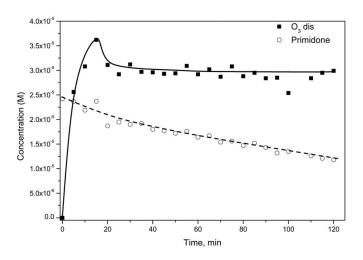
## **Supplementary information**

## Ozone based AOPs for primidone removal in water using simulated solar radiation

and TiO<sub>2</sub> or WO<sub>3</sub> as photocatalyst

Manuel Figueredo, Eva M. Rodríguez, Manuel Checa and


Fernando J. Beltrán\*

Departamento de Ingeniería Química y Química Física. Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad. Universidad de Extremadura. 06006 Badajoz. Spain.

\*corresponding author email: manuelfigueredo@unex.es

## Absolute method for the determination of ozone-Primidone reaction rate constant

<u>Experimental procedure</u>: A mixture of primidone ( $C_{PRM,0}$  2.3x10<sup>-5</sup> M) and tert-butyl alcohol ( $C_{TBA,0}$  2.5x10<sup>-3</sup> M) in ultrapure water was ozonized ( $C_{O3g,inlet} = 10 \text{ mg } \text{L}^{-1}$ ; Q<sub>02-03</sub> = 20 L h<sup>-1</sup>) at pH 2 and 20 °C, and the evolution with time of PRM and dissolved ozone concentrations analyzed. At these conditions, degradation of PRM takes place only through its direct reaction with molecular ozone.



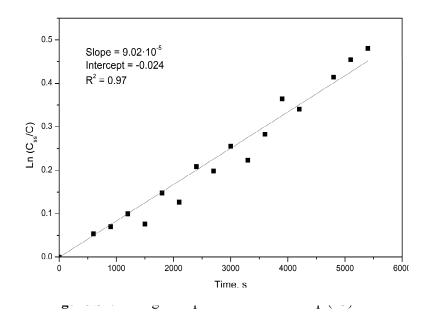
**Figure S1**: Evolution of PRM and dissolved O<sub>3</sub> concentrations with time during the ozonation of PRM in presence of TBA (two replicates). Experimental conditions:  $C_{PRM,0} = 2x10^{-5}$  M;  $C_{TBA,0} = 2.3x10^{-3}$  M; pH = 2; T = 20 °C;  $C_{O3g,inlet} = 10$  mg L<sup>-1</sup>;  $Q_{O2-O3} = L$  h<sup>-1</sup>.

<u>Calculus</u>: In the semibatch perfectly mixed reactor used in this work, at the conditions tested and assuming a second-order kinetics for the reaction between ozone and PRM, PRM mass balance can be expressed as follows:

$$-\frac{dC_{PRM}}{dt} = k_D C_{PRM} C_{O3}$$
(S1)

As observed in Figure S1 dissolved ozone concentration in solution ( $C_{O3}$ ) reached a stationary state ( $C_{O3ss}$ ) after 25 minutes ( $t_{ss}$ ). Hence, for higher reaction times a pseudo first order kinetic model can be assumed:

$$-\frac{dC_{PRM}}{dt} = k'_{D}C_{PRM}$$
(S2)


where  $k'_D = k_D C_{O3ss}$ , being  $C_{O3ss} = 2.9 \times 10^{-5}$  M (see Fig S1).

The integration of equation (S2) leads to equation (S3):

$$\ln \frac{C_{PRMss}}{C_{PRM}} = k'_{D} \left( t - t_{ss} \right)$$
(S3)

where  $C_{PRMss}$  is the concentration of PRM at  $t_{ss}$ .

Thus,  $k'_D$  value can be obtained by fitting experimental data to eq. (S3) as shown in Figure S2. From least squares analysis of the straight line shown in this figure  $k'_D$  resulted to be  $9.02 \cdot 10^{-5}$  s<sup>-1</sup> (R<sup>2</sup>=0.97). Therefore, the second-order rate constant of the reaction between PRM and O<sub>3</sub> is  $k_D = 3.08$  M<sup>-1</sup>s<sup>-1</sup>.




Once the rate constant was obtained the slow kinetic regime of ozone absorption was verified determining the Hatta number by equation S4 [1]). In eq. S4  $D_{O3}$  is the diffusivity of ozone in water (1.76x10<sup>-9</sup> m<sup>2</sup> s<sup>-1</sup>; [2]) and k<sub>L</sub> the individual liquid-side mass transfer coefficient calculated as  $3.74x10^{-4}$  m s<sup>-1</sup> from Calderbank's equation [3]. For slow kinetic

regime Ha is < 0.3 [1].

$$Ha = \frac{\sqrt{k_D C_{PRM} D_{O3}}}{k_L} \tag{S4}$$

According to S4 from the estimated  $k_D$  and the experimental C<sub>PRM</sub> data, Ha resulted to be < 0.3 which validates the value of  $k_D$  obtained.

<u>Concentration of hydrogen peroxide during photocatalytic oxidation processes</u> <u>studied in this work</u>



**Figure S3.** Changes of hydrogen peroxide concentration with time during PRM oxidation with UV-Vis/TiO<sub>2</sub> and UV-Vis/TiO<sub>2</sub>/O<sub>3</sub> systems. Experimental conditions: Ultrapure water; [PRM]<sub>0</sub> = 5 mg L<sup>-1</sup>; pH<sub>0</sub> ~ 6 (natural pH); [TiO2] = 0.25 g L<sup>-1</sup>;  $Q_{m,O3}$  = 3.3 mg min<sup>-1</sup>; T = 20-30 °C; IUV-Vis = 8.2 x 10<sup>-5</sup> Einstein L<sup>-1</sup> s<sup>-1</sup>.

## References

- [1] J.C. Charpentier, Mass-transfer rates in gas-liquid absorbers and reactors, Adv. Chem. Eng. 11 (1981) 1–133. doi:10.1016/S0065-2377(08)60025-3.
- P.N. Johnson, R.A. Davis, Diffusivity of ozone in water, J. Chem. Eng. Data. 41 (1996) 1485–1487. doi:10.1021/je9602125.
- [3] G.F. Froment, K.B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, 3rd edition, Jonh Wiley & Sons, Inc., USA, 2011.