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Abstract: Guava (Psidium guajava L., Myrtaceae) leaves have been used as a folk herbal tea to treat
diabetes for a long time in Asia and North America. In this study, we isolated polysaccharides from
guava leaves (GLP), and evaluated its antioxidant activity in vitro and anti-diabetic effects on diabetic
mice induced by streptozotocin combined with high-fat diet. The results indicated that GLP exhibited
good DPPH, OH, and ABTS free-radical scavenging abilities, and significantly lowered fasting blood
sugar, total cholesterol, total triglycerides, glycated serum protein, creatinine, and malonaldehyde.
Meanwhile, it significantly increased the total antioxidant activity and superoxide dismutase (SOD)
enzyme activity in diabetic mice, as well as ameliorated the damage of liver, kidney, and pancreas.
Thus, polysaccharides from guava leaves could be explored as a potential antioxidant or anti-diabetic
agents for functional foods or complementary medicine.
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1. Introduction

Diabetes mellitus (DM) is the most common progressive disease which is characterized as
continuous hyperglycemia due to the impairment of insulin production by pancreatic β-cells and/or
caused by peripheral insulin resistance [1]. Long-term hyperglycemia is associated to increasing
dyslipidemia, reactive oxygen species production, and declining antioxidant status [2]. Oxidative
stress is one of the main mechanisms of progression of diabetes and actively leads to cellular damage
that precedes the onset of many diabetic complications [3].

Oral hypoglycemic drugs sold on the market have side effects such as gastrointestinal discomfort,
weight gain, and hepatic dysfunction [4]. Therefore, it is an urgent need to find new potential agents
for prevent and treat DM. Plants are known to possess a wide variety of pharmacological effects and
extraordinary therapeutic possibilities. Psidium guajava Linn. is a common fruit plant available in many
countries having tropical and subtropical climates. Guava leaves have been used as a folk medicine or
herbal tea to treat diarrhea [5] and diabetes [6,7] in India, China, Pakistan, Bangladesh, and Mexico for
a long time due to lower toxicity and good therapeutic function [8,9]. Díaz-De-Cerio et al. verified that
the hypoglycemic effects of guava-leaf ethanolic extract were associated with improving endothelial
dysfunction in obesity mice [10]. Shen et al. verified that aqueous soluble extract from guava leaves has
antihyperglycemic function against type 2 diabetes [11]. Previous studies were focused on flavonoids
and phenolic compounds extracted from guava leaves. However, no study has been conducted to
prove the anti-hyperglycemic effect of polysaccharides from guava leaves. Polysaccharides from
natural products have become a research hotspot because of their multiple biological activities such
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as antioxidant [12,13], anti-inflammatory [14], anti-diabetic [15–17], immunomodulatory [18,19], and
anti-tumor [20,21] effects.

This study thus aims to demonstrate the anti-diabetic activity of polysaccharides from guava
leaves using the mice model induced by streptozotocin combined with a high-fat diet.

2. Results and Discussion

2.1. The Composition and Characteristics of Guava Leaves (GLP)

The content of total sugar in GLP was 62.58% without reducing sugar, and the content of uronic
acid was 7.59%. It meant that neutral polysaccharides were dominant. GLP showed negative response
to coomassie brilliant blue reaction. It indicated that there was no protein in GLP. Four fractions could
be detected in GLP using HPLC-RI system and their retention time were 8.587 min, 10.57 min, 11.92 min,
and 17.94 min, respectively (Figure 1). The proportion of four fractions was about 23.28%, 7.57%,
3.04%, and 66.10%, respectively. Their molecular masses were 957.09 kDa, 288.40 kDa, 127.40 kDa,
and 3.34 kDa, respectively. It illustrated that the majority of GLPs were low molecular weight
polysaccharides, followed by high molecular weight ones. Yuan et al. reported that polysaccharides
extracted from mulberry leaves (MLP) had several fractions composed of high molecular weight
polysaccharides (≥80.99 kDa) and low molecular weight polysaccharides (3.64 kDa) [13].
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Figure 1. HPLC chromatograms of guava leave (GLP).

2.2. Antioxidant Activity of GLP

Free radicals in the body regulate cell growth as well as inhibit viruses and bacteria [22].
However, excessive free radicals will cause several chronic human diseases such as aging, cancer, and
arteriosclerosis [23]. The antioxidant capacity of GLP was determined on the basis of their scavenging
ability of DPPH, OH, and ABTS free radicals as shown in Table 1. The results indicated that GLP
had strong abilities of scavenging DPPH, OH, and ABTS free radical with IC50 of 46.49 µg/mL,
175.52 µg/mL, and 102.82 µg/mL, respectively, which were all higher than that of the positive control,
such as ascorbic acid or Trolox.
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Table 1. The antioxidant activities of GLP.

IC50/µg/mL GLP Positive Control

DPPH assay 46.49 ± 0.22 7.03 ± 0.15
OH assay 175.52 ± 0.31 119.37 ± 0.24

ABTS assay 102.82 ± 0.26 19.82 ± 0.11

Many researchers also reported the antioxidant activity of polysaccharides from other natural
products. Polysaccharides from maca leaves had strong effects on scavenging DPPH radical with an
IC50 of 0.82 mg/mL [24]. Polysaccharides from olive leaves also displayed good ability of scavenging
DPPH radical (IC50 = 34.80 µg/mL) [25]. Algal polysaccharides had been verified to play a crucial
role as free radicals scavengers in vitro [26]. It suggested that the potential antioxidant activity of GLP
might be better than that of some other similar products.

2.3. Hypoglycemic Activity of GLP

2.3.1. Ameliorating Body Weight Loss

STZ could cause a severe loss in body weight since muscle destruction or degradation of structural
proteins [27]. The body weight of model group (MG) mice declined obviously after STZ injection
when compared with that of normal group (NG) mice (Figure 2). The body weight of MG mice
continuously decreased from 31.07 g to 28.36 g. When treated with low-dose polysaccharides or
high-dose polysaccharides for 2 weeks, the body weight of those diabetic mice was partly recovered.
The results indicated that GLP could significantly ameliorate body weight loss, which was better than
that of positive group (PG) (p < 0.05).
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Figure 2. The body weight of mice in 5 weeks after modeling. NG, normal group; MG, model group;
PG, positive group; LP, low-dose polysaccharides group; HP, high-dose polysaccharides group. “##”
represents very significant difference compared with NG (p < 0.01); ** represents very significant
difference compared with MG (p < 0.01); * represents significant difference compared with MG
(p < 0.05).

2.3.2. Regulating Fasting Blood Glucose

After STZ injection, fasting blood glucose (FBG) levels in MG mice (14.37 mmol/L) were
significantly higher than those of NG mice (3.44 mmol/L) (p < 0.01). In contrast, FBG levels of
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the mice treated with polysaccharides and acarbose significantly decreased (Figure 3). There was no
significant difference of FBG levels between high-dose polysaccharides (HP) group (11.69 mmol/L)
and PG group (10.40 mmol/L) (p > 0.05). The results indicated that GLP could effectively decrease
FBG of diabetic model animals. The similar conclusion could be found in other plant polysaccharide
research. Kiho et al. reported that acidic polysaccharide from tremella aurantia depressed the increase
of plasma glucose in diabetes using genetically non-insulin-dependent diabetic model mice [28].
Jiao et al. demonstrated that polysaccharides from Morus alba fruit significantly reduced the FBG of
type 2 diabetic rats induced by high-fat diet combined with streptozotocin injection [29].
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Figure 3. The fasting blood glucose of mice in 5 weeks after modeling.

2.3.3. Regulating Biochemical Indictors

Total cholesterol (TC) is a key index of blood lipid in clinical practice which is defined as the
sum of all lipoprotein cholesterol in the blood. High level of TC indicates high risks of atherosclerosis,
coronary heart disease, and diabetes [30]. Triglycerides (TG) are the main constituents of body fat in
humans, and excessive TG can cause fatty liver, obesity, and pancreatitis [31]. The results showed that
MG mice had significant high levels of TC and TG compared with NG mice (p < 0.01). The acarbose
and polysaccharides noticeably reduced the high levels of TC and TG of MG mice (p < 0.01) (Table 2).

Table 2. Regulation effects of polysaccharides on biochemical indicators.

Group TC (mM) TG (mM) CRE (µM) GSP (mM) T-AOC (mM) T-SOD
(U/mgprot)

MDA
(nmol/mgprot)

NG 2.71 ± 0.24 0.75 ± 0.14 9.43 ± 0.86 1.99 ± 0.11 0.84 ± 0.04 796.52 ± 17.35 6.94 ± 0.29
MG 6.71 ± 0.90 ## 2.18 ± 0.30 ## 22.52 ± 3.60 ## 3.07 ± 0.15 ## 0.55 ± 0.03 ## 608.95 ± 24.73 ## 12.50 ± 1.42 ##

PG 5.36 ± 0.51 ** 1.76 ± 0.12 ** 13.26 ± 1.21 ** 2.48 ± 0.09 ** 0.68 ± 0.02 ** 721.83 ± 32.66 ** 9.11 ± 0.35 **
LP 4.52 ± 0.63 ** 1.35 ± 0.22 ** 14.19 ± 1.14 ** 2.85 ± 0.18 ** 0.70 ± 0.01 ** 702.13 ± 11.76 ** 9.75 ± 0.37 **
HP 3.98 ± 0.35 ** 1.32 ± 0.16 ** 13.28 ± 1.04 ** 2.43 ± 0.15 ** 0.75 ± 0.02 ** 730.80 ± 12.98 ** 8.99 ± 0.26 **
## represents very significant difference compared with NG (p < 0.01); ** represents very significant difference
compared with MG (p < 0.01).

The excretion of creatinine is an indicator for monitoring the kidney metabolism. The creatinine in
MG mice increased about 2.4 times (p < 0.01) to that in NG mice. The content of creatinine in low-dose
polysaccharides (LP) and HP mice decreased by 36.99% and 41.03%, respectively. It illustrated that
polysaccharides effectively decreased creatinine content in MG mice. Accumulation of the blood
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creatinine occurs with the impaired renal function [32]. Therefore, it could be inferred that GLP has
the activity of protecting kidney.

Glycated serum protein (GSP) level is a good indicator to reflect the average level of blood glucose
in the past 1–2 weeks [33]. GSP level of MG mice (3.07 ± 0.15 mM) was much higher than that of NG
mice (1.99 ± 0.11 mM) (p < 0.01). Acarbose and polysaccharides significantly reduced GSP level of
MG mice in a dose-dependent way (p < 0.01). Compared with the MG mice, the GSP level in PG, LP,
and HP mice decreased by 19.22%, 7.17%, and 20.85%, respectively. It was consistent with the FBG
test result.

The antioxidant capacity was closely related to body health. A reduced antioxidant capacity could
easily cause inflammation, cancer, diabetes, and other disease [34]. The total antioxidant capacity of
MG mice was much lower than that of NG mice (p < 0.01). However, polysaccharides significantly
enhanced the total antioxidant capacity of MG mice in a dose-dependent way (p < 0.01). The total
antioxidant capacity of LP and HP was 0.70 mM and 0.75 mM, respectively.

SOD enzyme plays a significant role in enzymatic defense system. SOD activity in diabetes model
mice significantly decreased when compared with that in normal mice (p < 0.01). When diabetic
mice were treated with acarbose and polysaccharides, their SOD activity significantly improved
(p < 0.01). Total superoxide dismutase (T-SOD) activity of PG, LP, and HP mice was 721.83 U/mgprot,
702.13 U/mgprot, and 730.80 U/mgprot, respectively.

Lipid peroxidation is cytotoxicity by forming malondialdehyde, which can cause cross-linking
polymerization of proteins, nucleic acids, and other macromolecules. Nutrient overload such
as hyperglycemia and hyperlipidemia could stimulate the lipid peroxidation and generate α,
β-unsaturated 4-hydroxyalkenals [35]. Malonaldehyde (MDA) content in MG mice was much
higher than that in NG mice (p < 0.01). When compared to MG mice, acarbose and polysaccharides
effectively reduced MDA content, and MDA content in PG, LP, and HP decreased by 27.12%, 22%, and
28.08%, respectively.

GLP had strong free radical scavenging capacities in vitro and also enhanced the antioxidant
status in diabetic mice. The results are similar to the previous studies. Polysaccharides from Fuzhuan
brick teas displayed good free radical scavenging activity in vitro and also had protective effects on
high-fat diet-induced oxidative injury in vivo [36]. Polysaccharides from the algae Gracilaria caudata
exhibited significant antioxidant activity in vitro and also greatly improved the antioxidant system in
rats [37]. Oxidative stress is produced under diabetic conditions in various tissues and damages cellular
organelles, which increases lipid peroxidation and causes insulin resistance [38]. Therefore, prevention
of oxidative stress may be a potential method to avoid type 2 diabetes. Many studies verified that the
anti-diabetic activity of polysaccharides in part resulted from their antioxidant effects [39,40].

2.3.4. Protective Effect on Liver, Kidney, and Pancreas

Significant differences in the pattern and number of mice hepatocytes were observed among
different experimental groups, shown in Figure 4. Normal hepatic cells had clear boundaries and round
nucleus, which was surrounded by rich cytoplasm (Figure 4a). The inflammatory cells infiltration,
cell swelling, focal necrosis and plasma osteoporosis, translucent, but still in the shape of polygons
appeared in MG mice (Figure 4b). In the acarbose group (PG), changes in size and shape of hepatic
cells were not evident, but inflammatory cells infiltration and some cytoplasm transparent occurred
(Figure 4c). HP apparently effectively alleviated the symptoms of focal necrosis and infiltration of
lymphocytes in the MG mice (Figure 4e).
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The H&E stained sections of the renal tissue samples are presented in Figure 5. The regular
shape of glomerulus, renal tubule and collecting duct was clear and distinguishable in the NG mice.
Moreover, plump cells were neatly arranged, with little intercellular space. No abnormal symptoms
were observed in kidney tissue (Figure 5a). In contrast, the renal cortex and medulla of the STZ-induced
diabetic MG mice showed varying degrees of atrophy. Inflammatory cell infiltration and congestion in
central vein indicated a poor condition. Glomerulosclerosis and irregular distribution of renal cells
were observed (Figure 5b). Acarbose and polysaccharides relieved the kidney injury in diabetic mice
to a certain extent. The shape and distribution of cells looked normal, but glomerular tissue was still
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infiltrated by the inflammatory cells (Figure 5c–e). HP showed better effects in terms of the protection
of renal impairment (Figure 5e).Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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The protective effect on pancreatic islets is shown in Figure 6. The normal islet cells were closely
arranged with clear boundaries (Figure 6a). However, serious pathological damages such as focal
necrosis, inflammatory cell infiltration, and congestion in central vein were clearly observed in the MG
mice (Figure 6b). Acarbose could repair the damage incurred by pancreas exposure to STZ. No lager
area of cell necrosis occurred in the pancreatic tissue of PG mice, but vacuous areas and inflammatory
cells can be observed (Figure 6c). The groups fed with LP (Figure 6d) and HP (Figure 6e) showed good
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effects on the recovery of impairment of pancreatic islets induced by STZ. The pancreatic cells were
relatively homogeneous and arranged in good shape. Moreover, the focal necrosis and infiltration of
inflammatory cell were improved evidently. The results were in consistent with protective effects of
herbal polysaccharides on the pancreatic tissue of T2DM rats [29].Molecules 2019, 24, x FOR PEER REVIEW 8 of 14 
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Figure 6. Pancreas histology images (HE staining, 100×). (a) NG; (b) MG; (c) PG; (d) LP; (e) HP.

Histological analysis suggested that GLP effectively alleviated inflammation and protected the
tissue structure of the liver, kidney, and pancreas in diabetic mice. This would help to control the
deterioration of diabetes and the occurrence of related complications.
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3. Materials and Methods

3.1. Materials and Chemicals

Guava leaves were obtained from Jiangmen Nanyue Guava farmer cooperatives (Guangdong,
China). Leaves were dried at 60 ◦C, then pulverized and sieved (40 mesh) for the experiments.

1,1-Diphenyl-2-picrylhydrazyl (DPPH) was purchased from Shanghai Macklin Biochemical Co.,
Ltd. ABTS+ and Trolox were obtained from Aladdin Industrial Corporation (Shanghai, China).
Ascorbic acid was purchased from Sinopharm chemical reagent Co., Ltd. (Shanghai, China). Dextran
T-2000, T-500, T-70, T-40, and T-10 were purchased from Solarbio (Beijing, China). Acorbose was
obtained from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Streptozocin was obtained from MP
Biomedicals (Santa Ana, California, USA). Assay kits for total cholesterol (TC), total triglycerides
(TG), glycated serum protein (GSP), creatinine (CRE), total antioxidant capacity (T-AOC), total
superoxide dismutase (T-SOD), and malonaldehyde (MDA) were purchased from Nanjing jiancheng
Bioengineering Institute (Nanjing, China). The high fat diet consisted of 10% lard, 20% sucrose, 10%
yolk powder, 0.5% sodium cholate, and 59.5% conventional feed, which was purchased from Jiangsu
synergetic pharmaceutical bioengineering Co., Ltd. (Nanjing, China).

3.2. Extraction of Polysaccharides from Guava Leaves (GLP)

Each 10 g of dried guava leaves sample was pre-treated with 40 mL 95% ethanol to remove
most of the polyphenols, pigments, monosaccharides, and fats. After filtration, the hot air-dried
residues were extracted with 100 mL distilled water in an AS20500ATH ultrasonic bath (400 W, 40 KHz,
Tianjin Automatic Science Instrument Co., Ltd., Tianjin, China) at 60 ◦C for 20 min (2 times). The
aqueous extracts were concentrated using a rotary evaporator and deproteinized following the Sevag
method [41]. After the removal of the Sevag reagent, the extracts were precipitated with ethanol to a
final concentration of 70% at 4 ◦C overnight. The precipitation was dissolved in purified water and
dialyzed against distilled water for 48 h with dialysis bag (molecular weight cut-off, 3000 Da), and
then concentrated and lyophilized.

3.3. Analysis of the Composition of Polysaccharides

The total sugar content was determined by the phenol–sulfuric acid method using glucose as
a standard [42]. The content of uronic acid was measured by the m-hydroxydiphenyl method using
galacturonic acid as a standard [43]. Reducing sugar content was determined by dinitrosalicylic acid
method [44]. Protein content was measured with the coomassie brilliant blue reaction [45].

The average molecular weight distribution of GLP was determined using a high-performance
liquid chromatography (HPLC, Waters e2695 Separations Module, USA) equipped with a TSK-gel
column (G4000PWXL, TOSOH, Japan) and a RI detector. The HPLC analysis was performed at 35 ◦C
with the flow rate of 1 mg/mL. The calibration of standard curve was regressed with the retention
time against the logarithm of the average molecular weight of the dextran standards (T-2000, T-500,
T-70, T-40, and T-10). The average molecular weight of GLP was calculated with the calibrated curve.

3.4. Antioxidant Activities

3.4.1. DPPH Radical Scavenging Activity

DPPH radical scavenging assay was carried out by following a method reported by Shimada
et al. [46]. DPPH methanol solution of 0.6 mM concentration was prepared. A volume of 200 µL of
DPPH solution was added to 100 µL GLP solution. The solution was evenly mixed and reacted at
room temperature in dark. After 30 min, the absorbance of the solution was measured by a microplate



Molecules 2019, 24, 1343 10 of 14

reader (PerkinElmer, Singapore) at 517 nm. The analysis was in triplicate. Ascorbic acid was used as a
positive control. DPPH radical scavenging activity was calculated by Equation (1).

DPPH radical scavenging rate (%) =
1 − (As − Ao)

Ab
× 100 (1)

where As and Ao are the absorbance of the sample reaction solution and the sample solution without
DPPH, and Ab is the absorbance of DPPH solution.

3.4.2. OH Radical Scavenging Activity

OH radical scavenging activity was determined by salicylic acid method [47]. A volume of 500 µL
sample solution was taken into a test tube. In total, 500 µL of 6 mM FeSO4 solution, 500 µL of 6 mM
salicylic acid ethanol solution, 2 mL distilled water, and 500 µL of 2.4 mM H2O2 were successively
added into the test tube. After incubation for 15 min at 37 ◦C in the water bath, the absorbance of the
mixture solution was measured at 510 nm. Ascorbic acid was used as the positive control. Each sample
was done for three times. Hydroxyl radical clearance rate was calculated by Equation (2).

OH radical clearance rate (%) =
Ao − (As − A)

Ao
× 100 (2)

where Ao represents the absorbance of distilled water (blank control), As is the absorbance value of
sample solution, and A is the absorbance of sample solution without H2O2.

3.4.3. ABTS Radical Scavenging Activity

The ABTS radical scavenging activity was evaluated by ABTS radical cation decolorization
assay [48] with modifications. ABTS+ was prepared by mixing 7 mM ABTS+ solution with 2.45 mM
K2S2O8 solution (1:1, v/v) at room temperature in dark for 16 h. The ABTS+ solution was diluted with
purified water to an absorbance of 0.070 ± 0.02 at 734 nm. In total, 50 µL sample solution was reacted
with 200 µL of ABTS+ at room temperature for 10 min in dark. The absorbance of the mixture was
measured at 734 nm. Trolox was used as a positive control. The scavenging rate was calculated by
Equation (3).

ABTS radical scavenging rate (%) =

(
1 − As

Ab

)
× 100 (3)

where As is the absorbance of the sample and Ab is the absorbance value of the blank.

3.5. Animal Experiments

3.5.1. Modeling and Drug Administration

Male ICR mice weighing 18–22 g were purchased from Hunan SJA Laboratory Animal Co., Ltd.
(Changsha, China). Mice were raised in SPF-level lab (temperature of 23 ± 2 ◦C, a 12 h-light/12 h-dark
cycle) and acclimatized in cages for 7 days.

After a week of adaptation, 8 mice were randomly selected as the normal group (NG). The NG
mice were provided with conventional feed, while other mice were fed with high-fat diets for 3 weeks.
After fasting for 12 h, the NG mice were intraperitoneally injected with 0.2 mL saline, whereas the other
mice were injected with 0.2 mL of STZ solution at a dose of 40 mg/kg body weight. This treatment
was repeated after two days. The fasting blood glucose (FBG) of these mice was greater than or equal
to 11.1 mmol/L was identified as the diabetic model. The hyperglycemic mice were randomly divided
into three groups: model group (MG, water), positive control group (PG, 10 mg/kg acarbose), low-dose
polysaccharides group (LP, 100 mg/kg), and high-dose polysaccharides group (HP, 200 mg/kg). GLP
and acarbose solution was given to mice by intragastric administration every day. All mice were
provided with a conventional diet after modeling. Weight and FBG were monitored once a week for
4 weeks. The blood glucose level of the mice was measured from the tail veins by glucometer (Sinocare
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Inc., Changsha, China). In the final stage, blood was collected from the infraorbital angular vein after
slight anesthetization. After blood collection, the mice were sacrificed for sampling the liver, kidney,
and pancreas.

All procedures were performed in accordance with Public Health Service policies, the Animal
Welfare Act, and the Laboratory Animal Committee (LAC) of South China University of Technology
Policy on the Humane Care and Use of Vertebrate Animals. The ethic approval number is 2018001.

3.5.2. Biochemistry Indexes Assessment

Serum was collected by centrifugation of blood at 4000 rpm for 15 min at 4 ◦C. Biochemical
indexes including GSP, CRE, TG, TC, and T-AOC were measured on Multi-mode (PerkinElmer EnSpire,
Singapore) by using assay kits.

The hepatic T-SOD and MDA were determined with the assay kit in accordance with
the specification.

3.5.3. Histopathological Examination

Liver, kidney, and pancreas tissues were embedded in paraffin. Paraffin sections were sliced
and stained with hematoxylin–eosin (HE). The tissues were visualized using an CX41 microscope
(Olympus, Japan) equipped with MDX4 (Mshot, Guangzhou, China) digital camera system under
100 × magnification.

3.6. Statistical Analysis

All experimental data were presented as means ± standard deviation (SD). Data were analyzed
by one-way analysis of variance procedure with Duncan’s test (SPSS 17.0) (IBM, Chicago, IL, USA).
p < 0.05 was considered as significant difference.

4. Conclusions

GLP exhibited excellent free radical scavenging activities in vitro. Furthermore, animal
experiment results demonstrated that GLP exerted anti-diabetic effects in STZ-induced diabetic mice,
significantly lowered FBG, TC, TG, GSP, CRE, MDA content, and increased T-AOC and T-SOD enzyme
activity. Moreover, GLP could ameliorate liver, kidney, and pancreas damage. The overall findings
suggest that polysaccharides from guava leaves could provide health benefits and might be considered
as pharmaceutical or functional food ingredient.
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