cm−1, and 3425 cm−1 correspond to the Fe–O, Cu–O, and O–H stretching vibrations,
respectively [41,42]. The band at 1645 cm−1 was due to the O–H bending vibration in CNC [43].
The absorbance bands at 2893 cm−1, 1400 cm−1 and 1060 cm−1 were assigned to the C–H stretching
vibration, the C–H deformation vibration and the C–O–C stretching of pyranose, respectively [15,44],
which indicated that the CuFe2O4 NPs were successfully immobilized on the CNC. In line (b), besides
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the characteristic adsorption peaks of line (a), the adsorption peaks at 1513 cm−1 are related to the C=C
stretching vibrations of aromatic ring [29]; the broad peak at 3390 cm−1 is attributed to the O–H and
N–H stretching vibrations [42]; the peak appearing at 1294 cm−1 can be assigned to the C–OH stretching
vibration of phenol compounds [43]; all the peaks above demonstrate that the CuFe2O4/CNC@PDA
nanocomposites were successfully prepared. After immobilizing Ag on the CuFe2O4/CNC@PDA (line
c), the intensity of the peak at 1294 cm−1 become weaker owing to the interaction between Ag NPs and
PDA. The band at 421 cm−1 (shown in line (d)) was attributed to the Zn–N stretch mode [44]. The bands
in the spectral region of 500–1350 cm−1 and 1350–1500 cm−1 were assigned as the plane bending and
stretching of imidazole ring, respectively [44]. The bands of 2500–3500 cm−1 could be ascribed to
stretching vibrations of –CH3, –NH– and –OH (Zn–OH) within the internal structure of ZIF-8 [45].

Molecules 2019, 24, x FOR PEER REVIEW 6 of 14 

 

concluded that the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites with core-shell structure had been 
successfully achieved in Figure 2J. 

 
Figure 3. (A) Fourier transform infrared (FTIR) spectra of (a) CuFe2O4/CNC, (b) CuFe2O4/CNC@PDA, 
(c) CuFe2O4/CNC@Ag, and (d) CuFe2O4/CNC@Ag@ZIF-8 nanocomposites; (B) XRD diffraction 
patterns of CuFe2O4/CNC, CuFe2O4/CNC@Ag, CuFe2O4/CNC@Ag@ZIF-8 nanocomposites, and 
simulated XRD pattern for ZIF-8. 

Figure 3A presents the FTIR spectra of (a) CuFe2O4/CNC, (b) CuFe2O4/CNC@PDA, (c) 
CuFe2O4/CNC@Ag, and (d) CuFe2O4/CNC@Ag@ZIF-8. In line (a), the adsorption peaks at 430 cm−1, 
580 cm−1, and 3425 cm−1 correspond to the Fe–O, Cu–O, and O–H stretching vibrations, respectively 
[41,42]. The band at 1645 cm−1 was due to the O–H bending vibration in CNC [43]. The absorbance 
bands at 2893 cm−1, 1400 cm−1 and 1060 cm−1 were assigned to the C–H stretching vibration, the C–H 
deformation vibration and the C–O–C stretching of pyranose, respectively [15,44], which indicated 
that the CuFe2O4 NPs were successfully immobilized on the CNC. In line (b), besides the characteristic 
adsorption peaks of line (a), the adsorption peaks at 1513 cm−1 are related to the C=C stretching 
vibrations of aromatic ring [29]; the broad peak at 3390 cm−1 is attributed to the O–H and N–H 
stretching vibrations [42]; the peak appearing at 1294 cm−1 can be assigned to the C–OH stretching 
vibration of phenol compounds [43]; all the peaks above demonstrate that the CuFe2O4/CNC@PDA 
nanocomposites were successfully prepared. After immobilizing Ag on the CuFe2O4/CNC@PDA (line 
c), the intensity of the peak at 1294 cm−1 become weaker owing to the interaction between Ag NPs 
and PDA. The band at 421 cm−1 (shown in line (d)) was attributed to the Zn–N stretch mode [44]. The 
bands in the spectral region of 500–1350 cm−1 and 1350–1500 cm−1 were assigned as the plane bending 
and stretching of imidazole ring, respectively [44]. The bands of 2500–3500 cm−1 could be ascribed to 
stretching vibrations of –CH3, –NH– and –OH (Zn–OH) within the internal structure of ZIF-8 [45]. 

To probe the presence of Ag NPs and ZIF-8 attached onto the CuFe2O4/CNC, XRD patterns were 
carried out during the experiments (Figure 3B). It was observed that for CuFe2O4/CNC, two peaks at 
2θ = 11.27 and 21.94° corresponded to the typical (101) and (020) lattice planes of cellulose [37], and 
the diffraction peaks located at 18.5°, 30.2°, 35.5°, 37.0°, 43.4°, 57.3°, and 62.6° corresponded to the 
(111), (220), (311), (222), (400), (422), (511), and (440) lattice planes, which matched well with those 
from the JCPDS card number 25-0283 for CuFe2O4 [46]. But for CuFe2O4/CNC@Ag and 
CuFe2O4/CNC@Ag@ZIF-8 nanocomposites, the XRD diffraction peaks derived from cellulose showed 
a slight decrease, and meanwhile, four diffraction peaks at 2θ = 39.86°, 44.23°, 64.47°, and 77.33° 
appeared, assigned respectively, to (111), (200), (220), and (311) lattice planes, and supported the face-
centered cubic (fcc) structure of Ag NPs [47,48], an indication of successful formation of Ag NPs via 
efficient in situ reduction by PDA layer. The XRD pattern of CuFe2O4/CNC@Ag@ZIF-8 
nanocomposites indicated that the products were well crystallized and had high crystallinity even 
after coating ZIF-8 shell. Moreover, the diffraction peaks at 2θ = 10.4°, 12.8°, 14.7°, 16.5°, and 18.1° 
correspond to the (002), (112), (022), (013), and (222) lattice planes of ZIF-8 in the 

Figure 3. (A) Fourier transform infrared (FTIR) spectra of (a) CuFe2O4/CNC, (b) CuFe2O4/CNC@PDA,
(c) CuFe2O4/CNC@Ag, and (d) CuFe2O4/CNC@Ag@ZIF-8 nanocomposites; (B) XRD diffraction patterns
of CuFe2O4/CNC, CuFe2O4/CNC@Ag, CuFe2O4/CNC@Ag@ZIF-8 nanocomposites, and simulated
XRD pattern for ZIF-8.

To probe the presence of Ag NPs and ZIF-8 attached onto the CuFe2O4/CNC, XRD patterns were
carried out during the experiments (Figure 3B). It was observed that for CuFe2O4/CNC, two peaks
at 2θ = 11.27 and 21.94◦ corresponded to the typical (101) and (020) lattice planes of cellulose [37],
and the diffraction peaks located at 18.5◦, 30.2◦, 35.5◦, 37.0◦, 43.4◦, 57.3◦, and 62.6◦ corresponded
to the (111), (220), (311), (222), (400), (422), (511), and (440) lattice planes, which matched well
with those from the JCPDS card number 25-0283 for CuFe2O4 [46]. But for CuFe2O4/CNC@Ag and
CuFe2O4/CNC@Ag@ZIF-8 nanocomposites, the XRD diffraction peaks derived from cellulose showed a
slight decrease, and meanwhile, four diffraction peaks at 2θ= 39.86◦, 44.23◦, 64.47◦, and 77.33◦ appeared,
assigned respectively, to (111), (200), (220), and (311) lattice planes, and supported the face-centered
cubic (fcc) structure of Ag NPs [47,48], an indication of successful formation of Ag NPs via efficient
in situ reduction by PDA layer. The XRD pattern of CuFe2O4/CNC@Ag@ZIF-8 nanocomposites
indicated that the products were well crystallized and had high crystallinity even after coating
ZIF-8 shell. Moreover, the diffraction peaks at 2θ = 10.4◦, 12.8◦, 14.7◦, 16.5◦, and 18.1◦ correspond
to the (002), (112), (022), (013), and (222) lattice planes of ZIF-8 in the CuFe2O4/CNC@Ag@ZIF-8
nanocomposites, respectively, suggesting that the ZIF-8 materials synthesized using current protocol
are highly crystalline.

The porosity of evacuated composites was investigated by nitrogen-sorption measurements.
As presented in Figure 4A, the CuFe2O4/CNC@Ag and CuFe2O4/CNC@Ag@ZIF-8 nanocomposites
exhibited a typical type V isotherm, validating a mesoporous characteristic [7]. The pore-size
distribution (Figure B) revealed that the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites contained an
average pore size of 4.0 nm which is lower than that of CuFe2O4/CNC@Ag (8.9 nm) in favor of the
prevention of Ag active sites leaching. In addition, the specific surface area and the pore volume of
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the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites were calculated to be 160.17 m2/g, which is four times
higher than that of CuFe2O4/CNC@Ag (38.68 m2/g). The high external surface area and mesoporous
structure endowed the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites with high adsorption capacity and
fast diffusion of reactants [17].
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The saturation magnetization (Ms) is a physical quantity that can reflect the magnetism
of a substance. Both CuFe2O4/CNC@Ag and CuFe2O4/CNC@Ag@ZIF-8 nanocomposites were
paramagnetic with little hysteresis and remanence, processing Ms values of 31.2 and 30.1 emu/g,
respectively. Due to the coating of antimagnetic ZIF-8 shell, the saturation magnetization (Ms)
decreased a little. As presented in Figure 4B, the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites were well
dispersed in water and presented a black suspension. However, rapid aggregation (≈1 min) of the
CuFe2O4/CNC@Ag@ZIF-8 nanocomposites from the homogeneous suspension was obtained with the
help of external magnet, and thus the dispersed solution became clear.

2.2. Catalytic Reduction of 4-Nitrophenol

Ag NPs have been generally used as excellent catalysts with high catalytic activity and selectivity
for catalytic reduction or degradation of organic pollution in aqueous solution [38,39,46,49]. Many
reports are available on the application of metal and metal oxides nanocatalysts for the reduction of
nitrophenols in the presence of NaBH4 [50]. Herein, the catalytic reduction of 4-NP by NaBH4 was used
as a model reaction to investigate the catalytic performances of CuFe2O4/CNC, CuFe2O4/CNC@Ag,
and CuFe2O4/CNC@Ag@ZIF-8 nanocomposites. Although the aqueous solution of 4-nitrophenol
undergoes a rapid color change (with a UV–Vis absorption peak shift from 319 to 400 nm) after
adding NaBH4 due to the formation of 4-nitrophenolate ions, the reduction reaction does not proceed
substantially in the absence of suitable catalysts (such as Au, Ag, Pd, and Pt NPs).
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Figure 5A suggested the catalytic reaction of CuFe2O4/CNC@Ag nanocomposites could be
completed within 11 min. As shown in Figure 5B, the adsorption peak at 400 nm was observed to decrease
in intensity rapidly and disappear eventually after 6 min, suggesting that the CuFe2O4/CNC@Ag@ZIF-8
nanocomposites do catalyze 4-NP reduction. Since the ZIF-8 itself, in the control experiment, exhibited
no propensity to catalyze the reduction reaction, the above result indicates that the 4-nitrophenol
molecules can diffuse quickly through the channels of ZIF-8 matrix and react on the surfaces of the
active CuFe2O4@Ag NPs. In addition, the appearance of the new peak at ≈300 nm in the UV–Vis
spectra suggested that the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites catalyze the reduction of 4-NP
to give 4-aminophenol as the sole product.
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4-NP to 4-AP by (A) CuFe2O4/CNC@Ag; (B) CuFe2O4/CNC@Ag@ZIF-8 nanocomposites; (C) plot of ln
[4-NP] versus reaction time for the reduction of 4-NP using 3 mg CuFe2O4/CNC, CuFe2O4/CNC@Ag,
and CuFe2O4/CNC@Ag@ZIF-8 nanocomposites; (D) conversion of 4-NP during six cycles of reaction
by the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites.

To elucidate the reaction mechanism, the concentration of NaBH4 could be considered as constant
throughout the reaction since it was in great excess (0.1 M). Therefore, pseudo-first-order kinetics
with regard to the catalytic reduction of 4-NP, described as ln(Ct/C0) = −kt, can be applied, where
Ct is the concentration of 4-NP at time t, C0 is the initial concentration of 4-NP, and k is the rate
constant {51}. Figure 5C shows the linear relationship of ln(Ct/C0) as a function of reaction time t for
the 4-NP reduction catalyzed by three as-synthesized catalysts. The values of kinetic rate constant k
can be calculated from the rate equation ln(Ct/C0) = −kt. Impressively, the CuFe2O4/CNC@Ag@ZIF-8
nanocomposites exhibit the highest activity with a rate constant estimated to be 0.64 min−1,.5 and eight
times higher than that of CuFe2O4/CNC@Ag and that of CuFe2O4/CNC, respectively, suggesting the
higher catalytic efficiencies for Ag catalysts confined in ZIF-8 shell. This prominent catalytic activity
can due to a porous ZIF-8 shell for stabilization of the encapsulated Ag NPs and rapid adsorption
of chemical pollutants from aqueous solution. The catalytic active sites are both CuFe2O4 and Ag
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NPs in the core-shell structures, which modified the electronic structure, and then enhanced the
catalytic activity.

The reusability of CuFe2O4/CNC@Ag@ZIF-8 nanocomposites as the catalyst for the reduction of
4-NP was further confirmed by the observation of the similar conversion for the same reaction time
(6 min) for six consecutive cycles (the slightly decreased conversions in the later catalysis cycles were
presumably caused by the loss of catalyst during the washing process between cycles (Figure 5D).

2.3. Reaction Mechanism of CuFe2O4/CNC@Ag@ZIF-8 Nanocomposites

As illustrated in Scheme 2, the mechanism of catalytic reduction of 4-NP by the
CuFe2O4/CNC@Ag@ZIF-8 nanocomposites involved the traditional theory. In this work, the 4-NP can
be adsorbed onto the mesoporous ZIF-8 shell via π–π stacking interactions because 4-NP is π-rich in
nature [51]. Such chemical adsorption provides a high concentration of 4-NP near to the interface of
the CuFe2O4@Ag and ZIF-8, leading to highly efficient contact between them. Simultaneously, BH−4
was also adhered to the CuFe2O4/CNC@Ag surface and transferred electrons and hydride ions to the
Ag NPs’ surface. In addition, Zhou et al. claimed that when metal oxide closely contacted with metal,
Fermi level alignment would lead to charge redistribution: electrons would escape from the metal and
transfer into the semiconductor [52]. Liang et, al. used Ag/Fe3O4 NPs as the catalyst for the reduction
of 4-NP [53]. They reported that the electrons tended to leave Ag to Fe3O4 and thus form a depleted
region close to the Ag/Fe3O4 interface. In our work, CuFe2O4 was known as a p-type semiconductor
with low band gap, so part of the electrons and hydride ion that injected from BH−4 to Ag NPs could
transfer to the neighboring CuFe2O4 surface (Scheme 2). The existence of the surplus electrons on
CuFe2O4 provided large surface area and increased opportunities for reduction reaction, facilitating
the capture of electrons by 4-NP molecules. Goyal et al. suggested that electron transfer between
Cu+-Cu2+ and Fe2+-Fe3+ in the octahedral sites endowed CuFe2O4 with enhanced catalytic activity [54]
(Scheme 2). Herein, when the electrons and hydride ions were transfered to the CuFe2O4 surface, both
Cu2+and Fe3+ ions present in the octahedral sites were exposed on the surfaces of particles. Due to
that, there were transfers of electrons between Cu+-Cu2+ and Fe2+-Fe3+ ion pairs, which enhanced
catalytic activity. Then the hydrogen atom transfers from BH−4 to the 4-NP, resulting in the formation
of 4-AP. Finally, the products of 4-AP are desorbed from the surface of the catalysts to the solution
through the channels of the ZIF-8 shell.
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in the CuFe2O4/CNC@Ag@ZIF-8 nanocomposites.

It should be noted that the bleaching rate is considerably higher than the rates reported previously
under the similar experimental conditions with Ag-based, CuFe2O4-based, and MOF-based catalysts.
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The k values of different catalytic systems for the reduction of 4-NP were comparable to the values
referenced in Table 1, and the results showed that the prepared catalyst possessed higher activity and
lower activation energy.

Table 1. Comparison of k of different catalytic systems for the reduction of 4-NP (298K).

Entry Nanocatalysts k (min−1) Reference

1 Ag/C 0.33 [55]
2 Fe3O4@SiO2@Ag 0.52 [56]
3 Au/TAPB-DMTP-COF 0.46 [57]
4 Au@TpPa-1 0.25 [53]
5 Ag NPs@CMG 0.204 [55]
6 CuFe2O4@Ag@ZIF-8 0.64 This work

3. Materials and Methods

3.1. Chemicals

All the reagents used were of analytical purity and were used without further purification.
Polyethylene glycol-6000 (PEG-6000), polyvinylpyrrolidone (PVP-1300000), dopamine hydrochloride
(DA·HCl), and 2-methylimidazole (C4H6N2) were purchased from Shanghai Aladdin Industrial Co.,
Ltd. (Shanghai, China). Cupric chloride anhydrous (CuCl2) and other reagents, such as ferric chloride
hexahydrate (FeCl3·6H2O), ammonium acetate (NH4OAc), ethylene glycol (EG), silver nitrate (AgNO3),
4-nitrophenol(4-NP), sodium borohydride (NaBH4), and zinc nitrate (Zn(NO3)2·6H2O) were purchased
from Sigma-Aldrich (Shanghai, China). Cellulose nanocrystals (CNCs) were purchased from Tianjin
Haojia Cellulose Co., Ltd. (Tianjin, China).

3.2. Measurements

Sample morphologies with energy-dispersive X-ray spectroscopy (EDX) were characterized by
transmission electron microscopy (TEM) on a TECNAI G2 TF20 (U.S.). FT-IR spectra of all samples
in the wavenumber range 4000–400 cm−1 were obtained in KBr pressed pellets on a TENSOR model
27 FTIR spectrometer (Germany, Bruker). The powder X-ray diffraction spectra (XRD) were measured
by X-ray diffraction (Germany, Bruker, D8Advance) with Cu Kα radiation, λ = 1.542 Å. The specific
surface area was calculated by the Bruner–Emmett–Teller (BET) method. The pore size distributions
were derived from the adsorption branches of the isotherms based on the Barrett–Joyner–Hollande
(BJH) model. Magnetic hysteresis loops at room temperature were obtained using a vibrating
sample magnetometer VSM 7304 (Lakeshore, Columbus, OH, USA). The chemical composition of
nanocomposites was characterized by XPS (U.S. Thermos Scientific ESCALAB250). The UV–Vis spectra
(China, Shanghai, Shimadzu UV-2501 PC spectrometer) were performed to study the catalytic reduction
activity. The samples were placed in a 1 × 1 × 3 cm quartz cuvettes, and the spectra were recorded at
room temperature.

3.3. Preparation of CuFe2O4/CNC Nanocomposites

In a typical preparation, the procedure was reported as per previous research [12]. CNC (0.2 g)
was dispersed in 40 mL of glycol with vigorous stirring in an ultrasonic generator for 0.5 h. On the
other hand, 1.6 mmol CuCl2·2H2O and 3.2 mmol FeCl3·6H2O were dissolved in 20 mL of glycol to
form a clear solution. After complete dissolution, CNC solution was poured into the metal precursor
solution and followed by the addition of 0.2 g PVP while stirring for 0.5 h. Addition of NH4OAc
(90 mmol) in a stepwise manner was done to the mixture until homogeneous light green dispersion.
Then, the mixture was transferred into a Teflon-lined stainless steel autoclave (80 mL capacity) and
heated at 200 ◦C for 11 h. After the reaction, the autoclave was naturally cooled to room temperature,
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and the catalysts were collected and washed with redistilled water and ethanol three times, respectively.
Finally, the catalysts were dried in a vacuum for 4 h at 60 ◦C.

3.4. In Situ Reduction of Ag+ Ions

To coat CuFe2O4/CNC nanocomposites with the PDA shell, 50 mg CuFe2O4/CNC nanocomposites
and 50 mg of dopamine hydrochloride were dissolved in 25 mL Tris buffer solution (10 mM, pH = 8.5).
After shaking for 3 h at room temperature, the CuFe2O4/CNC@PDA were separated and washed with
ultrapure water and ethanol several times. For the preparation of Ag NPs on PDA surfaces, Tollen’s
reagent (silver ammonia solution) was used as the Ag precursor solution. Silver ammonia solution was
prepared by adding ammonia aqueous solution (2 wt %) into 10 mg·mL−1 AgNO3 solution until brown
precipitation was just dissolved. Portions 50 mg in size of the CuFe2O4/CNC@PDA nanocomposites
were added to 25 mL of silver ammonia solution, and the mixture was shaken in a rotary shaker for 6 h
at room temperature. The products were collected, washed with ultrapure water and ethanol several
times, and dried under vacuum. Then, CuFe2O4/CNC@Ag nanocomposites were obtained.

3.5. Preparation of CuFe2O4/CNC@Ag@ZIF-8 Nanocomposites

Briefly, 50 mg CuFe2O4/CNC@Ag nanocomposites were added into Zn(NO3)2·6H2O methanol
solution (10 mL, 50 mM) and stirred for 10 min at 50 ◦C. Subsequently, the nanocomposites were
dispersed in methanol solution (10 mL, 500 mM) under stirring for 30 min at 50 ◦C, collected by a
magnet, cleaned with ultrapure water and ethanol, and dried under vacuum at 60 ◦C overnight.

3.6. General Procedure for the Reduction of 4-NP

The reduction of 4-NP by NaBH4 was chosen as a model reaction for investigating the
catalytic performance of the CuFe2O4/CNC, CuFe2O4/CNC@Ag, and CuFe2O4/CNC@Ag@ZIF-8
nanocomposites. Typically, 2.35 mL ultrapure water, 200 µL 5mM 4-NP solution, and 450 µL 200 mM
of fresh prepared NaBH4 aqueous solution were added into standard quartz cuvettes respectively,
and the solutions turned bright yellow rapidly. Subsequently, 3 mg of each catalysts was added to start
the reaction, and the intensity of the absorption peak at 400 nm was monitored by UV–Vis spectroscopy
as a function of time.

4. Conclusions

In summary, we demonstrated an effective strategy for the fabrication of novel cellulose
nanocrystals (CNC)-supported magnetic CuFe2O4@Ag@ZIF-8 catalysts which consist of a paramagnetic
CuFe2O4@Ag core and a porous ZIF-8 shell. The use of CNC include being a template and
dispersant for the incorporation with CuFe2O4 NPs and a good absorbent via π–π stacking
interactions of 4-NP. The framework matrix of the resulting composites retains its high surface
areas, uniform mesoporous structure, porous crystalline structure, and good magnetic response.
The core-shell magnetic catalysts were found to exhibit excellent catalytic performance for 4-nitrophenol
reduction with good reusability. Compared to CuFe2O4/CNC@Ag catalysts, the core-shell structure
CuFe2O4/CNC@Ag@ZIF-8 nanocomposites are ideal recyclable catalysts for liquid-phase reductions due
to a porous ZIF-8 shell for stabilization of the encapsulated Ag NPs and rapid adsorption of chemical
pollutants from aqueous solution. More importantly, with the merits of easy separation and porous shell
structure, this simple and versatile method might provide a multitude of noble, ZIF-8, and magnetic
catalysts for broad applications, such as environmental protection, chemical biosensors, and so on.
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