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Abstract: In this paper, the microwave (MW)-assisted catalyst-free and mostly solvent-free
Kabachnik–Fields reaction of amino alcohols, paraformaldehyde, and various >P(O)H reagents (dialkyl
phosphites, ethyl phenyl-H-phosphinate, and secondary phosphine oxides) is reported. The synthesis
of N-2-hydroxyethyl-α-aminophosphonate derivatives was optimized in respect of the temperature,
the reaction time, and the molar ratio of the starting materials. A few by-products were also
identified. N,N-Bis(phosphinoylmethyl)amines containing a hydroxyethyl group were also prepared
by the double Kabachnik–Fields reaction of ethanolamine with an excess of paraformaldehyde and
secondary phosphine oxides. The crystal structure of a 2-hydroxyethyl-α-aminophosphine oxide and a
bis(phosphinoylmethyl)ethanolamine was studied by X-ray analysis.

Keywords: α-aminophosphonate derivatives; Kabachnik–Fields reaction; amino alcohols; microwave;
X-ray diffraction

1. Introduction

α-Aminophosphonate derivatives are among the most important organophosphorus
compounds [1]. Due to the P–C–N moiety in the α-aminophosphonic skeleton, these compounds can
be considered as the P-analogues of natural α-amino acids, which may mean a potential biological
activity [2].

α-Aminophosphonates and α-aminophosphine oxides containing a reactive group may
show special properties as compared to regular derivatives. In case of the closely related
α-aminophosphines [3], a -COOH function on the molecule made possible further transformations
and ensured a linkage for a polymer support [4,5].

Several reactive end groups can be easily built on the α-aminophosphonate skeleton. A possible
reactive function is the hydroxyl group, which can be alkylated, acylated, or even phosphorylated [6].
Another option is the carboxylic function, which may also mean a possibility for further
functionalizations [7]. α-Aminophosphonates containing a carboxylic group may be synthesized
starting from amino acids [8,9].

The conventional preparations of α-aminophosphonates and related derivatives are the
Kabachnik–Fields (phospha-Mannich) reaction, in which an amine, an oxo-compound, and a >P(O)H
derivative react with each other [10,11], and the aza-Pudovik reaction, in which a >P(O)H reagent is
added on the C=N double bond of an imine [12].
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Over the seven decades from its discovery, several exotic catalysts and/or solvents have been
tried out in the Kabachnik–Fields reaction [13,14]. However, in most cases, catalyst-free and often
solvent-free approaches could be performed applying the microwave (MW) technique [9,13,15–18].

The Kabachnik–Fields condensation of amino alcohols is a less studied area. The condensation of
ethanolamine was investigated with oxo compounds (e.g., paraformaldehyde [19], benzaldehyde [20],
or acetone [19]) and dialkyl phosphites. A MW-assisted, Al2O3-catalyzed variation was also reported;
however, the reactions were carried out in a kitchen MW oven [21]. Using a non-professional
MW device, the precise measurement of the reaction parameters is practically impossible [22].
The phospha-Mannich reaction of propanolamine was performed in toluene [23]. In two instances,
N-alkylamino alcohols served as the amine component, and the reactions were carried out in a solvent
for a long reaction time [24,25]. A few special amino alcohols, such as 2-amino-2-methylpropanole [26]
or (R)-2-phenylglycinol [27] were also tried out in the condensation.

The double Kabachnik–Fields reaction of an amino alcohol was mentioned in only one example [28].
The reaction was carried out for 12 h in THF.

The utilization of secondary phosphine oxides as the P-component was reported in one instance [29].
In this example, the conventional heating and the MW technique were compared, and the latter was
found to be more efficient. However, it should be noted that the MW-assisted reactions were performed
in a kitchen MW oven.

In this paper, we introduce the synthesis of 2-hydroxyethyl-α-aminophosphonates and
2-hydroxyethyl-α-aminophoshine oxides by the MW-assisted Kabachnik–Fields condensation of
amino alcohols, paraformaldehyde, and >P(O)H reagents, such as dialkyl phosphites, ethyl
phenyl-H-phosphinate, and secondary phosphine oxides. We also aimed at developing a green,
catalyst-free and mostly solvent-free synthesis, as well as at the preparation of new derivatives.

2. Results and Discussion

In the first step, the Kabachnik–Fields reaction of ethanolamine, paraformaldehyde, and diethyl
phosphite was studied at 80 ◦C for 20 min in the absence of a solvent and a catalyst (Scheme 1). Although full
conversion was achieved, beside the expected α-aminophosphonate (3), the mixture comprised 9% of the
N-methylated-α-aminophosphonate (4a) and 3% of the N-ethylated-α-aminophosphonate (5a), as well as
34% of the 2-aminoethyl ethyl phosphite (6) based on 31P NMR.
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Formation of the N-methyl-α-aminophosphonate (4a) may be explained with the methylation by
the paraformaldehyde, which side reaction was also observed in similar Kabachnik–Fields reactions
of ethyl octyl phosphite [18] or alkyl phenyl-H-phosphinates [16]. The N-ethylated by-product (5a)
may have formed in the alkylation of compound 3 by diethyl phosphite, which is also a known side
reaction during similar transformations [30]. The 2-aminoethyl ethyl phosphite (6), which was present
in the highest proportion of 34%, is probably the product of the alcoholysis of diethyl phosphite by
ethanolamine [31,32].
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In the next series of experiments, the condensation of N-methylethanolamine, paraformaldehyde,
and diethyl phosphite was investigated (Table 1). Carrying out the reaction at 60 ◦C
for 20 min, the conversion was 85%, and the mixture comprised 96% of the desired
N-hydroxyethyl-N-methyl-α-aminophosphonate (4a) and 4% of H-phosphonate 7 formed in the
alcoholysis of diethyl phosphite by N-methylethanolamine (Table 1, Entry 1). In accordance to our
previous experiences [32], the N-methyl-ethanolamine was much less active in the alcoholysis than the
ethanolamine. Repeating the experiment at 80 ◦C, the reaction reached a full conversion, and the ratio
of products 4a and 7 was 95:5, respectively (Table 1, Entry 2). The comparative thermal experiment
under similar conditions was less selective, since 81% of the desired product (4a) and 19% of compound
7 were present in the mixture (Table 1, Entry 3). At 100 ◦C for 10 min, the ratio of the by-product (7)
increased (Table 1, Entry 4). Based on the results obtained, the temperature of 80 ◦C and the reaction
time of 20 min were found to be the optimum conditions (Table 1, Entry 2).

Table 1. Optimization of the condensation of N-methylethanolamine, paraformaldehyde,
and diethyl phosphite.
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Product Composition [%] a
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1 MW 60 20 85 96 4
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a Based on relative 31P NMR intensities.

Next, the condensation of N-alkylethanolamines, paraformaldehyde, and dialkyl phosphites
or ethyl phenyl-H-phosphinate was studied under the optimized conditions (80 ◦C and 20 min).
The reactions were complete in all the cases. Using N-methylethanolamine, the diethyl
(N-2-hydroxyethyl)(N-methyl)aminomethylphosphonate (4a) was isolated in a yield of 78% (Table 2,
Entry 1). Changing for dibutyl phosphite, the desired product (4b) was obtained in a yield of 87% after
column chromatography (Table 2, Entry 2). The ethyl phenyl-H-phosphinate was also tried out as
the phosphorus reagent; however, the α-aminophosphinate (4c) could be prepared in a slightly lower
yield (67%) as compared to the α-aminophosphonates (Table 2, Entry 3). Carrying out the experiments
starting from N-ethylethanolamine, the condensations took place similarly (Table 2, Entries 4-6).
The diethyl (5a) and the dibutyl 2-ethyl-2-hydroxyethyl-α-aminophoshhonate (5b) were prepared in
yields of 72% and 79%, respectively; while using ethyl phenyl H-phosphinate as the P-reagent, product
5c was isolated in a yield of 64%.
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Table 2. Condensation of N-alkylethanolamines, paraformaldehyde, and dialkyl phosphites or ethyl
phenyl-H-phosphinate.
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The transformations were also performed using secondary phosphine oxides (Tables 3 and 4).
In these reactions, some acetonitrile had to be used to overcome the heterogeneity. First, the condensation
of ethanolamine, paraformaldehyde, and diphenylphosphine oxide was investigated (Table 3). In these
experiments, only the desired product (8a) was formed, and no by-product was observed. Carrying out
the reaction at 80 ◦C for 20 min, the α-aminophosphine oxide (8a) was obtained in a conversion of 58%
(Table 3, Entry 1). Prolonging the irradiation to 30 min, a significantly higher conversion (86%) could be
reached (Table 3, Entry 2). Any further increase in the reaction time did not cause a significant change
in the conversion (Table 3, Entry 3). Performing the three-component reaction at 100 ◦C, the conversion
was already 92% after 20 min; using a reaction time of 30 min, the condensation was complete (Table 3,
entries 4 and 5).

Table 3. Optimization of the condensation of ethanolamine, paraformaldehyde,
and diphenylphosphine oxide.
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The condensation of ethanolamine with paraformaldehyde and other secondary phosphine
oxides was also carried out (Table 4, entries 1–3). Using the optimized conditions (100 ◦C, 30 min),
the reactions were complete in all the cases. Applying diphenylphosphine oxide as the P-component,
the corresponding 2-hydroxyethyl-α-aminophosphine oxide (8a) was obtained in a yield of 96%
after column chromatography (Table 4, Entry 1). Changing for bis(p-tolyl)phosphine oxide or
bis(3,5-dimethylphenyl)phosphine oxide, the reactions took place similarly, and the desired products
(8b or 8c) were isolated in yields of 89% and 95%, respectively (Table 4, entries 2 and 3). The condensation
was also extended for using N-alkylethanolamines (N-methyl-, N-ethyl-, or N-benzylethanolamine),
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and the corresponding α-aminophosphine oxide derivatives (9–11a–c) were obtained in high yields
(88–96%) (Table 4, entries 4–12).

Table 4. Condensation of amino alcohols, paraformaldehyde, and secondary phosphine oxides.
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In the next round, the double Kabachnik–Fields condensation of ethanolamine with an
excess of paraformaldehyde and secondary phosphine oxides was studied (Table 5). As the
first experiment, the ethanolamine was reacted with two equivalents of the paraformaldehyde
and the diphenylphosphine oxide at 100 ◦C for 1 h (Table 5, Entry 1). It was found
that the mono α-aminophosphine oxide (8a) was the main product (75%), while the desired
N,N-bis(diphenylphosphinoylmethyl)ethanolamine (12a) was present in a proportion of only 25%.
Increasing the temperature to 120 ◦C, the ratio of product 12a increased to 34% (Table 5, Entry 2).
Prolonging the reaction time to 1.5 h, the composition did not change significantly (Table 5, Entry 3).
As the next step, the effect of the molar ratio of starting materials was investigated (Table 5, entries 4–6).
By using 2.5 equivalents of the diphenylphosphine oxide, the ratio of the mono (8a) and the bis product
(12a) remained almost unchanged (Table 5, Entry 4). When both reagents (the paraformaldehyde and
the diphenylphosphine oxide) were used in 2.5 equivalents quantity, the proportion of product 12a
increased significantly (Table 5, Entry 5). Further increase in the molar ratios to three equivalents allowed
a full transformation toward the N,N-bis(diphenylphosphinoylmethyl)ethanolamine (12a), which was
obtained in a yield of 95% after purification (Table 5, Entry 6). The double Kabachnik–Fields reaction
was also carried out starting from bis(p-tolyl)phosphine oxide or bis(3,5-dimethylphenyl)phosphine
oxide using the optimized conditions (Table 5, entries 7 and 8). The p-tolyl-substituted product (12b)
was synthesized in a yield of 93%, while product 12c could be isolated in a yield of 91%.

In addition to the spectroscopic analysis, we have determined the crystal structure of 11a and
12a·H2O by single-crystal XRD analysis (Figure 1). In the structure of 11a, an intramolecular O–H···O=P
hydrogen bond is present between the hydroxy group as the donor and the P=O group as the acceptor.
Moreover, intermolecular C–H···O=P interactions enable the formation of hydrogen-bonded chains,
which are connected into layers via C–H···π interactions (Figure S1, Table S1). In the structure of
12a·H2O, an O–H···O hydrogen bond is present between the hydroxy group (donor) and the water
hydrate molecule (acceptor). The H2O forms two more O–H···O=P hydrogen bonds with P=O
groups of two adjacent molecules, resulting in the formation of wavy layers enhanced by C–H···O
interactions. These layers are connected into a supramolecular structure via additional C–H···O
interactions (Figure S2, Table S1).
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Table 5. Double Kabachnik–Fields reaction of ethanolamine using excess of the paraformaldehyde and
the secondary phosphine oxides.
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[h] 

Product composition 
[%] a Yield b 

[%] 
8a–c 12a–c 

1 Ph 2 2 100 1 75 25 - 
2 Ph 2 2 120 1 66 34 - 
3 Ph 2 2 120 1.5 64 36 - 
4 Ph 2 2.5 120 1 62 38 - 
5 Ph 2.5 2.5 120 1 25 75 - 

6 Ph 3 3 120 1 0 100 95 
(12a) 

7 4-Me-C6H4 3 3 120 1 0 100 
93 

(12b) 

8 3,5-(Me)2-
C6H3 

3 3 120 1 0 100 91 
(12c) 

a Based on HPLC (254 nm). b After column chromatography. 

In addition to the spectroscopic analysis, we have determined the crystal structure of 11a and 
12a∙H2O by single-crystal XRD analysis (Figure 1). In the structure of 11a, an intramolecular O–
H∙∙∙O=P hydrogen bond is present between the hydroxy group as the donor and the P=O group as 
the acceptor. Moreover, intermolecular C–H∙∙∙O=P interactions enable the formation of hydrogen-
bonded chains, which are connected into layers via C–H∙∙∙π interactions (Figure S1, Table S1). In the 
structure of 12a∙H2O, an O–H∙∙∙O hydrogen bond is present between the hydroxy group (donor) and 
the water hydrate molecule (acceptor). The H2O forms two more O–H∙∙∙O=P hydrogen bonds with 
P=O groups of two adjacent molecules, resulting in the formation of wavy layers enhanced by C–
H∙∙∙O interactions. These layers are connected into a supramolecular structure via additional C–H∙∙∙O 
interactions (Figure S2, Table S1). 

Entry Y
(HCHO)n
[equiv]

Y2P(O)H
[equiv]

T
[◦C]

t
[h]

Product Composition [%] a Yield b

[%]8a–c 12a–c

1 Ph 2 2 100 1 75 25 -
2 Ph 2 2 120 1 66 34 -
3 Ph 2 2 120 1.5 64 36 -
4 Ph 2 2.5 120 1 62 38 -
5 Ph 2.5 2.5 120 1 25 75 -
6 Ph 3 3 120 1 0 100 95 (12a)
7 4-Me-C6H4 3 3 120 1 0 100 93 (12b)
8 3,5-(Me)2-C6H3 3 3 120 1 0 100 91 (12c)

a Based on HPLC (254 nm). b After column chromatography.
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Figure 1. X-ray structures and atom numbering of compounds 11a and 12a·H2O. Probability ellipsoids
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3. Materials and Methods

3.1. General

The reactions were carried out in a 300-W CEM Discover focused microwave reactor (CEM
Microwave Technology Ltd., Buckingham, UK) equipped with a pressure controller using 10–50 W
irradiation under isothermal conditions.
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HPLC-MS measurements were performed with an Agilent 1200 liquid chromatography system
coupled with a 6130 quadrupole mass spectrometer equipped with an ESI ion source (Agilent
Technologies, Palo Alto, CA, USA). Analysis was performed at 40 ◦C on a Gemini C18 column
(150 mm × 4.6 mm, 3 µm; Phenomenex, Torrance, CA, USA) with a mobile phase flow rate of
0.6 mL/min. The composition of eluent A was 0.1% (NH4)(HCOO) in water; eluent B was 0.1%
(NH4)(HCOO) and 8% water in acetonitrile. 0–3 min. 5% B, 3–13 min. gradient, 13–20 min. 95% B.
The injection volume was 5 µL. The chromatographic profile was registered at 254 nm. The MSD
operating parameters were as follows: positive ionization mode, scan spectra from m/z 100 to 1000,
drying gas temperature 300 ◦C, nitrogen flow rate 12 L/min, nebulizer pressure 60 psi, and capillary
voltage 4000 V.

High-resolution mass spectrometric measurements were performed using a Q-TOF Premier mass
spectrometer in positive electrospray mode.

The 31P, 1H, 13C, and NMR spectra were taken in CDCl3 solution on a Bruker AV-300 spectrometer
(Bruker AXS GmBH, Karlsruhe, Germany) operating at 121.5 MHz, 75.5 MHz, and 300 MHz, respectively.
Chemical shifts are downfield relative to 85% H3PO4 and TMS.

3.2. General Procedure for the Synthesis of the 2-Hydroxyethyl-α-aminophosphonates and -α-Aminophosphinates

The mixture of 1.0 mmol of amino alcohol [ethanolamine (0.06 mL), N-methylethanolamine
(0.08 mL), or N-ethylethanolamine (0.10 mL)], 1.0 mmol of paraformaldehyde (0.03 g), and 1.0 mmol
of >P(O)H reagent [diethyl phosphite (0.13 mL), dibutyl phosphite (0.20 mL), or ethyl
phenyl-H-phosphinate (0.17 g)] was irradiated in a sealed tube at 80 ◦C for 20 min in a CEM
Discover Microwave reactor equipped with a pressure controller. The crude product was purified
by flash column chromatography using silica gel and dichloromethane–methanol 9:1 as the eluent.
Thus, the following products were prepared:

Diethyl (N-2-hydroxyethyl)(N-methyl)aminomethylphosphonate (4a): Yield: 78% (0.18 g), yellow oil; 31P
NMR (CDCl3) δ: 26.6; 13C NMR (CDCl3) δ: 16.5 (d, 3JCP = 5.9, OCH2CH3), 44.8 (d, 3JCP = 6.5, NCH3),
52.5 (d, 1JCP = 165.6, CH2P), 59.3 (HOCH2), 60.9 (d, 3JCP = 10.9, CH2CH2N), 62.2 (d, 2JCP = 7.1,
OCH2CH3); 1H NMR (CDCl3) δ: 1.34 (t, JHH = 7.1, 6H, OCH2CH3), 2.48 (s, 3H, NCH3), 2.69 (t, JHH = 5.2,
2H, CH2N), 2.87 (d, JHP = 10.6, 2H, CH2P), 3.62 (t, JHH = 5.2, 2H, HOCH2), 4.06–4.25 (m, 4H, OCH2CH3);
[M + H]+found = 226.1201, C8H21NO4P requires 226.1208.

Dibutyl (N-2-hydroxyethyl)(N-methyl)aminomethylphosphonate (4b): Yield: 84% (0.24 g), yellow oil; 31P
NMR (CDCl3) δ: 25.7; 13C NMR (CDCl3) δ: 13.6 (CH2CH3), 18.7 (CH2CH3), 32.6 (d, 3JCP = 5.8,
CH2CH2CH3), 44.7 (d, 3JCP = 6.5, NCH3), 52.3 (d, 1JCP = 165.2, CH2P), 59.2 (HOCH2), 60.9 (d,
3JCP = 10.5, CH2CH2N) 65.9 (d, 2JCP = 7.1, OCH2CH2CH2); 1H NMR (CDCl3) δ: 0.94 (t, JHH = 7.4, 6H,
CH2CH3), 1.33-1.47 (m, 4H, CH2CH3), 1.62–1.72 (m, 4H, CH2CH2CH3), 2.48 (s, 3H, NCH3), 2.68 (t,
JHH = 5.1, 2H, CH2N), 2.87 (d, JHP = 10.7, 2H, CH2P), 3.61 (t, JHH = 5.1, 2H, HOCH2), 4.02–4.14 (m, 4H,
OCH2CH2CH2); [M + H]+found = 282.1814, C12H29NO4P requires 282.1834.

Ethyl ([N-2-hydroxyethyl][N-methyl]aminomethyl)(phenyl)phosphinate (4c): Yield: 67% (0.17 g), yellow
oil; 31P NMR (CDCl3) δ: 39.5; 13C NMR (CDCl3) δ: 16.6 (d, 3JCP = 6.1, OCH2CH3), 45.1 (d, 3JCP = 5.3,
NCH3), 55.9 (d, 1JCP = 122.5, CH2P), 59.3 (HOCH2) 61.1 (d, 2JCP = 6.8, OCH2CH2), 61.5 (d, 3JCP = 10.2,
CH2N), 128.8 (d, 3JCP = 12.3, C3), 130.2 (d, 1JCP = 122.3, C1), 132.0 (d, 2JCP = 9.6, C2), 132.6 (d, JCP = 2.7,
C4); 1H NMR (CDCl3) δ: 1.32 (t, JHH = 7.0, 3H, OCH2CH3), 2.93 (s, 3H, NCH3), 2.56-2.69 (m, 2H, CH2N),
2.95-3.06 (m, 2H, CH2P), 3.43–3.58 (m, 2H, HOCH2), 3.89–3.95 (m, 1H, CHA, OCH2CH3), 4.09–4.19 (m,
1H, CHB, OCH2CH3), 7.47–7.54 (m, 2H, C2H), 7.55–7.61 (m, 1H, C4H), 7.78–7.86 (m, 2H, C3H); [M +

H]+found = 258.1247, C12H21NO3P requires 258.1259.

Diethyl (N-ethyl)(N-2-hydroxyethyl)aminomethylphosphonate (5a): Yield: 72% (0.17 g), pale yellow oil; 31P
NMR (CDCl3) δ: 26.4; 13C NMR (CDCl3) δ: 11.4 (NCH2CH3), 16.5 (d, 3JCP = 5.7, OCH2CH3), 49.1 (d,
1JCP = 168.1, CH2P), 50.5 (d, 3JCP = 7.7, NCH2CH3), 57.4 (d, 3JCP = 8.2, CH2CH2N), 59.8 (HOCH2), 62.2
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(d, 2JCP = 7.0, OCH2CH3); 1H NMR (CDCl3) δ: 1.05 (t, JHH = 7.0, 3H, NCH2CH3), 1.34 (t, JHH = 7.0, 6H,
OCH2CH3), 2.69–2.81 (m, 4H, NCH2CH3, CH2CH2N), 2.91 (d, JHP = 10.2, 2H, CH2P), 3.58–3.63 (m, 2H,
HOCH2), 4.11–4.21 (m, 4H, OCH2CH3); [M + H]+found = 240.1353, C9H23NO4P requires 240.1365.

Dibutyl (N-ethyl)(N-2-hydroxyethyl)aminomethylphosphonate (5b): Yield: 79% (0.23 g), pale yellow oil; 31P
NMR (CDCl3) δ: 26.5; 13C NMR (CDCl3) δ: 11.5 (NCH2CH3), 13.6 (CH2CH2CH3), 18.7 (CH2CH2CH3),
32.7 (d, 3JCP = 5.8, OCH2CH2CH2), 49.0 (d, 1JCP = 167.5, CH2P), 50.4 (d, 3JCP = 7.6, NCH2CH3), 57.4
(d, 3JCP = 8.2, CH2CH2N), 59.7 (HOCH2), 66.0 (d, 2JCP = 7.3, OCH2CH3); 1H NMR (CDCl3) δ: 0.94
(t, JHH = 7.4, 6H, CH2CH2CH3), 1.05 (t, JHH = 7.1, 3H, NCH2CH3), 1.32–1.49 (m, 4H, CH2CH2CH3),
1.58–1.73 (m, 4H, CH2CH2CH3), 2.66–2.82 (m, 4H, CH2CH2N, NCH2CH3), 2.91 (d, JHH = 10.3, 2H,
CH2P), 3.60 (t, JHH = 5.1, 2H, HOCH2) 3.98–4.16 (m, 4H, OCH2CH3); [M + H]+found = 296.1976,
C13H31NO4P requires 296.1991.

Ethyl ([N-ethyl][N-2-hydroxyethyl]aminomethyl)(phenyl)phosphinate (5c): Yield: 64% (0.17 g), pale yellow
oil; 31P NMR (CDCl3) δ: 40.1; 13C NMR (CDCl3) δ: 11.2 (NCH2CH3), 16.5 (d, 3JCP = 6.1, OCH2CH3), 50.7
(d, 3JCP = 6.2, NCH2CH3), 52.8 (d, 1JCP = 124.0, CH2P), 57.7 (d, 3JCP = 7.8, CH2CH2N), 59.9 (HOCH2),
61.1 (d, 2JCP = 7.0, OCH2CH3), 128.7 (d, 3JCP = 12.2, C3), 130.1 (d, 1JCP = 121.8, C1), 132.0 (d, 2JCP = 9.6,
C2) 132.5 (d, JCP = 2.8, C4); 1H NMR (CDCl3) δ: 0.86 (t, JHH = 7.1, 3H, NCH2CH3), 1.32 (t, JHH = 7.1,
3H, OCH2CH3), 2.51–2.62 (m, 2H, CH2CH2N), 2.62-2.74 (m, 2H, NCH2CH3), 2.95–3.10 (m, 2H, CH2P),
3.48–3.59 (m, 2H, HOCH2) 3.88–3.98 (m, 1H, CHA, OCH2CH3) 4.10–4.19 (m, 1H, CHB, OCH2CH3)
7.47–7.53 (m, 2H, C2H), 7.55–7.61 (m, 1H, C4H), 7.78–7.84 (m, 2H, C3H); [M + H]+found = 272.1405,
C13H23NO3P requires 272.1416.

3.3. General Procedure for the Synthesis of the 2-Hydroxyethyl-α-aminophosphine oxides

The mixture of 1.0 mmol of amino alcohol [ethanolamine (0.06 mL), N-methylethanolamine
(0.08 mL), N-ethylethanolamine (0.10 mL), or N-benzylethanolamine (0.14 mL)], 1.0 mmol of
paraformaldehyde (0.03 g) and 1.0 mmol of secondary phosphine oxide [diphenylphosphine oxide
(0.20 g), bis(p-tolyl)phosphine oxide (0.23 g), or bis(3,5-dimethylphenyl)phosphine oxide (0.26 g)] in
2 mL of acetonitrile was irradiated in a sealed tube at 100 ◦C for 30 min in a CEM Discover Microwave
reactor equipped with a pressure controller. The crude product was purified by flash column
chromatography using silica gel and dichloromethane–methanol 9:1 as the eluent. Thus, the following
products were prepared:

(2-Hydroxyethylaminomethyl)diphenylphosphine oxide (8a): Yield: 96% (0.27 g), white crystal; Mp: 84–85 ◦C;
31P NMR (CDCl3) δ: 30.1; 13C NMR (CDCl3) δ: 48.6 (d, 1JCP = 80.2, CH2P), 53.0 (d, 3JCP = 11.6, CH2N),
60.6 (HOCH2), 128.7 (d, 3JCP = 11.6, C3), 131.1 (d, 2JCP = 9.3, C2), 131.6 (d, 1JCP = 97.8, C1), 132.1 (d,
JCP = 2.8, C4); 1H NMR (CDCl3) δ: 2.76 (brs, 1H, NH), 2.84 (t, JHH = 5.1, 2H, CH2N), 3.53 (d, JHP = 6.9,
2H, CH2P), 3.61 (t, JHH = 5.0, 2H, OCH2), 7.38–7.60 (m, 6H, C2H, C4H), 7.68–7.86 (m, 4H, C3H); [M +

H]+found = 276.1146, C15H19NO2P requires 276.1153.

(2-Hydroxyethylaminomethyl)bis(p-tolyl)phosphine oxide (8b): Yield: 89% (0.27 g), pale yellow viscous
oil; 31P NMR (CDCl3) δ: 30.8; 13C NMR (CDCl3) δ: 21.6 (C4CH3), 48.6 (d, 1JCP = 79.7, CH2P), 53.0
(d, 1JCP = 11.7, CH2N), 60.5 (HOCH2), 128.2 (d, 1JCP = 100.6, C1), 129.5 (d, 3JCP = 11.9, C3), 131.1 (d,
2JCP = 9.6, C2), 142.6 (d, JCP = 2.7, C4); 1H NMR (CDCl3) δ: 2.30 (s, 6H, C4CH3), 2.75 (t, JHH = 5.1, 2H,
CH2N), 2.86 (brs, 1H, NH), 3.40 (d, JHP = 6.8, 2H, CH2P), 3.51 (t, JHH = 5.0, 2H, OCH2), 7.12–7.26 (m,
4H, C2H), 7.46–7.64 (m, 2H, C3H); [M + H]+found = 304.1456, C17H23NO2P requires 304.1466.

(2-Hydroxyethylaminomethyl)bis(3,5-dimethylphenyl)phosphine oxide (8c): Yield: 95% (0.31 g), pale yellow
viscous oil; 31P NMR (CDCl3) δ: 30.5; 13C NMR (CDCl3) δ: 21.4 (C3CH3), 48.3 (d, 1JCP = 78.1, CH2P),
52.8 (d, 3JCP = 10.5, CH2N), 60.5 (HOCH2), 128.5 (d, 2JCP = 9.2, C2), 131.4 (d, 1JCP = 97.0, C1), 133.9 (d,
JCP = 2.8, C4), 138.5 (d, 3JCP = 12.3, C3); 1H NMR (CDCl3) δ: 2.34 (s, 12H, C3CH3), 2.52 (brs, 1H, NH),
2.87 (t, JHH = 5.0, 2H, CH2N), 3.49 (d, JHP = 6.3, 2H, CH2P), 3.60 (t, JHH = 4.9, 2H, OCH2), 7.16 (s, 2H,
C4H), 7.36 (d, JHH = 11.7, 4H, C2H); [M + H]+found = 332.1771, C19H27NO2P requires 332.1779.
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[(N-2-Hydroxyethyl)(N-methyl)aminomethyl]diphenylphosphine oxide (9a): Yield: 95% (0.27 g), pale yellow
viscous oil; 31P NMR (CDCl3) δ: 28.5; 13C NMR (CDCl3) δ: 45.6 (d, 3JCP = 5.4, NCH3), 56.9 (d, 1JCP = 89.0,
CH2P), 59.5 (HOCH2), 61.9 (d, 3JCP = 8.1 CH2N), 128.7 (d, 3JCP = 11.4, C3), 131.1 (d, 2JCP = 9.0, C2), 131.7
(d, 1JCP = 97.0, C1), 132.0 (d, JCP = 2.7, C4); 1H NMR (CDCl3) δ: 2.35 (s, 3H, NCH3), 2.71 (t, JHH = 5.0, 2H,
CH2N), 3.38 (d, JHP = 4.6, 2H, CH2P), 3.59 (t, JHH = 5.0, 2H, OCH2), 7.45–7.52 (m, 4H, C2H), 7.52–7.57
(m, 2H, C4H), 7.75–7.83 (m, 4H, C3H); [M + H]+found = 290.1300, C16H21NO2P requires 290.1310.

[(N-2-Hydroxyethyl)(N-methyl)aminomethyl]bis(p-tolyl)phosphine oxide (9b): Yield: 96% (0.30 g), pale
yellow viscous oil; 31P NMR (CDCl3) δ: 29.0; 13C NMR (CDCl3) δ: 21.6 (C4CH3), 45.6 (d, 3JCP = 5.5,
NCH3), 57.1 (d, 1JCP = 89.1, CH2P), 59.5 (HOCH2), 61.9 (d, 3JCP = 8.0, CH2N), 128.6 (d, 1JCP = 99.4, C1),
129.4 (d, 3JCP = 11.8, C3), 131.1 (d, 2JCP = 9.3, C2), 142.5 (d, JCP = 2.8, C4); 1H NMR (CDCl3) δ: 2.35
(s, 3H, NCH3), 2.40 (s, 6H, C4CH3), 2.70 (t, JHH = 5.0, 2H, CH2N), 3.33 (d, JHP = 4.8, 2H, CH2P), 3.58
(t, JHH = 5.0, 2H, OCH2), 7.20–7.37 (m, 4H, C4H), 7.58–7.74 (m, 4H, C3H); [M + H]+found = 318.1620,
C18H25NO2P requires 318.1623.

(N-2-Hydroxyethyl)(N-methyl)aminomethyl]bis(3,5-dimethylphenyl)phosphine oxide (9c): Yield: 93% (0.32 g),
pale yellow viscous oil; 31P NMR (CDCl3) δ: 28.9; 13C NMR (CDCl3) δ: 21.3 (C3CH3), 45.7 (d, 3JCP = 5.0,
NCH3), 56.8 (d, 1JCP = 88.3, CH2P), 59.4 (OCH2), 62.0 (d, 3JCP = 8.3 CH2N), 128.6 (d, 2JCP = 9.0, C2),
131.7 (d, 1JCP = 96.2, C1), 133.7 (d, JCP = 2.9, C4), 138.4 (d, 3JCP = 12.0, C3); 1H NMR (CDCl3) δ: 2.35 (s,
12H, C3CH3), 2.38 (s, 3H, NCH3), 2.70 (t, JHH = 5.0, 2H, CH2N), 3.34 (d, JHP = 4.7, 2H, CH2P), 3.59 (t,
JHH = 5.0, 2H, OCH2), 7.15 (s, 2H, C4H), 7.58–7.74 (d, JHH = 11.4, 4H, C2H), [M + H]+found = 346.1931,
C20H29NO2P requires 346.1936.

[(N-Ethyl)(N-2-hydroxyethyl)aminomethyl]diphenylphosphine oxide (10a): Yield: 93% (0.32 g), white crystal;
Mp: 81–82 ◦C; 31P NMR (CDCl3) δ: 28.5; 13C NMR (CDCl3) δ: 11.0 (NCH2CH3), 51.2 (d, 3JCP = 6.2,
NCH2CH3), 54.1 (d, 1JCP = 90.2, CH2P), 58.0 (d, 3JCP = 5.9, CH2N), 60.3 (OCH2), 128.6 (d, 3JCP = 11.4,
C3), 131.2 (d, 2JCP = 8.9, C2), 131.7 (d, 1JCP = 96.3, C1), 132.0 (d, JCP = 2.8, C4); 1H NMR (CDCl3) δ: 0.83
(t, JHH = 7.1, 3H, NCH2CH3), 2.55 (q, JHH = 7.1, 2H, NCH2CH3), 2.84 (t, JHH = 5.1, 2H, CH2CH2N),
3.53 (d, JHP = 6.9, 2H, CH2P), 3.59 (t, JHH = 5.0, 2H, OCH2), 7.41–7.61 (m, 6H, C2H, C4H), 7.68–7.88 (m,
4H, C3H); [M + H]+found = 304.1457, C17H23NO2P requires 304.1466.

[(N-Ethyl)(N-2-hydroxyethyl)aminomethyl]bis(p-tolyl)phosphine oxide (10b): Yield: 91% (0.30 g), pale yellow
viscous oil; 31P NMR (CDCl3) δ: 29.1; 13C NMR (CDCl3) δ: 11.0 (NCH2CH3), 21.6 (C4CH3), 51.2 (d,
3JCP = 6.4, NCH2CH3), 54.1 (d, 1JCP = 90.2, CH2P), 58.0 (d, 3JCP = 5.8, CH2N), 60.3 (OCH2), 128.6 (d,
1JCP = 99.0, C1), 129.4 (d, 3JCP = 11.8, C3), 131.2 (d, 2JCP = 8.9, C2), 142.5 (d, JCP = 2.8, C4); 1H NMR
(CDCl3) δ: 0.84 (t, JHH = 7.1, 3H, NCH2CH3), 2.40 (s, 6H, C4CH3), 2.56 (q, JHH = 7.1, 2H, NCH2CH3),
2.77 (t, JHH = 5.0, 2H, CH2CH2N), 3.38 (d, JHP = 4.2, 2H, CH2P), 3.60 (t, JHH = 4.9, 2H, OCH2), 7.21–7.33
(m, 4H, C2H), 7.59–7.71 (m, 4H, C3H); [M + H]+found = 332.1771, C19H27NO2P requires 332.1779.

[(N-Ethyl)(N-2-hydroxyethyl)aminomethyl]bis(3,5-dimethylphenyl)phosphine oxide (10c): Yield: 88% (0.32 g),
pale yellow viscous oil; 31P NMR (CDCl3) δ: 29.1; 13C NMR (CDCl3) δ: 10.9 (NCH2CH3), 21.3 (C3CH3),
51.1 (d, 3JCP = 6.0, NCH2CH3), 54.0 (d, 1JCP = 89.4, CH2P), 57.9 (d, 3JCP = 6.2, CH2N), 60.1 (OCH2), 128.7
(d, 2JCP = 9.0, C2), 131.6 (d, 1JCP = 95.9, C1), 133.7 (d, JCP = 2.9, C4), 138.3 (d, 3JCP = 12.0, C3); 1H NMR
(CDCl3) δ: 0.86 (t, JHH = 7.0, 3H, NCH2CH3), 2.35 (s, 12H, C3CH3), 2.57 (q, JHH = 7.0, 2H, NCH2CH3),
2.76 (t, JHH = 4.9, 2H, CH2CH2N), 3.40 (d, JHP = 4.1, 2H, CH2P), 3.60 (t, JHH = 4.9, 2H, OCH2), 7.15 (s,
2H, C4H) 7.37 (d, JHH = 11.3, 4H, C2H); [M + H]+found = 360.2075, C21H31NO2P requires 360.2092.

[(N-Benzyl)(N-2-hydroxyethyl)aminomethyl]diphenylphosphine oxide (11a): Yield: 90% (0.33 g), white
crystal; Mp: 105–106 ◦C; 31P NMR (CDCl3) δ: 28.9; 13C NMR (CDCl3) δ: 53.9 (d, 1JCP = 87.9, CH2P),
58.5 (d, 3JCP = 4.7, CH2CH2N), 60.4 (OCH2), 61.7 (d, 3JCP = 7.7, C1CH2N), 127.2 (C4), 128.3 (C3), 128.7
(d, 3JCP = 11.5, C3

′), 129.0 (C2), 131.1 (d, 2JCP = 9.1, C2
′), 131.7 (d, 1JCP = 95.8, C1

′), 132.0 (d, JCP = 2.7,
C4), 137.9 (C1); 1H NMR (CDCl3) δ: 2.88 (t, JHH = 4.9, 2H, CH2CH2N), 3.51 (d, JHP = 4.3, 2H, CH2P),
3.63 (t, JHH = 5.0, 2H, OCH2), 3.67 (s, 2H, C1CH2N), 6.98–7.11 (m, 2H, C2H), 7.13–7.25 (m, 3H, C3H,
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C4H), 7.38–7.57 (m, 6H, C2
′H, C4

′H), 7.61–7.78 (m, 4H, C3
′H); [M + H]+found = 366.1615, C22H25NO2P

requires 366.1623.

[(N-Benzyl)(N-2-hydroxyethyl)aminomethyl]bis(p-tolyl)phosphine oxide (11b): Yield: 89% (0.35 g), pale
yellow viscous oil; 31P NMR (CDCl3) δ: 29.5; 13C NMR (CDCl3) δ: 21.6 (C4

′CH3), 54.0 (d, 1JCP = 88.1,
CH2P), 58.4 (d, 3JCP = 4.9, CH2CH2N), 60.3 (OCH2), 61.6 (d, 3JCP = 7.5, C1CH2N), 127.2 (C4), 127.8 (C3),
128.3 (C2), 128.5 (d, 1JCP = 99.4, C1

′), 129.4 (d, 3JCP = 11.9, C3
′), 131.1 (d, 2JCP = 9.4, C2

′), 138.0 (C1),
142.4 (d, JCP = 2.8, C4); 1H NMR (CDCl3) δ: 2.38 (s, 6H, C4CH3), 2.87 (t, JHH = 4.8, 2H, CH2CH2N), 3.46
(d, JHP = 4.5, 2H, CH2P), 3.62 (t, JHH = 5.0, 2H, OCH2), 3.67 (s, 2H, C1CH2N), 7.00–7.11 (m, 2H, C2H),
7.13–7.36 (m, 7H, C3H, C4H, C2

′H), 7.47–7.66 (m, 4H, C3
′H); [M + H]+found = 394.1926, C24H29NO2P

requires 394.1936.

[(N-Benzyl)(N-2-hydroxyethyl)aminomethyl]bis(3,5-dimethylphenyl)phosphine oxide (11c): Yield: 92%
(0.39 g), pale yellow viscous oil; 31P NMR (CDCl3) δ: 29.2; 13C NMR (CDCl3) δ: 21.3 (C3CH3),
53.9 (d, 1JCP = 87.3, CH2P), 58.5 (d, 3JCP = 5.0, CH2CH2N), 60.3 (OCH2), 61.7 (d, 3JCP = 7.1, C1CH2N),
127.1 (C4), 128.2 (C3), 128.6 (d, 2JCP = 9.0, C2

′), 128.9 (C2), 131.6 (d, 1JCP = 96.0, C1
′), 133.7 (d, JCP = 2.7,

C4), 138.2 (C1), 138.4 (d, 3JCP = 12.1, C3
′); 1H NMR (CDCl3) δ: 2.32 (s, 12H, C3CH3), 2.87 (t, JHH = 4.7,

2H, CH2CH2N), 3.48 (d, JHP = 4.1, 2H, CH2P), 3.63 (t, JHH = 5.0, 2H, OCH2), 3.67 (s, 2H, C1CH2N),
7.03–7.16 (m, 4H, C2H, C4

′H), 7.17–7.24 (m, 3H, C3H, C4H), 7.31 (d, JHH = 11.4, 4H, C2
′H); [M +

H]+found = 422.2240, C26H33NO2P requires 422.2249.

3.4. General Procedure for the Synthesis of the N,N-Bis(diarylphosphinoylmethyl)ethanolamines

The mixture of 1.0 mmol of ethanolamine (0.06 mL), 3.0 mmol of paraformaldehyde (0.09 g),
and 3.0 mmol of secondary phosphine oxide [diphenylphosphine oxide (0.61 g), bis(p-tolyl)phosphine
oxide (0.69 g), or bis(3,5-dimethylphenyl)phosphine oxide (0.77 g)] in 2 mL of acetonitrile was irradiated
in a sealed tube at 120 ◦C for 1 h in a CEM Discover Microwave reactor equipped with a pressure
controller. The crude product was purified by flash column chromatography using silica gel and
dichloromethane–methanol 9:1 as the eluent. Thus, the following products were prepared:

N,N-Bis(diphenylphosphinoylmethyl)ethanolamine (12a): Yield: 95% (0.46 g), white crystal; Mp: 146–147 ◦C;
31P NMR (CDCl3) δ: 28.9; 13C NMR (CDCl3) δ: 55.5 (dd, 1JCP = 81.2, 3JCP = 5.7, CH2P), 59.9 (HOCH2),
60.3 (t, 3JCP = 5.3, CH2N), 128.6 (m, C3), 131.1 (m, C2), 131.8 (d, 1JCP = 96.3, C1), 132.0 (brs, C4); 1H
NMR (CDCl3) δ: 3.05 (t, JHH = 4.9, 2H, CH2N), 3.56 (t, JHH = 4.9, 2H, HOCH2), 3.82 (d, JHP = 3.9, 4H,
CH2P), 7.33–7.56 (m, 12H, C2H, C4H) 7.64–7.82 (m, 8H, C3H); [M + H]+found = 490.1685, C28H30NO3P2

requires 490.1701.

N,N-Bis(di-p-tolyl)phosphinoylmethyl)ethanolamine (12b): Yield: 93% (0.51 g), white crystal*; 31P NMR
(CDCl3) δ: 29.4; 13C NMR (CDCl3) δ: 21.6 (C4CH3), 55.5 (dd, 1JCP = 81.2, 3JCP = 5.5, CH2P), 59.9
(HOCH2), 60.3 (t, 3JCP = 4.9, CH2N), 128.8 (d, 1JCP = 98.5, C1), 129.3 (m, C3), 131.1 (m, C2), 142.3
(brs, C4); 1H NMR (CDCl3) δ: 2.36 (s, 12H, C4CH3), 3.02 (t, JHH = 5.0, 2H, CH2N), 3.54 (t, JHH = 4.7,
2H, HOCH2), 3.73 (d, JHP = 3.7, 4H, CH2P), 7.07–7.32 (m, 8H, C2H) 7.46–7.70 (m, 8H, C3H); [M +

H]+found = 546.2308, C32H38NO3P2 requires 546.2326. *No sharp melting point was observed.

N,N-Bis(3,5-dimethylphenylphosphinoylmethyl)ethanolamine (12c): Yield: 91% (0.55 g), pale yellow crystal;
Mp: 128–129 ◦C; 31P NMR (CDCl3) δ: 28.6; 13C NMR (CDCl3) δ: 21.3 (C3CH3), 55.0 (dd, 1JCP = 78.8,
3JCP = 3.9, CH2P), 59.9 (HOCH2), 60.4 (t, 3JCP = 4.3, CH2N), 128.5 (m, C2), 132.2 (d, 1JCP = 98.1, C1),
133.6 (brs, C4), 138.3 (m, C3); 1H NMR (CDCl3) δ: 2.29 (s, 24H, C3CH3), 2.99 (t, JHH = 4.8, 2H, CH2N),
3.57 (t, JHH = 4.9, 2H, HOCH2), 3.75 (s, 4H, CH2P), 7.09 (s, 4H, C4H) 7.32 (d, JHH = 11.3, 8H, C2H); [M +

H]+found = 602.2926, C36H46NO3P2 requires 602.2952.

3.5. Crystal Structure Determination

Single-crystal X-ray diffraction data of 11a and 12a·H2O were collected on an Agilent Technologies
SuperNova Dual diffractometer using Mo-Kα radiation (λ = 0.71073 Å) at room temperature. The data
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were processed using CrysAlis Pro [33]. The structures were solved by ShelXT [34] using intrinsic
phasing and refined by a full-matrix least-squares procedure based on F2 with ShelXL [35] using
Olex2 program suite [36]. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were readily located in difference Fourier maps, and were subsequently treated as riding atoms in
geometrically idealized positions with C–H = 0.93 Å (aromatic) or 0.97 Å (methylene), O–H = 0.82 Å,
and with Uiso(H) = kUeq(C,O), where k = 1.5 for the hydroxyl group and 1.2 for all the H atoms
bonded to C atoms, unless otherwise noted. In 12a, H2O H atoms bonded to water solvate molecule
O4 were refined restraining the bonding distances with Uiso(H) = 1.5 Ueq(O). Crystal structure data are
deposited with the Cambridge Crystallographic Data Centre under CCDC 1,906,625 (11a) and 1,906,626
(12a·H2O), and can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail:
deposit@ccdc.cam.ac.uk).

4. Conclusions

In summary, we have developed a facile, catalyst-free and mostly solvent-free MW-assisted method
for the synthesis of N-2-hydroxyethyl-α-aminophosphonates and N-2-hydroxyethyl-α-aminophosphine
oxides, as well as N,N-bis(diarylphosphinoylmethyl)ethanolamines by the three-component reaction
of amino alcohols, paraformaldehyde, and dialkyl phosphites or diarylphosphine oxides.
This method is a novel approach for the preparation of N-2-hydroxyethyl-α-aminophosphine
oxides and N,N-bis(diarylphosphinoylmethyl)ethanolamines. Altogether, 21 derivatives were
synthesized and fully characterized, and all of them are new compounds. The crystal
structure of [(N-benzyl)(N-2-hydroxyethyl)aminomethyl]diphenylphosphine oxide (11a) and
N,N-bis(diphenylphosphinoylmethyl)ethanolamine (12a) was studied by single-crystal XRD analysis.

Supplementary Materials: Supplementary data associated with this article are available online.
X-ray crystallographic data and copies of 31P, 1H, and 13C NMR spectra for all compounds synthesized are
presented. Figure S1: (a) Chain formation via C–H···O hydrogen bonding in 11a. (b) Layer formation via C–H···π
interactions. Figure S2: (a) Layer formation via O–H···O hydrogen bonding in 12a·H2O along ab-plane. (b)
Packing of layers along c-axis. Table S1: Hydrogen bond geometry for 11a and 12a·H2O. Table S2: Essential
crystallographic data of the 11a and 12a·H2O single-crystal diffraction experiments and model refinements.

Author Contributions: Á.T. and E.S. performed the experiments. F.P. performed the crystal structure analysis.
E.B. and G.K. contributed reagents/materials/analysis tools. E.B., Á.T. and G.K. wrote the paper.

Funding: The project was supported by the Hungarian Research Development and Innovation Office
(FK123961 and K119202), by the bilateral Hungarian-Slovenian Science and Technology Cooperation project
(2018-2.1.11-TÉT-SI-2018-00008). E.B. was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences (BO/00278/17/7), and by the ÚNKP-18-4-BME-131 New National Excellence Program of the
Ministry of Human Capacities. Á.T. was supported by the ÚNKP-18-3-III-BME-251 New National Excellence
Program of the Ministry of Human Capacities.

Acknowledgments: F.P. thanks the EN-FIST Centre of Excellence, Ljubljana, Slovenia, for using the
SuperNova diffractometer.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hudson, H.R.; Kukhar, V.P. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity;
Wiley: Chichester, UK, 2000; ISBN 978-0-471-89149-9.

2. Tajti, Á.; Keglevich, G. The Importance of Organophosphorus Compounds as Biologically Active Agents;
Organophosphorus Chemistry, Keglevich, G., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2018;
pp. 53–65, ISBN 978-3-11-053453-5.

3. Bálint, E.; Tajti, Á.; Tripolszky, A.; Keglevich, G. Synthesis of platinum, palladium and rhodium complexes of
α-aminophosphine ligands. Dalton Trans. 2018, 47, 4755–4778. [CrossRef] [PubMed]

4. Ben-Aroya, B.B.-N.; Portnoy, M. Solid-phase synthesis of an α-aminophosphine library. J. Comb. Chem. 2001,
3, 524–527. [CrossRef] [PubMed]

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://dx.doi.org/10.1039/C8DT00178B
http://www.ncbi.nlm.nih.gov/pubmed/29565437
http://dx.doi.org/10.1021/cc0100363
http://www.ncbi.nlm.nih.gov/pubmed/11703146


Molecules 2019, 24, 1640 12 of 13

5. Ben-Aroya, B.B.-N.; Portnoy, M. Preparation of α-aminophosphines on solid support: Model studies and
parallel synthesis. Tetrahedron 2002, 58, 5147–5158. [CrossRef]

6. Patai, S. The Hydroxyl Group; Wiley: Hoboken, NJ, USA, 1971; ISBN 9780471669395.
7. Patai, S. Carboxylic Acids and Esters; Wiley: Hoboken, NJ, USA, 1969; ISBN 9780471669197.
8. Bálint, E.; Fazekas, E.; Drahos, L.; Keglevich, G. The Synthesis of N,N-Bis(dialkoxyphosphinoylmethyl)- and

N,N-Bis(diphenylphosphinoylmethyl)glycine Esters by the Microwave-Assisted Double Kabachnik–Fields
Reaction. Heteroatom Chem. 2013, 24, 510–515. [CrossRef]

9. Bálint, E.; Fazekas, E.; Kóti, J.; Keglevich, G. Synthesis of N,N-Bis(dialkoxyphosphinoylmethyl)- and
N,N-Bis(diphenylphosphinoylmethyl)-β- and γ-amino acid Derivatives by the Microwave-Assisted Double
Kabachnik–Fields Reaction. Heteroatom Chem. 2015, 26, 106–115. [CrossRef]

10. Kabachnik, M.I.; Medved, T.Y. New synthesis of aminophosphonic acids. Dokl. Akad. Nauk SSSR 1952, 83,
689–692.

11. Fields, E.K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc. 1952, 74,
1528–1531. [CrossRef]

12. Pudovik, A.N. Addition of dialkyl phosphites to imines. New method of synthesis of esters of amino
phosphonic acids. Dokl. Akad. Nauk SSSR 1952, 83, 865–869.

13. Keglevich, G.; Szekrenyi, A. Eco-friendly accomplishment of the extended Kabachnik-Fields reaction; a
solvent-and catalyst-free microwave-assisted synthesis of α-aminophosphonates and α-aminophosphine
oxides. Lett. Org. Chem. 2008, 5, 616–622. [CrossRef]

14. Bálint, E.; Tajti, Á.; Tripolszky, A. Synthesis of α-aminophosphonates by the Kabachnik–Fields Reaction
and by the Pudovik Reaction. In Organophosphorus Chemistry; Keglevich, G., Ed.; Walter de Gruyter GmbH:
Berlin, Germany, 2018; pp. 108–147, ISBN 978-3-11-053453-5.

15. Bálint, E.; Tóth, R.E.; Keglevich, G. Synthesis of alkyl α-aminomethyl-phenylphosphinates and
N,N-bis(alkoxyphenylphosphinylmethyl)amines by the microwave-assisted Kabachnik–Fields reaction.
Heteroatom Chem. 2016, 27, 323–335. [CrossRef]

16. Bálint, E.; Tripolszky, A.; Jablonkai, E.; Karaghiosoff, K.; Czugler, M.; Mucsi, Z.; Kollár, L.; Pongrácz, P.;
Keglevich, G. Synthesis and use of α-aminophosphine oxides and N,N-bis(phosphinoylmethyl)amines—A
study on the related ring platinum complexes. J. Organomet. Chem. 2016, 801, 111–121. [CrossRef]

17. Tajti, Á.; Bálint, E.; Keglevich, G. Synthesis of ethyl octyl α-aminophosphonate derivatives. Curr. Org. Synth.
2016, 13, 638–675. [CrossRef]

18. Bálint, E.; Tajti, Á.; Kalocsai, D.; Mátravölgyi, B.; Konstantin, K.; Czugler, M.; Keglevich, G. Synthesis and
utilization of optically active α-aminophosphonate derivatives by Kabachnik-Fields reaction. Tetrahedron
2017, 73, 5659–5667. [CrossRef]

19. Barsukov, A.V.; Zhadanov, B.V.; Matkovskaya, T.A.; Kaslina, N.A.; Polyakova, I.A.; Yaroshenko, G.F.;
Kessenikh, A.V.; Dyatlova, N.M. Synthesis of New Complexons of the Aliphatic Series and Investigation of
the Mechanism of Acidic Dissociation. Zh. Obshch. Khim. 1985, 55, 1594–1600.

20. Ju, Z.; Zou, R.; Ye, Y.; Zhao, Y. A Facile and Clean Procedure for Preparation of α-Aminophosphonates via a
Rotary Evaporator Equipped with Circulating Water Vacuum Pumps. Phosphorus, Sulfur Silicon Relat. Elem.
2010, 185, 898–902. [CrossRef]

21. Kaboudin, B.; Nazari, R. Microwave-assisted synthesis of 1-aminoalkyl phosphonates under solvent-free
conditions. Tetrahedron Lett. 2001, 42, 8211–8213. [CrossRef]

22. Bálint, E.; Keglevich, G. The Spread of the Application of the Microwave Technique in Organic Synthesis.
In Milestones in Microwave Chemistry; Keglevich, G., Ed.; Springer: Basel, Switzerland, 2016; p. 110,
ISBN 978-3-319-30632-2.

23. Zamorano-Octaviano, J.; Hernández-Martínez, A.; Ortega-Guevara, A.; Linzaga-Elizalde, I.; Höpfl, H.
Linear and cyclic aminomethanephosphonic acid esters derived from benzaldehyde derivatives,
3-aminopropanol, and diethyl phosphite. Heteroatom Chem. 2006, 17, 75–80. [CrossRef]

24. Floch, V.; Le Bolc’h, G.; Gable-Guillaume, C.; Le Bris, N.; Yaouanc, J.-J.; des Abbayes, H.; Férec, C.;
Clément, J.-C. Phosphonolipids as non-viral vectors for gene therapy. Eur. J. Med. Chem. 1998, 33, 923–934.
[CrossRef]

25. Krchová, T.; Herynek, V.; Gálisová, A.; Blahut, J.; Hermann, P.; Kotek, J. Eu (III) Complex with
DO3A-amino-phosphonate Ligand as a Concentration-Independent pH-Responsive Contrast Agent for
Magnetic Resonance Spectroscopy (MRS). Inorg. Chem. 2017, 56, 2078–2091. [CrossRef]

http://dx.doi.org/10.1016/S0040-4020(02)00471-4
http://dx.doi.org/10.1002/hc.21126
http://dx.doi.org/10.1002/hc.21221
http://dx.doi.org/10.1021/ja01126a054
http://dx.doi.org/10.2174/157017808786857598
http://dx.doi.org/10.1002/hc.21343
http://dx.doi.org/10.1016/j.jorganchem.2015.10.029
http://dx.doi.org/10.2174/1570179413666151218202757
http://dx.doi.org/10.1016/j.tet.2017.07.060
http://dx.doi.org/10.1080/10426500903023095
http://dx.doi.org/10.1016/S0040-4039(01)01627-6
http://dx.doi.org/10.1002/hc.20178
http://dx.doi.org/10.1016/S0223-5234(99)80017-8
http://dx.doi.org/10.1021/acs.inorgchem.6b02749


Molecules 2019, 24, 1640 13 of 13

26. Martel, S.; Clément, J.-L.; Muller, A.; Culcasi, M.; Pietri, S. Synthesis and 31P NMR characterization of new
low toxic highly sensitive pH probes designed for in vivo acidic pH studies. Bioorg. Med. Chem. 2002, 10,
1451–1458. [CrossRef]

27. Heydari, A.; Karimian, A.; Ipaktschi, J. Lithium perchlorate/diethylether catalyzed aminophosphonation of
aldehydes. Tetrahedron Lett. 1998, 39, 6729–6732. [CrossRef]

28. Chougrani, K.; Boutevin, B.; David, G.; Boutevin, G. New N,N-amino-diphosphonate-containing methacrylic
derivatives, their syntheses and radical copolymerizations with MMA. Eur. Polym. J. 2008, 44, 1771–1781.
[CrossRef]

29. Cherkasov, R.A.; Garifzyanov, A.R.; Talan, A.S.; Davletshin, R.R.; Kurnosova, N.V. Synthesis of new liophilic
functionalized aminomethylphosphine oxides and their acid-base and membrane-transport properties
toward acidic substrates. Russ. J. Gen. Chem. 2009, 79, 1835–1849. [CrossRef]

30. Gancarz, R. Alkylating Properties of Dialkyl Phosphites. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 92,
193–199. [CrossRef]

31. Keglevich, G.; Bálint, E.; Tajti, Á.; MÁtravölgyi, B.; Balogh, G.T.; Bálint, M.; Ilia, G. Microwave-assisted
alcoholysis of dialkyl phosphites by ethylene glycol and ethanolamine. Pure Appl. Chem. 2014, 86, 1723–1728.
[CrossRef]

32. Tajti, Á.; Keglevich, G.; Bálint, E. Microwave-assisted alcoholysis of dialkyl H-phosphonates by diols and
amino alcohols. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 769–775. [CrossRef]

33. CrysAlisPro, version 1.171.39.46e; Rigaku Oxford Diffraction: Yarnton, UK, 2018.
34. Sheldrick, G.M. SHELXT—Integrated space-group and crystalstructure determination. Acta Crystallogr. 2015,

A71, 3–8. [CrossRef]
35. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [CrossRef]
36. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure

solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [CrossRef]

Sample Availability: Samples of the compounds 4a–c, 5a–c, 8–11a–c and 12a–c are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0968-0896(01)00414-X
http://dx.doi.org/10.1016/S0040-4039(98)01411-7
http://dx.doi.org/10.1016/j.eurpolymj.2008.03.009
http://dx.doi.org/10.1134/S1070363209090114
http://dx.doi.org/10.1080/10426509408021472
http://dx.doi.org/10.1515/pac-2014-0601
http://dx.doi.org/10.1080/10426507.2017.1284841
http://dx.doi.org/10.1107/S2053273314026370
http://dx.doi.org/10.1107/S2053229614024218
http://dx.doi.org/10.1107/S0021889808042726
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General 
	General Procedure for the Synthesis of the 2-Hydroxyethyl–aminophosphonates and –Aminophosphinates 
	General Procedure for the Synthesis of the 2-Hydroxyethyl–aminophosphine oxides 
	General Procedure for the Synthesis of the N,N-Bis(diarylphosphinoylmethyl)ethanolamines 
	Crystal Structure Determination 

	Conclusions 
	References

