Supporting Information

for

Cytotoxic aspidosperma-type monoterpenoid indole alkaloids from *Bousigonia mekongensis* inhibit tubulin polymerization

- Yu Zhang^{a,b}, Masuo Goto^{b,**}, Akifumi Oda^c, Pei-Ling Hsu^b, Ling-Li Guo^a, Yan-Hui Fu^a, Susan L. Morris-Natschke^b, Ernest Hamel^d, Kuo-Hsiung Lee^{b,e,**} Xiao-Jiang Hao^{a,*}
- ^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China
- ^bNatural Product Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- ^cGraduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
- ^dScreening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
- ^eChinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, 40447, Taiwan

Contents:

Supplementary Figure S1. Inhibition of tubulin polymerization by compounds.

Supplementary Figure S2. Predicted docking models for 3, 4, 11, and 13 binding in the CS.

Supplementary Tables S1-S3. ¹H and ¹³C NMR data (δ) for compounds 1-14.

Supplemental Figure S1. Inhibition of tubulin polymerization by compounds.

Vincristine-resistant KB-VIN cells were treated with compounds for 24 h at a concentration of $3 \times IC_{50}$. Fixed cells were stained with antibodies to α -tubulin (green) and phospho-histone H3 (pH3, red), and DAPI was used for DNA (blue). Stained cells were observed by confocal fluorescence microscope, and confocal images were reconstructed. Bar, 0.025 mm.

Supplementary Figure S2. Predicted docking models for 3, 4, 11, and 13 binding in the CS.

The crystal structures (PDB: 1SA0) of α - (white) and β -tubulin (red) are shown as ribbon diagrams. The distance calculated to be less than 5 Å between heavy atoms is represented by dashed lines. Docking models of compounds (gray skeleton with oxygen in red and nitrogen in blue) **3**, **4**, **11**, and **13** in the CS are shown. Superimposition of docked compounds with the specific amino acid residue forming H-bonds (yellow dashed line) are shown.

No.	1 ^{<i>a</i>}	2 ^{<i>a</i>}	3 ^a	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 ^b	7 ^c
NH	9.31 (s)	9.20 (s)	9.40 (s)	9.34 (s)	9.31 (s)	8.90 (s)	9.23 (s)
3a	3.42 (ddd, 16.0, 5.0, 1.5)	2.89 (m)	4.00 (m)	4.05 (dd, 13.0, 5.5)	3.50 (dd, 12.5,	3.50 (dd, 12.5,	3.51 (dd, 12.0,
					5.5)	5.5)	5.0)
3b	3.18 (dt, 16.0, 1.5)	2.58 (m)			2.79 (d, 12.5)	2.88 (dd, 12.5,	2.90 (dd, 12.0,
						3.5)	3.0)
5a	3.00 (t-like, 7.5)	3.10 (m)	3.11 (m)	2.78 (m)	2.85 (dd, 8.5,	2.86 (dd, 8.5,	2.80 (dd, 8.0,
					6.5)	6.5)	6.0)
5b	2.73 (m)	2.42 (td, 12.0,	2.99 (m)	2.82 (m)	2.48 (br d, 8.5)	2.43 (dd, 8.5,	2.45 (dd, 8.5,
		3.0)				4.0)	4.0)
6a	1.99 (ddd, 12.0, 11.0, 6.5)	1.96 (ddd, 12.0,	2.03 (m)	1.83 (m)	1.86 (ddd, 12.0,	1.91 (ddd, 12.0,	1.97 (m)
		11.5, 6.5)			11.5, 7.0)	11.5, 7.0)	
6b	1.71 (dd, 11.0, 4.0)	1.60 (12.0, 5.0)	1.90 (m)	1.62 (dd, 11.0, 4.0)	1.60 (dd, 12.0,	1.68 (dd, 12.0,	1.63 (m)
					4.5)	5.0)	
9	7.29 (d, 7.5)	7.24 (d, 7.5)	7.34 (d, 7.5)	7.21 (d, 7.5)	7.21 (d, 7.5)	7.01 (d, 8.0)	7.01 (d, 8.0)
10	6.85 (td, 7.5, 1.0)	6.83 (td, 7.5,	6.86 (t, 7.5)	6.84 (t, 7.5)	6.83 (t, 7.5)	6.37 (dd, 8.0,	6.33 (dd, 8.0,
		1.5)				2.0)	2.0)
11	7.13 (td, 7.5, 1.0)	7.10 (td, 7.5,	7.13 (t, 7.5)	7.13 (t, 7.5)	7.11 (t, 7.5)		
		1.5)					
12	7.02 (d, 7.5)	7.00 (d, 7.5)	7.03 (d, 7.5)	7.03 (d, 7.5)	7.00 (d, 7.5)	6.40 (d, 2.0)	6.57 (d, 2.0)
14a	5.78 (ddd, 10.0, 5.0, 1.5)	1.81 (m)	5.86 (dd,	3.56 (t, 4.2)	3.45 (dd, 5.5,	3.48 (dd, 5.5,	3.40 (dd, 5.0,
			10.0, 3.5)		4.0)	3.5)	3.0)
14b		1.53 (m)					

Table S1. ¹H NMR data (δ) for compounds 1-7 ($\delta_{\rm H}$, J in Hz).

15a	5.69 (dt, 10.0, 2.0)	1.78 (m)	5.75 (d, 10.0)	3.15 (d, 4.2)	3.06 (d, 4.0)	3.10 (d, 3.5)	3.06 (d, 3.0)
15b		1.26 (m)					
17a	2.53 (dd, 14.0, 2.0)	2.73 (d, 13.0)	2.59 (d, 12.5)	2.57 (d, 14.5)	2.55 (dd, 15.0,	2.56 (dd, 15.0,	2.54 (d, 15.0)
					2.0)	2.0)	
17b	2.47 (d, 14.0)	2.26 (dd, 13.0,	2.17 (d, 12.5)	2.36 (d, 14.5)	2.48 (dd, 15.0,	2.47 (d, 15.0,	2.45 (d, 15.0)
		2.0)			5.0)	5.0)	
18	0.62 (t, 7.5)	0.57 (t, 7.5)	0.66 (t, 7.5)	0.72 (t, 7.5)	0.70 (t, 7.5)	0.74 (t, 7.5)	0.72 (t, 8.0)
19a	0.98 (m)	0.96 (m)	1.03 (m)	1.03 (m)	1.03 (m)	1.13 (m)	1.05 (m)
19b	0.82 (m)	0.62 (m)	0.90 (m)	0.84 (m)	0.83 (m)	0.90 (m)	0.90 (m)
21	2.68 (br s)	2.48 (s)	3.10 (br s)	2.73 (s)	2.40 (br s)	2.40 (br s)	2.34 (br s)
CO_2CH_3	3.69 (s)	3.68 (s)	3.69 (s)	3.70 (s)	3.71 (s)	3.77 (s)	3.70 (s)
11 - 0 <i>CH</i> ₃						3.79 (s)	
CH ₂ COCH ₃			2.86 (dd,	2.96 (m)			
			13.0, 6.5)				
			2.67 (dd,	2.96 (m)			
			13.0, 5.5)				
CH ₂ COCH ₃			2.21 (s)	2.23 (s)			
^a 500 MHz, a	cetone- d_6 ; ^b 500 MHz, CDCl ₃ ;	^c 400 MHz, acetone	-d _{6.}				

	I INVIR data (0) 101 CC	mpounds o-14 ($O_{\rm H}, J = \Pi = \Pi Z J.$					
No.	8 ^a	9 ^{<i>a</i>}	10 ^b	11 ^{<i>a</i>}	12 ^{<i>a</i>}	13 ^b	14 ^b	
NH	9.30 (s)	9.27 (s)	8.92 (s)	9.33 (s)	9.29 (s)	9.12 (s)	8.95 (s)	
3a	3.44 (br d, 13.0)	3.41 (br d, 13.0)	3.48 (ddd, 16.5,	3.46 (ddd, 16.0,	3.41 (ddd, 16.0,	3.49 (ddd, 13.5,	3.46 (ddd, 16.0,	
			5.0, 1.5)	4.5, 1.5)	5.0, 2.0)	4.0, 1.0)	5.5, 1.5)	
3b	2.90 (br d, 13.0)	2.93 (br d, 13.0)	3.26 (dd, 16.5,	3.25 (dd, 16.0,	3.16 (dt, 16.0,	3.25 (dd, 13.5	3.20 (dt, 15.0	
			1.5)	1.5)	2.0)	1.0)	1.5)	
5a	2.93 (m)	3.02 (m)	3.08 (ddd, 9.0,	3.03 (ddd, 9.5,	2.98 (t-like, 7.5)	3.07 (ddd, 8.0,	3.03 (ddd, 8.0,	
			7.0, 1.5)	7.5, 1.5)		6.0, 1.5)	6.0, 1.5)	
5b	2.74 (11.0, 8.5, 5.0)	2.73 (m)	2.78 (ddd, 9.0,	2.78 (m)	2.70 (ddd, 11.0,	2.75 (m)	2.71 (m)	
			6.0, 2.0)		6.5, 4.5)			
6a	1.94 (ddd, 11.5, 11.0,	2.01 (ddd, 11.0,	2.14 (ddd, 12.0,	2.01 (dd, 11.0,	1.97 (12.0, 11.0,	2.09 (ddd, 10.0,	2.05 (ddd, 12.0,	
	7.0)	10.0, 6.5)	10.0, 6.0)	6.5)	6.5)	9.0, 5.5)	11.0, 6.5)	
6b	1.62 (dd, 11.5, 5.0)	1.58 (dd, 11.0,	1.88 (ddd, 12.0,	1.75 (ddd, 11.0,	1.69 (12.0, 4.5,	1.85 (ddd, 10.0,	1.80 (ddd, 12.0,	
		5.0)	6.0, 2.0)	6.0, 1.5)	1.0)	4.5, 1.0)	6.0, 1.5)	
9	7.25 (d, 7.5)	7.18 (d, 7.5)	7.29 (d, 7.5)	7.34 (d, 7.5)	7.17 (d, 7.5)	7.07 (d, 7.0)	7.08 (d, 8.5)	
10	6.83 (t, 7.5)	6.38 (d, 7.5)	6.91 (td, 7.5, 1.5)	6.86 (td, 7.5, 1.5)	6.40 (dd, 7.5,	6.34 (dd, 7.0,	6.34 (dd, 8.5,	
					2.0)	2.0)	2.5)	
11	7.13 (t, 7.5)		7.18 (td, 7.5, 1.5)	7.15 (td, 7.5, 1.5)				
12	7.02 (d, 7.5)	6.65 (s)	6.85 (d, 7.5)	7.05 (d, 7.5)	6.67 (d, 2.0)	6.40 (d, 2.0)	6.43 (d, 2.5)	
14	3.17 (br d, 3.5)	3.19 (br d, 3.5)	5.94 (ddd, 10.5,	5.95 (ddd, 10.0,	5.77 (ddd, 10.0,	5.97 (ddd, 8.5,	5.93 (ddd, 10.0,	
			5.0, 1.5)	5.0, 1.5)	5.0, 2.0)	4.0, 1.5)	5.0, 1.0)	
15	2.96 (br d, 3.5)	2.94 (br d, 3.5)	5.82 (dt, 10.5,	5.76 (dt, 10.0,	5.68 (dt, 10.0,	5.81 (dt, 8.5, 2.0)	5.77 (dt, 10.0,	
			1.5)	1.5)	2.0)		1.0)	

Table S2. ¹H NMR data (δ) for compounds 8-14 ($\delta_{\rm H}$, J in Hz).

17a	2.56 (br s)	2.54 (br d, 13.0)	2.91 (dd, 15.0,	2.79 (d, 17.4)	2.50 (dd, 15.0,	2.81 (dd, 15.0,	2.77 (dd, 15.0,
			2.0)		1.5)	1.5)	2.0)
17b	2.56 (br s)	2.54 (br d, 13.0)	2.52 (d, 15.0)	2.46 (d, 17.4)	2.45 (d, 15.0)	2.45 (d, 12.5)	2.42 (d, 15.0)
18	0.71 (t, 7.5)	0.72 (t, 7.5)	0.90 (d, 7.0)	0.90 (d, 6.5)	0.62 (t, 7.5)	0.95 (d, 5.0)	0.92 (d, 6.5)
19a	0.92 (q, 7.5)	1.01 (m)	3.36 (q, 7.0)	4.51 (q, 6.5)	0.98 (m)	4.63 (q, 5.0)	4.56 (q, 6.5)
19b	0.92 (q, 7.5)	0.89 (m)			0.82 (m)		
21	2.51 (s)	2.50 (s)	2.80 (s)	2.85 (s)	2.62 (br s)	2.76 (s)	2.73 (s)
CO_2CH_3	3.70 (s)	3.69 (s)	3.81 (s)	3.65 (s)	3.69 (s)	3.76 (s)	3.73 (s)
11 - 0 <i>CH</i> ₃		3.75 (s)			3.74 (s)		3.79 (s)
19-OAc				1.91 (s)		1.93 (s)	
^{<i>a</i>} 500 MHz, a	cetone- d_6 ; ^b 500 MHz,	CDCl ₃ ;					

Table S3. 13 C NMR data (δ) for compounds 1-14.														
No.	1 ^{<i>a</i>}	2 ^{<i>a</i>}	3 ^{<i>a</i>}	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 ^b	7 ^c	8 ^{<i>a</i>}	9 ^a	10 ^b	11 ^{<i>a</i>}	12 ^{<i>a</i>}	13 ^b	14 ^b
2	167.0	167.9	165.9	167.6	167.7	168.2	168.5	165.7	166.3	167.8	167.5	167.5	167.5	167.3
3	51.0	52.1	53.1	50.7	50.1	50.2	50.6	49.7	49.7	51.4	50.6	50.8	50.7	50.5
5	51.4	50.9	51.7	47.8	50.6	50.6	50.9	51.2	51.2	51.5	51.5	50.9	51.3	51.2
6	45.6	45.3	46.2	44.8	44.7	44.8	45.8	45.2	44.3	45.3	44.9	44.8	44.8	44.8
7	56.2	55.5	56.7	55.9	54.9	54.3	55.2	56.0	54.2	55.1	55.6	54.7	55.3	55.2
8	138.8	138.2	139.7	138.4	137.5	129.9	129.5	138.7	129.8	138.6	138.1	130.9	129.8	129.3
9	122.1	121.3	122.8	122.5	121.4	121.8	122.5	122.3	122.2	121.9	121.6	121.9	122.6	122.3
10	121.1	120.6	121.5	121.0	120.7	105.0	107.6	121.2	107.2	121.2	120.5	104.9	107.9	105.2
11	128.3	127.5	128.4	128.5	127.8	160.1	158.5	128.5	160.5	128.3	127.9	160.3	157.6	160.5
12	110.4	109.4	110.3	110.6	109.4	96.9	98.9	110.5	97.0	110.1	109.9	96.9	98.6	97.2
13	144.5	143.3	144.5	144.4	143.0	144.2	145.5	144.5	144.3	143.7	143.6	144.7	145.2	144.8
14	126.2	22.8	128.4	57.2	54.0	54.0	54.2	52.3	52.4	124.9	127.8	124.9	127.8	127.6
15	133.4	33.6	132.8	59.1	57.2	57.3	57.1	56.1	56.6	133.8	129.9	133.5	129.8	129.8
16	92.4	92.6	90.9	90.6	90.6	90.9	90.8	91.4	91.3	92.9	91.9	92.8	92.2	91.8
17	27.5	26.2	30.2	24.3	23.2	23.2	24.0	24.6	23.3	28.8	27.9	26.9	28.3	27.8
18	7.6	7.4	8.0	7.5	7.2	7.2	7.4	7.2	8.7	17.9	14.9	7.8	16.1	15.2
19	29.4	29.3	31.7	25.2	24.4	24.4	25.0	27.1	26.4	66.8	67.2	28.6	67.3	66.8
20	42.0	38.6	38.5	41.7	41.0	41.1	41.8	37.8	37.5	48.1	46.6	41.7	46.4	46.2
21	70.6	72.6	65.2	63.4	67.6	67.7	68.6	71.4	71.2	68.5	71.3	70.6	70.8	70.5
CO ₂ Me	168.0	169.3	168.6	168.3	168.9	168.9	168.6	168.6	169.2	169.6	169.6	169.6	169.2	169.1
	50.9	51.2	50.9	51.2	51.1	51.1	50.9	50.9	51.4	51.3	51.6	51.5	51.5	51.4
11-OMe	-	-	-	-	-	55.5	-	-	56.0	-	-	55.8	-	56.0

19-OAc	-	-	-	-	-	-	-	-	-	-	171.8	-	171.9	171.5
	-	-	-	-	-	-	-	-	-	-	21.5	-	21.5	21.3
CH ₂ COCH ₃	-	-	43.7	37.8	-	-	-	-	-	-	-	-	-	-
	-	-	207.3	207.7	-	-	-	-	-	-	-	-	-	-
	-	-	30.1	30.4	-	-	-	-	-	-	-	-	-	-
^a 125 MHz, ac	etone- <i>d</i> ₆ ; ^{<i>l</i>}	, 125 MHz,	CDCl ₃ ; ^c 1	00 MHz,	acetone-de									

