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Abstract: In this work, polyaniline (PANI) is synthesized via oxidative polymerization of aniline
and purified using organic solvents where the emeraldine phase is isolated by employing a phase
separation system. The above contributes to the increase in the percentage yield compared to previous
works and the possibility of being used as a single phase. In addition, the PANI/AgNPs composite
is prepared in situ at the polymerization of aniline, adding silver nitrate and glycine to create the
AgNPs inside the PANI matrix by controlling the pH, temperature, time of reaction and incorporating
a new purification technique.
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1. Introduction

Polyaniline (PANI), a derivative of polyphenylene vinylene (PPV), belongs to a class of materials
known as conducting polymers, combines the electronic and optical properties of some organic
semiconductors and metals with the processing advantages of polymers [1]. PANI has a variety of
phases with unique and special features such as stability under environmental conditions [2], chemical
or electrochemical redox reversibility, high conductivity [3,4], ease of synthesis [5,6], and low-cost in
comparison to other conducting polymers, which make it suitable for its application in sensors [7],
photochemical cells and anticorrosion layers [8]. Furthermore, PANI has many promising applications
in biomedical areas, such as tissue engineering, biosensors and biomedicine. However, in order to
improve the thermal and optical properties, the development of composites with the incorporation
of several nanomaterials has been studied. For instance, PANI–metal nanoparticles composites have
shown enhanced sensing capabilities compared to those of pure PANI, due to the ability of the
metal nanoparticles to act as conductive junctions within their chains [9,10]. Its synthesis is carried
out by chemical oxidative polymerization using a strong acidic solution—usually hydrochloric acid
(HCl)—and is initiated with the addition of an oxidizing agent, such as ammonium persulfate (APS). At
a sub-zero temperature, an increase in the molecular weight and crystallinity of PANI occurs [11–13].

The removal of impurities (such as byproducts related to doping, oxidant traces or oligomers of
aniline) is imperative for the application of PANI in electronics or biomedical fields. The common
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strategies to purify PANI are centrifugation-based washing and dialysis. Centrifugation-based washing
requires high centrifugal forces and several cycles of centrifugation, making it a tedious process and a
not entirely effective method. The second strategy involves pouring PANI into a cavity surrounded
by a dialysis membrane that takes several days to provide moderately pure PANI owing to small
contaminants that pass through the membrane [14]. There are other proposed methods for the
purification such as Soxhlet extraction [15] and precipitation–redispersion [16] that employ organic
solvents. These purification methods of organic materials regularly require the solution of the material
in an organic solvent. However, PANI is insoluble in a great number of organic solvents. Despite
this, it has been shown that PANI emeraldine base (PANI-EB) has better solubility than polyaniline
emeraldine salt (PANI-ES), which is the favored phase that is obtained from conventional synthesis of
PANI. The transition between the different phases of PANI causes a strong color change from colorless
to violet or from blue to green [15].

The aim of this work is to present results regarding the synthesis of PANI and PANI/AgNPs
composite that optimizes oxidative polymerization. We also report a single phase of emeraldine base
with a high percentage yield, for which a new purification process was implemented.

2. Results and Discussion

2.1. PANI Characterization

2.1.1. Fourier Transform Infrared Spectroscopy (FTIR)

Chemical characterization is shown in Figure 1. The comparison of FTIR spectra of the four
products of PANI indicates that most of the characteristic infrared bands of the monomer are retained in
the polymerized samples. The samples denominated as P1, P2, P3 and P4 refer to the products obtained
by the four purification processes described in Section 3.3. PANI-P1 was obtained by the dispersion of
a chloroform—methanol 10:1 solution and filtering. PANI-P2 was obtained by adding 1 M ammonium
hydroxide. On the other hand, PANI-P3 resulted from the dispersion of a chloroform—methanol 10:1
system and heating the solution. PANI-P4 was obtained by adjustment of the pH value to 7.2 with the
addition of ammonium hydroxide 1 M. All the processes were applied after phase separation with
diethyl ether. The aniline spectrum shows absorption bands at 1621 and 1605 cm−1 regions, indicating
ring deformation (Figure 1b). The bands at 1493 and 1461 cm−1 are due to ring stretching deformation.
The stretching of the ring-N bond is observed at 1270 cm−1 and C–H out of plane deformation is
detected at 743 and 687 cm−1 [17].
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Figure 1. (a) Fourier transform infrared (FTIR) spectra of polyaniline (PANIs) resulting from the 
purification processes 1, 2 and 3; (b) FTIR spectra of aniline and PANI resulting from the purification 
process 4. 
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purification processes 1, 2 and 3; (b) FTIR spectra of aniline and PANI resulting from the purification
process 4.
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The FTIR spectra of PANI are in accordance with previously reported results [8,18–20], shown in
Table 1. The main bands, corresponding to quinone and benzene ring stretching are observed around
1570 and 1486 cm−1, respectively. In addition, there are changes between the four products resulting
from the purification processes. For instance, an increase in the band at 1300 cm−1 in PANI P2, PANI P3
and PANI P4 occurs, indicating a π-electron delocalization and the appearance of a peak at 1371 cm−1

corresponding to the C–N stretching vibrations near a quinonediimine unit, that are attributed to the
PANI-EB phase [21].

Table 1. Assignment of PANI bands as identified elsewhere [2,9,18–22].

PANI P1 (cm−1) PANI P2 (cm−1) PANI P3 (cm−1) PANI P4 (cm−1) Assignment

1569 1583 1569 1561 Quinoid ring stretching
1486 1486 1486 1481 Benzenoid ring stretching

- 1378 1373 1371 C–N stretching vibration near quinonediimine unit
1300 1300 1300 1289 C–N stretching in cis-Q-B-Q 1, Q-B-B 2 and B-B-Q 3

1232 1232 1232 1226 C–N stretching in B-B-B 4

1052 1076 1046 1054
- 822 822 824 C–H out of plane bending of 1,2,4-ring

787 801 780 783
591 608 587 -
484 501 501 496

1 Q-B-Q quinoid unit-benzenoid unit-quinoid unit. 2 Q-B-B quinoid unit-benzenoid unit-benzenoid unit. 3 B-B-Q
benzenoid unit-benzenoid unit-quinoid unit. 4 B-B-B benzenoid unit-benzenoid unit-benzenoid unit.

2.1.2. UV-Visible Spectroscopy (UV-Vis)

P1, P2, P3 and P4, see Figure 2, show different absorption bands that are reported in three of the
PANI phases. In the PANI P1 spectrum, see Figure 2, green curve, two absorption bands are observed
at 426 and 818 nm. These bands are reported in the PANI-ES phase, which has a green tonality and
is poorly soluble in organic solvents [22,23]. The spectra of PANI P3, see Figure 2, violet curve, also
has two absorption bands at 315 and 548 nm, the borders of which correspond to the violet-colored
polyaniline pernigraniline base (PANI-PB) phase reported by Kang [2] and MacDiarmid [24].
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On the other hand, the spectra of PANI P2, see Figure 2, blue curve, and PANI P4, see Figure 2,
red curve, have absorption bands at similar wavelengths; at 320 and 569 nm in the first and 321
and 580 nm in the second curve. It has been reported by Nabid et al. [25] and Zhu et al. [26], that
PANI-EB has absorption bands around 320 and 600 nm, which originate from the π→π* transition
of the benzene rings and the extinction band of the quinoid ring, respectively. Therefore, it can be
said that both products are PANI-EB. However, given that the solubility of PANI P4 appears to be
better than PANI P2 (as observed in the variations obtained from the UV-Vis spectra), it was decided to
continue experiments using PANI P4.

As shown in Figure 3, each phase of PANI can be identified by its distinct color, green for PANI-ES,
see Figure 3a, blue for PANI-EB, see Figure 3b, and violet for PANI-PB, see Figure 3c. PANI clusters in
the suspension form due to its low solubility, while in the PANI-EB and PANI-PB, the solubility is
higher which can be observed by the color of the solvent.
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(a) polyaniline emeraldine salt (PANI-ES), (b) polyaniline emeraldine base (PANI-EB) and (c) polyaniline
pernigraniline base (PANI-PB).

2.1.3. Scanning Electron Microscopy (SEM) and Electron Dispersive Energy (EDS)

The morphology found in the PANI was grain-like, with a globular sponge shape. Figure 4
shows the SEM images obtained for PANI P4 at 500× (Figure 4a) and 2000× (Figure 4b). A similar
morphology was reported by Zhu, Peng and Jiang [26], where they explained that PANI has a coarse
surface. Figure 4c presents the elemental analysis, which showed that mainly carbon was present and
oxygen, sulfur and chlorine are detected in traces.

2.1.4. Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC)

The thermal study of PANI was performed using a simultaneous TGA-DSC analysis. The obtained
TGA data are shown in Figure 5. The process of degradation was multistage, with three steps of
decompositions. The first one, due to the moisture removal, was located around 100 ◦C, while the
second one, observed between 250 ◦C and 300 ◦C, is attributed to the elimination of the low molecular
weight oligomers and the dedoping process. Usually, this decomposition represents a greater weight
loss; however, the purification step decreases the quantity of oligomers and PANI doped into 5% of the
composition of the polymer. Additionally, thermogravimetric analysis has been reported with a weight
loss in the range of 10–30% [26,27]. The third degradation stage is associated with the decomposition of
PANI. On the other hand, the DSC analysis offers data by three endothermal fusions, the first one below
100 ◦C and the second one around 200 ◦C, which may be due to the removal of adsorbed water and
low-weight molecules, respectively [28]. The third endothermal fusion, followed by major structural
reorganization at 380 ◦C, is referred to as PANI degradation [29]. The product of PANI presents an
exothermic curve due to energy liberation around 230.5 ◦C before structural reorganization occurs at
380 ◦C, the latter is probably due to its purification. The first derivative shows results consistent with
the degradation process [30].
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Figure 5. (a) TGA-DTG and (b) DSC of PANI-P4.
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2.2.1. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 6 shows the FTIR spectrum of PANI, as well as PANI/AgNPs composite synthesized in 
situ. The bands at 1570 and 1473 cm−1 are assigned to quinoid and benzenoid rings stretching
vibrations, respectively, which also appear in the PANI/AgNPs composite spectrum at 1585 and 1499 
cm−1. 

The incorporation of AgNPs into PANI matrix causes a small shift of the bands towards higher 
wavenumbers, and the intensity of the peaks decreases, indicating interaction PANI-Ag. This effect
was also demonstrated in previous work by Singh, Tiwari and Pandey [27]. The bands located at 400 
cm-1 in the PANI/AgNPs spectra correspond to the presence of silver in the sample. The shift of the 
band from 1570 to 1585 cm-1 indicates that AgNPs may interact with nitrogen in the PANI within 
composite. This interaction was also presented by Gupta, Jana and Meikap [31]. 
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2.2. PANI/AgNPs Composite Characterization

2.2.1. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 6 shows the FTIR spectrum of PANI, as well as PANI/AgNPs composite synthesized in situ.
The bands at 1570 and 1473 cm−1 are assigned to quinoid and benzenoid rings stretching vibrations,
respectively, which also appear in the PANI/AgNPs composite spectrum at 1585 and 1499 cm−1.
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Figure 6. FTIR spectra of PANI-P4 and PANI/AgNPs in situ composite.

The incorporation of AgNPs into PANI matrix causes a small shift of the bands towards higher
wavenumbers, and the intensity of the peaks decreases, indicating interaction PANI-Ag. This effect
was also demonstrated in previous work by Singh, Tiwari and Pandey [27]. The bands located at
400 cm−1 in the PANI/AgNPs spectra correspond to the presence of silver in the sample. The shift of
the band from 1570 to 1585 cm−1 indicates that AgNPs may interact with nitrogen in the PANI within
composite. This interaction was also presented by Gupta, Jana and Meikap [31].

2.2.2. UV-Visible Spectroscopy (UV-Vis)

The PANI/AgNPs composite is shown in Figure 7. By means of this measurement, it can be
defined that PANI used in PANI/AgNPs composite presents a similar behavior with PANI-EB by the
bands located at 326 and 569 nm (Figure 7). In addition, it presents a third band at 450 nm due to the
surface plasmon resonance (SPR) of AgNPs formed in PANI matrix. This was already reported by
Nabid et al. [25] in composites chemically synthesized and in situ. Theorical calculations by MiePlot
software were made to approximate the nanoparticle, where a SPR band at 450 nm is obtained for
AgNPs with a diameter around 80 nm.
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observed, where it is presented a graininess morphology similar to PANI P4. However, it can be 
appreciated that PANI presents some areas with agglomeration. This behavior is due to the presence 
of silver in the matrix of PANI similar to the reported by Ran et al. [32], using gold instead of silver, 
where this morphology was detected when the gold precursor was added in a bigger amount. Also, 
in Figure 8 (c) is presented the elemental analysis of PANI/Ag composite, where a silver signal is no 
detected, but the existing elements in PANI P4 are present. 
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2.2.3. Scanning Electron Microscopy (SEM) and Electron Dispersive Energy (EDS)

The images of PANI/AgNPs in situ composite at 500× (Figure 8a) and 2000× (Figure 8b) are
observed, where it is presented a graininess morphology similar to PANI P4. However, it can be
appreciated that PANI presents some areas with agglomeration. This behavior is due to the presence
of silver in the matrix of PANI similar to the reported by Ran et al. [32], using gold instead of silver,
where this morphology was detected when the gold precursor was added in a bigger amount. Also,
in Figure 8c is presented the elemental analysis of PANI/Ag composite, where a silver signal is no
detected, but the existing elements in PANI P4 are present.
Molecules 2018, 23, x FOR PEER REVIEW 8 of 14 

Figure 8. SEM images of PANI/AgNPs in situ composite magnified to (a) 500× and (b) 2000× and (c) 
Electron Dispersive Energy (EDS) analysis. 

2.2.4. Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC) 

The thermal study includes a TGA-DSC simultaneous analysis (Figure 9). The TGA shows a 
multistage degradation process with three steps, similar to TGA of PANI. Meanwhile, the DSC 
analysis offer data of three exothermic fusions, the first previous to 100 °C assigned to water removal, 
followed by a second one around 250 °C due to low weight molecules removal, and a third one
around 400 °C relative to polymer degradation [28,29]. The first derivative from differential 
thermogravimetric analysis (DTG) shows result consistent with the degradation process. The shifts 
between thermal analysis of pure PANI and PANI/AgNPs composites indicates the increased 
thermal stability of PANI when the AgNPs addition exists. 

Figure 8. SEM images of PANI/AgNPs in situ composite magnified to (a) 500× and (b) 2000× and
(c) Electron Dispersive Energy (EDS) analysis.

2.2.4. Thermogravimetric Analysis and Differential Scanning Calorimetry (TGA-DSC)

The thermal study includes a TGA-DSC simultaneous analysis (Figure 9). The TGA shows a
multistage degradation process with three steps, similar to TGA of PANI. Meanwhile, the DSC analysis
offer data of three exothermic fusions, the first previous to 100 ◦C assigned to water removal, followed
by a second one around 250 ◦C due to low weight molecules removal, and a third one around 400 ◦C
relative to polymer degradation [28,29]. The first derivative from differential thermogravimetric
analysis (DTG) shows result consistent with the degradation process. The shifts between thermal
analysis of pure PANI and PANI/AgNPs composites indicates the increased thermal stability of PANI
when the AgNPs addition exists.
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3. Materials and Methods

3.1. Materials

Silver nitrate (AgNO3, ≥99.0%), aniline monomer (C6H5NH2, ≥99.5%), ammonium persulfate
((NH4)2S2O8, 98%) and glycine (C2H5NO2, ≥98.5%) were obtained from Sigma-Aldrich (Toluca,
Edo. Mex., México). Diethyl ether ((C2H5)2O, 99.90 %) was bought from CTR Scientific (Monterrey,
N.L., México). Hydrochloric acid (HCl, 36.5–38%) and ammonium hydroxide (NH4OH, 28.7%) were
obtained from J. T Baker (Phillipsburg, NJ, USA). Meanwhile, chloroform (CHCl3, 99.9%) was purchased
from Fermont (Monterrey, N.L., México). Deuterated solvents including chloroform-d (CDCl3) and
methanol-d4 (CD3OD) were used as received for NMR spectroscopic analysis.

The FTIR spectra of the materials synthesized were acquired using a Thermo Scientific Nicolet
spectrometer with a wavenumber between 4000 cm−1 and 400 cm−1 performing a total of 64 scans. The
chemical structure of PANI was verified by 1H NMR using a 300 MHz Jeol spectrometer JNM-ECO300.
The thermal stability, composition and purity of the materials were analyzed using TGA/DSC SDT-Q600
implementing a temperature program from 25 ◦C to 600 ◦C. A Jeol 5300 scanning electron microscope
(SEM) with a dispersive energy detector (EDS) was utilized to observe the morphology of the samples
and elemental analysis. UV-Vis spectra of PANI and composite were obtained by using a Jenway 6850
spectrophotometer in the wavelength range of 300 nm to 1000 nm. The samples deposited on glass
substrates were analyzed with an uncoated glass substrate as a reference.

3.2. Polymerization of Aniline

In a beaker equipped with a magnetic stirrer and stirring rack, aniline monomer was acidified with
10 mL of HCl 1 M under constant stirring at 550 rpm by adding aniline dropwise at room temperature.
Immediately after, HCl 1 M was poured until a pH close to zero was obtained. The mixture was placed
in a cooling bath (which was prepared by a layer of pulverized ice in a crystallizer, followed by a
layer of sodium chloride and another layer of pulverized ice) and stirred at 550 rpm. The mechanism,
see Figure 10, involves an intricate interplay of consecutive chemical and physical reactions that
need constant monitoring of the different included parameters in these reactions [18]. The pH and
temperature monitoring were developed using an HI 2550 pH/ORP & EC/TDS/NaCl Meter Hanna
Instruments. When reaching a temperature of −5 ◦C, 10 ml of APS 1.37 M ([APS]/[Aniline] molar ratio
= 1.25) were added dropwise. Then, it was collocated under constant stirring for 2 h, maintaining the
temperature at −5 ◦C during the entire reaction.

3.3. Purification Process of PANI

In this step, it was recommended that a phase separation system where PANI doping was
performed within the same procedure was used. This means obtaining a higher yield percentage from
the PANI-EB than was previously reported. The product obtained in the aniline polymerization was
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treated in an extraction funnel with 30 mL of diethyl ether and 23 ml of 1 M ammonium hydroxide,
which was stirred and depressurized. This allowed a phase separation by precipitation of the organic
phase. In addition, this enabled a pH change in the PANI which is in its PANI-ES phase with an acidic
pH after the polymerization.Molecules 2018, 23, x FOR PEER REVIEW 10 of 14 
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A portion of organic solvent with brown contaminants was removed from the extraction funnel
with the help of a Pasteur pipette, while the aqueous phase was filtered using Whatman #43 filter
paper. The bulk product was kept in the filter while the precursors and/or unreacted by-products were
removed by filtration. Then, four different processes were carried out to continue the purification.
This stage is important because they can negatively influence the subsequent properties. Furthermore,
to ensure its application in the biomedical field, cytotoxicity in biological compounds is associated
with components of low molecular weight that must be eliminated from the material [15]. The main
problem in the electronic applications for this compound are the impurities surrounding the AgNPs
over PANI, preventing the current from passing through the two materials correctly.

3.3.1. Process 1

The product of the filter paper, obtained in the previous filtrate, was dispersed in 500 mL of
chloroform–methanol in a volumetric ratio of 1:1 by magnetic stirring at room temperature for 10 min
and refiltered using a filter paper, Whatman #43. The resulting product by this process did not have
a great solubility in organic solvents, its coloration was emerald green and a pH value of 2 was
acquired. It was filtered again and put into a vacuum oven for drying by approximately 24 h, resulting
in PANI P1.

3.3.2. Process 2

The reaction system was modulated according to pH by employment of ammonium hydroxide 1 M.
It was increased to a pH value of 10 from the stage of the extraction funnel, adding more ammonium
hydroxide, which caused the phase change to PANI-EB. This product (PANI P2) was more soluble in
solvents; however, PANI was lost in the filtrate due to this reason.

3.3.3. Process 3

The product obtained in the filtrate before the polymerization was dispersed in 500 mL of
chloroform–methanol in a volumetric ratio of 1:1 by magnetic stirring at room temperature for 10 min.
Then, the temperature was raised to 40 ◦C in the PANI suspension with chloroform–methanol to try to
increase its solubility. This caused a change in the coloration from green to violet, characteristic of
the PANI-PB. The suspension was filtered using a filter paper, Whatman #43. The filtration allowed a
seemingly black powder to be obtained that was dried in the vacuum oven as in the previous processes
used for obtaining PANI P3.
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3.3.4. Process 4

After the first filtration was developed, a wash with deionized water was carried out reaching
a pH value of 2. It was filtered, and1 M ammonium hydroxide drops were added until a pH value
of 7.2 was reached. It was subsequently filtered with filter paper, Whatman #43, and washed again
with deionized water and drying at 30 Pa. The product obtained was a bluish powder (PANI P4) with
72% yield. 1H NMR (300 MHz, CDCl3 and CH3OH): δ = 2 ppm (s, J = 982 Hz, CH3(CO)CH3), δ = 2.87
ppm (s, J = 1435 Hz, shielded N–H), δ = 2.85 ppm (s, J = 1656 Hz, shielded Ar–H), δ = 4.6–5.0 ppm (m,
J = 2296 Hz, heterojunction structures placed by oxidation and CH3OH), δ = 7.9 ppm (s, J = 3952 Hz,
shielded CDCl3), see Figure 11.
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3.4. Synthesis of PANI/AgNPs in Situ Composite

The composite, see Figure 12, was carried out in a beaker equipped with a magnetic stirrer by direct
addition of 1 mL of silver nitrate 3 mM and 10 µl of glycine 0.6 M in a molar ratio of [Gly]/[AgNO3] = 2
into the mixture of aniline acidified to pH ≈ 0 with HCl 1 M. The suspension was stirred at 550 rpm for
10 min and then collocated into the cooling bath, where 10 mL of APS 1.37 M was added at −5 ◦C.
Afterwards, the stirring continued for an additional 2 h under the same conditions. The bulk product
was then purified by the proposed purification for the process 4. The final product was a bluish powder.Molecules 2018, 23, x FOR PEER REVIEW 12 of 14 
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The most feasible approach to the synthesis and stabilization mechanism of AgNPs inside a
PANI matrix is by the oxidation of aniline and posterior reduction of silver ions to Ag0. Limitation of
aggregation is observed for PANI itself where amine groups stabilize AgNPs, see Figure 13.
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3.5. Theorical Prediction of Surface Plasmon Resonance

The theoretical prediction of the peak due to Surface Plasmon Resonance (SPR) of AgNPs
embedded in PANI was made by Mie calculations, using the software “MiePlot v4612”. The particle
size distribution was theoretically calculated by plotting the extinction, scattering and absorption
cross-sections versus the wavelength. The sphere was selected as silver and the surrounding medium
was selected as water. The wavelength selected was from 200 to 600 nm. The corresponding data
obtained from the model were compared to UV-Vis results from the experiment.

4. Conclusions

PANI was successfully prepared via oxidative polymerization at the molar ratio of the oxidant
to aniline of 1.25, controlling pH and temperature, and it was characterized for its chemical, optical,
thermal and microstructural properties. The purification of PANI is crucial for its sensing application.
Therefore, a new method for its purification was applied based on phase separation by organic
solvents, finding a way to dedope PANI during the process, and prevent it from undergoing a phase
change. The reduction of the contaminant was observed by TGA for both materials, verified by the
decrease in weight loss in comparison to the literature for the impurities characteristic of the synthesis.
PANI/AgNPs in in situ composite were also synthesized using APS as the oxidant, AgNO3 as the
co-oxidant and silver precursor. This was verified by chemical and optical characterization. It was
found that the morphology of these materials was a grainy shape where silver agglomerates PANI
around itself in the composite. Finally, the above implies the stabilization mechanism of AgNPs (Ag0)
by amino groups of PANI. As future work, the enzyme immobilization development on PANI and
PANI/AgNPs activated materials is proposed, in order to apply them successfully and improve the
functionality of biosensors.
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