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Abstract: The nanohybrid of electrochemically-reduced graphene oxide (ERGO) nanosheets
decorated with MnO2 nanorods (MnO2 NRs) was modified on the surface of a glassy carbon
electrode (GCE). Controlled potential reduction was applied for the reduction of graphene oxide
(GO). The characterization was performed by scanning electron microscopy, X-ray diffraction and
cyclic voltammetry. Compared with the poor electrochemical response at bare GCE, a well-defined
oxidation peak of sunset yellow (SY) was observed at the MnO2 NRs-ERGO/GCE, which was
attributed to the high accumulation efficiency as well as considerable electrocatalytic activity of
ERGO and MnO2 NRs on the electrode surface. The experimental parameters for SY detection were
optimized in detail. Under the optimized experiment conditions, the MnO2 NRs-ERGO/GCE showed
good linear response to SY in concentration range of 0.01–2.0 µM, 2.0–10.0 µM and 10.0–100.0 µM
with a detection limit of 2.0 nM. This developed method was applied for SY detection in soft drinks
with satisfied detected results.

Keywords: colorant analysis; sunset yellow; MnO2 nanorods; electrochemical reduced graphene oxide;
voltammetric determination

1. Introduction

Sunset Yellow (SY) is a water-soluble synthetic colorant, extensively used in the food industry
because of its excellent color uniformity, low production cost, and high stability. However, the content
of SY in foods must be strictly controlled and SY is not allowed to be added to fresh meat because it
can cause allergies, diarrhea and other symptoms in sensitive people [1]. When the intake is too large,
it will accumulate in the body and cause kidney and liver damage. When SY is used as food additive,
the required content is less than 50 ppm [2]. Therefore, for food safety and human health it is quite
important to develop a simple, rapid and sensitive method for the detection of SY.

At present, some analytical methods for SY detection have been reported, such as spectrophotometry [3],
high performance liquid chromatography (HPLC) [4,5], HPLC-mass spectrometry (HPLC-MS) [6], capillary

Molecules 2019, 24, 1178; doi:10.3390/molecules24061178 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/1420-3049/24/6/1178?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24061178
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 1178 2 of 15

electrophoresis [7,8], and fluorescence emission spectrometry [9]. Spectrophotometry, capillary electrophoresis
and fluorescence techniques either suffer from low sensitivity, narrow linear ranges or high detection
limits. Although the chromatographic methods can offer good selectivity and detection limits, they often
require time-consuming detection processes and complex pre-treatment steps. Moreover, these instruments
are rather complicated, expensive, and cannot be employed for on-site measurements. Compared with
the above methods, the newly developed electrochemical methods have received more attention in
practical applications due to their advantages of simplicity, low cost, high sensitivity, and convenience
for in-situ detection. Some chemically modified electrodes have been reported for the electrochemical
detection of SY, For example, a cetyltrimethylammonium bromide-functionalized montmorillonite
calcium-modified carbon paste electrode (CTAB-MMT-Ca/CPE) [10], a Au nanoparticles/graphene-modified
glassy carbon electrode (Au-RGO/GCE) [11], a gold nanorods-decorated graphene oxide-modified
glassy carbon electrode (AuNRs-GO/GCE) [12], a platinum nanoparticles-functionalized graphene
composite-modified glassy carbon electrode (CTAB-Gr-Pt/GCE) [13], a multi-walled carbon nanotubes
and graphene oxide nanocomposite-modified glassy carbon electrode (GO/MWCNTs/GCE) [14],
a ZnO/cysteic acid nanocomposite-modified glassy carbon electrode (ZnO/cysteic acid/GCE) [15],
a bimetallic nanoparticle-functionalized graphene-modified glassy carbon electrode (PDDA-Gr-(Pd-Pt)/GCE;
PDDA-Gr- (Pt-Cu)/GCE;PDDA-Gr-(Co-Ni)/GCE) [16], a chitosan/graphene-modified glassy carbon
electrode (Chit-Gr/GCE) [17], etc. The performance of these modified electrodes is strongly dependent on the
modified materials. Tables 1 and 2 summarize the comparison and advantage data of the different modified
electrodes in SY detection. Each approach has its particular sensitivity and is subject to various limitations.
Therefore, it is still necessary to identify new materials to detect SY accurately and rapidly.

Many researchers have been studying nanoparticles for electrochemical sensors, especially
transition metal oxide nanoparticles such as Fe2O3 [18], Fe3O4 [19,20], Cu2O [21,22], Co3O4 [23],
TiO2 [24], NiO [25], etc„ which have become the most popular material due to their unique properties
of low cost, large surface area, good biocompatibility and distinct catalytic activity. Among them,
non-toxic, economical and effective MnO2 nanoparticles have been extensively developed [26–29].
They can be easily synthesized into various shapes, including rods, porous materials, plates, tubes,
wires, spheres and many others [30–37]. The electrochemical properties of MnO2 nanoparticles can
be easily adjusted by tailoring their shape or morphology [38]. MnO2 nanorods (MnO2 NRs) are
tiny, rod-like nanoparticles which have many interesting functions based on their anisotropic shapes.
However, the poor dispersibility and the poor conductivity of MnO2 NRs have limited their utility in
electrochemical sensors. To overcome these drawbacks, intensive efforts have been applied toward
coupling MnO2 with graphene (GR), because GR is an attractive electrode material with a high
theoretical specific surface area (2520 m2/g) and a high electrical conductivity, and a good candidate
as a carrier [39,40]. The incorporation of GR with MnO2 can produce synergistic effects leading to
improved conductivity, enhanced catalytic activity and improved stability of the MnO2 nanoparticles.
In previous studies, different crystalline forms and morphologies of the MnO2 nanoparticles were
assembled for electrode decoration by using GR [41–43]. The synergistic effect is outstanding,
which confers them a great potential to replace conventional catalysts. However, as for the preparation
of such compounds, conventional methods usually require complex separation processes, including
multiple filtration stages and high-speed centrifugation [44,45]. These are the main obstacles for
practical applications. Therefore, the development of an effective method for preparing the MnO2–GR
hybrid materials is of significant importance.

In our previous work, we proposed an electroreduction technology for the fabrication of
MnO2–graphene hybrid materials with high efficiency and relatively low operating cost [46,47].
Graphene oxide (GO), a derivative of graphene, is highly hydrophilic and dispersible due to its large
number of oxygen-containing functional groups. Therefore, a dispersion of GO and MnO2 NRs was
dropped onto the surface of a glassy carbon electrode (GCE), and then electrochemical reduction of
GO was carried out. The conductivity of electrochemical reduced GO (ERGO) is much higher than that
of GO due to the recovery of the conductive carbon conjugated networks. We found that this hybrid
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material showed superior electrocatalytic activity toward amaranth [46] and dopamine [47]. However,
sensitive and rapid detection of SY using this hybrid material has not been reported yet.

In the present study, a MnO2 NRs-ERGO nanocomposite-modified GCE (denoted as MnO2

NRs-ERGO/GCE) has been prepared by a facile method. The morphology of the nanocomposite
was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the
electrochemical behaviour of the modified electrode was studied by cyclic voltammetry (CV) and
second-order derivative linear sweep voltammetry (SDLSV). Due to electrocatalytic activity of MnO2

NRs-ErGO/GCE toward SY oxidation, a novel electrochemical sensing platform for SY was developed.
The analytical characteristics of the sensor were studied in detail and its applicability toward SY
detection in real samples was evaluated.

2. Results

2.1. Characteristics of the Nanohybrid

The morphology of the materials was revealed by SEM studies. Wrinkled, aggregated, and thin
sheets of GO can be observed in Figure 1A. As seen in Figure 1B, the MnO2 NRs had a uniform
nanorods-like structure (~44 nm in diameter and ~800 nm in length on an average). In Figure 1C,
the MnO2 NRs are randomly assembled with the ERGO flakes. The ERGO flakes were self-assembled
in a layered structure with MnO2 NRs embedded between the layers, suggesting the MnO2 NRs were
combined with ERGO successfully.
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Figure 2. XRD pattern of MnO2 NRs. 

Figure 1. SEM images of GO (A), MnO2 NRs (B), and MnO2 NRs-ERGO (C).

Figure 2 illustrates the XRD pattern of the MnO2 NRs recorded in the 2θ range of 10–70◦. It was
observed that the characteristic reflections of the MnO2 NRs were shown at 2θ = 12.1◦, 18.0◦, 29.3◦,
37.5◦, 42.1◦, 50.1◦, 56.5◦, 60.5◦, and 69.8◦, corresponding to the lattice planes of (110), (200), (310),
(211), (301), (411), (600), (521) and (541), which were well coincided with the standard data file (JSPDS
44-0141), suggesting α-MnO2was perfectly crystallized.
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2.2. Electrochemical Behaviors of SY at Different Electrodes

The cyclic voltammograms (CVs) of 0.1 mM SY in 0.3 M citric acid-sodium citrate buffer (pH = 4.5)
solution at different modified electrodes within the potential range from 0.3 to 1.2 V at a scan
rate of 0.1 V/s are exhibited in Figure 3, where it can be seen that there is a very small oxidation
peak (Epa = 0.804 V, ipa = 1.693 µA) of SY on bare GCE, indicating a slow electron transfer kinetic.
At GO/GCE, the oxidation peak current of SY was smaller than that of GCE because of the low
conductivity of GO. At ERGO/GCE, an improved oxidation peak (ipa = 23.34 µA) at 0.816 V and
a greatly enhanced reduction peak (ipc = 10.88 µA) at 0.717 V were exhibited, indicating that ERGO
was favorable for the electrocatalysis of SY. After ERGO was decorated with MnO2 NRs, a pair of
well-defined redox peaks located at 0.814 V and 0.716 V appeared at the MnO2 NRs-ERGO/GCE.
This pair of quasi-reversible peaks had stronger current responses (ipa = 61.73 µA, ipc = 35.48 µA)
than the abovementioned electrodes. The oxidation peak current was 2.6, 50.6, and 36.5-fold those at
ERGO/GCE, GO/GCE, and bare GCE, respectively. These results proved that MnO2 NRs-ERGO could
readily facilitate electron transfer. MnO2 NRs has excellent electrocatalytic activity, which can be used
as an electronic mediator to promote the transfer of electrons between the electrode and SY. From the
SEM image B in Figure 1, it can be seen that regular high purity nanorods provide good crystallization,
which is favorable for reducing the probability of the recombination of electrons and thus reduces the
chemical energy barrier. Additionally, the nanorods–like MnO2 in Figure 1C show good dispensability
and no obvious agglomeration is observed, plus the significantly rough surfaces and abundant pores,
so the specific surface area of MnO2 NRs-ERGO composite increases dramatically. It is well known
that large specific surface areas provide more active sites and absorb more analytes. Moreover,
these pores also allow the electrons to transit inside their interior pore channels, which would improve
electrocatalytic activity [38]. ERGO has good conductivity and high specific surface area. Furthermore,
the remained O-H functional groups on ERGO also act as catalytic active sites and contribute to the
oxidation of SY [48], thereby improve the performance of the modified electrode.
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MnO2 NRs-ERGO/GCE (d) in 0.3 M citric acid-sodium citrate buffer (pH 4.5), scan rate 0.1 V/s.

The electrochemical behavior of SY on the surface of GCE, GO/GCE, ERGO/GCE, and MnO2

NRs-ERGO/GCE was also studied using second derivative linear sweep voltammetry (SDLSV),
and the results are shown in Figure 4. On the surface of GCE (curve a), the oxidation peak of SY
was very weak (ipa = 1.537 µA). When using the GO/GCE (curve b), the oxidation peak current of
SY decreased slightly (ipa = 1.244 µA). However, the oxidation peak of SY at 0.816 V was enhanced
significantly (ipa = 24.30 µA) on the surface of ERGO/GCE (curve c), indicating the superiority of ERGO
due to its good conductivity, big surface area, and electrocatalytic ability towards SY. While on MnO2

NRs-ERGO/GCE the biggest peak current of 60.08 µA appeared at 0.814 V (curve d). The remarkable
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peak current enlargement revealed that MnO2 NRs-ERGO/GCE exhibited strong signal enhancement
toward the oxidation of SY. From the comparison, we clearly found that MnO2 NRs-ERGO facilitated
the oxidation of SY, and was more sensitive for SY detection.
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(pH 4.5). Accumulation potential: 0.1 V, accumulation time: 180 s, scan rate 0.1 V/s.

2.3. Effect of Scan Rate

In order to investigate the reaction kinetics of SY on the MnO2 NRs-ERGO/GCE, cyclic
voltammograms with different scan rates were recorded (Figure 5A). As shown in Figure 5B, the anodic
peak current (ipa) and cathodic peak current (ipc) of SY were linearly proportional to the scan rate (v)
ranging from 0.03 to 0.3 V/s. The linear equations were as follows, indicating that the electrochemical
process of SY is mainly controlled by adsorption:

ipa (µA) = 186.04v (V s−1) + 2.9024 (R2 = 0.9998) (1)

ipc (µA) = −67.257v (V s−1) −3.1713 (R2 = 0.996) (2)

Figure 5C illustrates the relationships between log i vs. log v. The corresponding equations can be
expressed as follows:

log i pa (µA) = 0.855 log v (V s−1) +2.2022 (R2 = 0.997) (3)

log i pc (µA) = 0.7101 log v (V s−1) +1.7241 (R2 = 0.9990) (4)

The slopes obtained were 0.855 and 0.7101 (approximately equal to 1), confirming the
adsorption-controlled nature of the electrode process of SY. Meanwhile, as depicted in Figure 5D,
the anodic peak potentials (Epa) and cathodic peak potentials (Epc) of SY are linearly related to the
Napierian logarithm of scan rate (ln v) in the range of 0.03–0.3 V/s. The equations are found to be:

Epa (V) = 0.0314 ln v (V/s) + 0.8864 (R2 = 0.996) (5)

Epc (V) = −0.0517 ln v (V/s) +0.5957 (R2 =0.990) (6)

Based on Laviron’s model [49], the slopes of the line for Epa and Epc can be expressed as RT/(1–α)
nF and RT/αnF, respectively. Therefore, the values of the electron-transfer coefficient (α) and the
electron-transfer number (n) can be calculated to be 0.38 and 1.31, respectively.
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2.4. Effect of Buffer pH

The electrochemical response of SY on the MnO2 NRs-ERGO/GCE was investigated in 0.3 M
citric acid-sodium citrate buffer at different pH values ranging from 2.0 to 8.0. As can be seen from
Figure 6, the maximum oxidation peak current was obtained at pH 4.5 and it decreased gradually with
the further increase of the pH value. Therefore, in the following experiments, pH 4.5 was chosen as the
optimal pH value for SY determination. At the same time, the peak potential was found to be shifted
negatively with the increase of buffer pH, indicating that proton participate in the electrochemical
reaction. A linear regression equation was obtained as:

Epa (V) = −0.0481 pH + 0.9972 (R2 = 0.9992) (7)

The slope of −0.0481 was close to the theoretical value of −0.059 V/pH, indicating that the
number of electrons involved in SY oxidation is equal to the number of protons. According to the
above results, the electrooxidation of SY on MnO2 NRs-ERGO/GCE was a one-electron one-proton
process. The mechanism of its electrochemical process can be expressed as Scheme 1.
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2.5. Effect of Accumulation Conditions

Because the oxidation of SY on MnO2 NRs-ERGO/GCE is controlled by adsorption, the influence of
accumulation conditions cannot be ignored. The effect of the accumulation potential and accumulation
time on the oxidation current of 10 µM SY was investigated. It was revealed that when the accumulation
potential shifted from −0.30 to 0.30 V, the current of SY changed slightly. Consequently, accumulation
was carried out at the initial potential. The effect of accumulation time on the currents of SY was also
investigated. The current increased significantly with the prolongation of accumulation time from 0 to 180 s.
However, when the accumulation time exceeded 180 s, the current increased slowly, which indicated that
the adsorption of SY on the electrode surface was supersaturated. Therefore, the accumulation time of 180 s
was selected to determine SY.

2.6. Chronocoulometry

According to the expression given by Anson [50], the electrochemical effective surface areas of
bare GCE and MnO2 NRs-ERGO/GCE can be obtained by chronocoulometry:

Q = 2nFAcD1/2π−1/2t1/2 + Qdl + Qads (8)

In the formula, A is the surface area of the working electrode, c is the substrate concentration,
D is the diffusion coefficient, Qdl is the double layer charge, which can be eliminated by background
subtraction, Qads is the adsorption charge. This experiment was performed in 1.0 mM K3[Fe(CN)6]
solution containing 1.0 M KCl, where the diffusion coefficient of K3[Fe(CN)6] is 7.6 × 10−6 cm2 s−1 [51].
According to the experiment results (shown in Figure 7A), A was calculated to be 0.061 cm2 and
0.293 cm2 for GCE and MnO2 NRs-ERGO/GCE, respectively. These results showed that the effective
surface area of the modified electrode increased obviously, which would improve the current response
and decrease the detection limit.
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The electrooxidation of SY at the MnO2 NRs-ERGO/GCE was also studied by chronocoulometry.
The corresponding chronocoulometric curves are displayed in Figure 7B. The diffusion coefficient
D and the adsorption charge Qads can be determined by Equation (8). As shown in the insert
of Figure 7B, the relationship between Q and t1/2 was shown as a straight line after background
subtraction. The slope was 1.652 × 10−5 C·s−1/2 and the intercept (Qads) was 4.813 × 10−5 C. As n = 1,
A = 0.293 cm2, and c = 0.1 mM, D was calculated to be 2.68 × 10−5 cm2·s−1. According to the equation
Qads = nFAΓs, the adsorption capacity Γs was 1.70 × 10−9 mol·cm−2. These results confirmed the
remarkable enhancement effect of MnO2 NRs-ERGO for SY oxidation.

2.7. Analytical Properties

2.7.1. Repeatability, Reproducibility and Stability

A solution containing 10 µM SY was used for the investigation of the repeatability, reproducibility
and stability of MnO2 NRs-ERGO/GCE by SDLSV. Repetitive determinations were carried out on
a single electrode. The used MnO2 NRs-ERGO/GCE could be regenerated easily by voltammetric
sweeps between 0.0 V to 1.2 V in a blank solution. The relative standard deviation (RSD) for the peak
currents of SY based on seven replicates was obtained as 2.56%. The reproducibility was studied
by fabricating seven modified electrodes which were applied for SY detection, the result of RSD
with 5.32% revealed the excellent reproducible of MnO2 NRs-ERGO/GCE. The stability of the MnO2

NRs-ERGO/GCE was studied over a two-week period by periodically measuring the peak currents
of SY. The electrode remained 94.8% of its initial response value after two weeks, indicating that the
MnO2 NRs-ERGO/GCE had acceptable storage stability.

2.7.2. Interference Study

To evaluate the selectivity, the voltammetric response of 10 µM SY in the presence of different
alien species were measured. The experimental data showed that no influences on the detection of
10 µM SY are found after addition of 1.0 mM Zn2+, Cu2+, Fe3+, Ca2+, Mg2+, Cl−, NO3

−, SO4
2−, CO3

2−,
glucose, oxalate, sucrose, glycine, alanine, L-cysteine, L-glutamine, L-serine, caffeine, benzoic acid;
0.5 mM vitamin C; 20 µM amaranth, allura red, brilliant blue, and 10 µM tartrazine, quinoline yellow
(peak current change <10%). The results demonstrated that the MnO2 NRs-ERGO/GCE has a good
selectivity for SY analysis in real samples.
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2.7.3. Calibration and Limit of Detection

Under the optimized experimental conditions, the quantitative analysis of SY was carried out
by SDLSV. Figure 8 illustrates the SDLSV response of SY with different concentrations on MnO2

NRs-ERGO/GCE. A remarkable enhancement of peak current was observed with the increase of SY
concentration. A good linearity was exhibited between the peak current of SY and its concentration in
the range 0.01 µM~100 µM with three linear functions:

i (µA) = 4.0802c (µM) + 0.1832 (c = 0.01µM~2 µM) (R2 = 0.9983) (9)

i (µA) = 2.0014c (µM) + 4.5358 (c = 2 µM~10 µM) (R2 = 0.9965) (10)

i (µA) = 0.326c (µM) + 23.086 (c = 10 µM~100 µM) (R2 = 0.9944) (11)

The limit of detection (LOD) was estimated to be 2.0 nM (S/N = 3). As shown in Tables 1 and 2,
the performance of MnO2 NRs-ERGO/GCE is comparable to or superior to that of the previously
reported modified electrodes [10–17]. In addition, this method has made remarkable improvements
in simplifying the preparation of electrode, reducing cost and saving time, which proved that the
electrode have good analytical performance and can be used for SY detection in real samples.
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Table 1. Performance comparison of different modified electrodes for SY detection.

Modified Electrode Sensitivity
(µA/µM)

Repeatability
(RSD%)

Reproducibility
(RSD%) Stability Interferences Recovery

(%) References

CTAB-MMT-Ca/CPE 20.31 poor
repeatability 3.9 -

1 mM vitamin C, glucose, glycine, citric acid, benzoic acid; 1 µM
Tartrazine, quinoline yellow; 5 µM sudan red, amaranth had no
interference

- [10]

Au-RGO/GCE 0.496 2.56 5.32 20 days 0.5 mM of NaCl, MgCl2, NaNO3, Fe (NO3)3, glucose, tartrazine and
new coccine had no interference 99.24–101.94 [11]

ERGO-AuNRs/GCE 0.0334 3.5 8.1 21 days
60 µM Zn2+, Cu2+, Mg2+, Ca2+, Fe3+, Cl−, NO3

−, H2PO4
−, HCO3

−,
HPO4

2−, CO3
2−; 12 µM glucose, saccharin, sucrose, glycine, citric acid,

ascorbic acid; 6 µM quinoline yellow; ponceau 4R had no interference
89.4–108.8 [12]

CTAB-Gr-Pt/GCE 2.5481 - - - 1.0 mM citric acid, benzoic acid, glucose; 0.2 mM tartrazine, amaranth,
allura red had no interference 96.25–98.25 [13]

GO/MWCNTs/GCE 0.4636 3.7 - 30 days

0.1 mM Cu2+, Zn2+, Na+, Cl−, K+, Mg2+, SO4
2−, Ca2+, CO3

2−, NH4
+,

NO3
−; 10 µM uric acid, urea, glucose, oxalate, glycine, alanine,

L-cysteine, L-tyrosine, L-glutamine, L-serine, valine had no
interference

101.5–104.0 [14]

ZnO/Cysteic acid/GCE 2.81 2.55 4.46 30 days

1.0 mM NH4
+, Ca2+, Fe3+, Al3+, Zn2+, Mn2+, Mg2+, Br2212, CO3

2−,
SO4

2−, 0.2 mM starch, sucrose, glucose, uric acid, vitamin B2, vitamin
B6, ascorbic acid, dopamine, citric acid; 20 µM amaranth, allura red
and quinolone yellow had no interference

95.7–101.3 [15]

PDDA-Gr-(Pd-Pt)/GCE,
PDDA-Gr-(Pt-Cu)/GCE,
PDDA-Gr-(Co-Ni)/GCE

- - - -
5.0 mM Mg2+, K+, Ca2+, Zn2+, Cl−, SO4

2−, NO3
−; 0.5 mM citric acid,

glucose, ascorbic acid; 0.01 mM allura red, amaranth had no
interference

95.3–103 [16]

Chit-Gr/GCE 0.018 3.5 - - 1.0 µM citric acid and ascorbic acid had no interference 92.65–97.00 [17]

MnO2 NRs-ERGO/GCE 4.0802 2.56 5.32 14 days

1.0 mM Zn2+, Cu2+, Fe3+, Ca2+, Mg2+, Cl−, NO3
−, SO4

2−, CO3
2−,

glucose, oxalate, sucrose, glycine, alanine, L-cysteine, L-glutamine,
L-serine, caffeine, benzoic acid; 0.5 mM vitamin C; 20 µM amaranth,
allura red, brilliant blue, and 10 µM tartrazine, quinoline yellow

97.7–102.8 This work
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Table 2. Comparison of the linear range and detection limit with other modified electrodes for the
determination of SY.

Modified Electrodes Technique Supporting
Electrolyte

Linear
Range/µM

Correlation
Coefficient

Detection
Limit/µM References

CTAB-MMT-Ca/CPE i DPV
0.1 M acetate buffer

(pH 4.0) 0.0025 to 0.2 0.995 0.00071 [10]

Au-RGO/GCE DPV
0.1 M PBS buffer

(pH 4.0)
0.002–2.145 0.993

0.002 [11]2.145–109.145 0.994

AuNRs-GO/GCE DPV 0.1 M PBS (pH 6.0) 0.01–3.0 0.995 0.0024 [12]

CTAB-Gr-Pt/GCE DPV 0.1 M PBS (pH3.0) 0.08–10.0 0.9984 0.0042 [13]

GO/MWCNTs/GCE j LSV
0.1 M PBS buffer

(pH 5.0) 0.09–8.0 0.9982 0.025 [14]

ZnO/Cysteic acid/GCE DPV 0.1 M PBS buffer
(pH 5.0) 0.1–3.0 0.9977 0.03 [15]

PDDA-Gr-(Pd-Pt)/GCE
DPV

0.1 M PBS buffer
(pH 3.0)

0.02–10.0
-

0.006
[16]PDDA-Gr-(Pt-Cu)/GCE 0.02–10.0 0.004

PDDA-Gr-(Co-Ni)/GCE 0.008–10.0 0.002

Chit-Gr/GCE CV 0.1 M PBS buffer
(pH 6.0) 0.2–100 0.99 0.0666 [17]

MnO2 NRs-ERGO/GCE SDLSV
0.3 M citrate buffer

(pH 4.5)

0.01–2 0.9983
0.002 This work2–10 0.9965

10–100 0.9944
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to j: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8 μM; (B) From a to k: 1.0, 2.0, 4.0, 6.0, 8.0 10, 20, 40, 
60, 80, 100 μM; (C–E) the calibration plots of the concentration of SY versus peak current (C: 0.01~2.0 
μM; D:2.0~10 μM; E: 10~100 μM) . Accumulation potential: 0.1 V, accumulation time: 180 s, scan rate 
0.1 V/s. 
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The practical application of MnO2 NRs-ERGO/GCE for SY determination in real samples was 
testified in soft drinks with different China’s famous brands (Unified Xiangchenduo, Huiyuan Juice, 
Wahaha, Farmer’s Orchard, China). Before analysis by SDLSV, the samples were filtered to remove 
any suspended solids. The concentration of SY was obtained by the standard addition method. The 
results are listed in Table 3, where the contents of SY can be found to be 4.24∼8.37 μM, and the 
recoveries were between 97.7% and 102.8%. In addition, the contents of SY were determined by high 
performance liquid chromatography (HPLC) to verify the accuracy of the new method. The results 

Figure 8. Second-order derivative linear scan voltammograms obtained at MnO2 NRs-ERGO/GCE in
0.3 M citric acid-sodium citrate buffer (pH 4.5) containing different concentrations of SY. (A) From a to
j: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8 µM; (B) From a to k: 1.0, 2.0, 4.0, 6.0, 8.0 10, 20, 40, 60,
80, 100 µM; (C–E) the calibration plots of the concentration of SY versus peak current (C: 0.01~2.0 µM;
D:2.0~10 µM; E: 10~100 µM). Accumulation potential: 0.1 V, accumulation time: 180 s, scan rate 0.1 V/s.

2.8. Practical Applications

The practical application of MnO2 NRs-ERGO/GCE for SY determination in real samples was
testified in soft drinks with different China’s famous brands (Unified Xiangchenduo, Huiyuan Juice,
Wahaha, Farmer’s Orchard, China). Before analysis by SDLSV, the samples were filtered to remove any
suspended solids. The concentration of SY was obtained by the standard addition method. The results
are listed in Table 3, where the contents of SY can be found to be 4.24~8.37 µM, and the recoveries were
between 97.7% and 102.8%. In addition, the contents of SY were determined by high performance
liquid chromatography (HPLC) to verify the accuracy of the new method. The results showed that the
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results obtained by HPLC and MnO2 NRs-ERGO/GCE were consistent, which indicates that the new
method is accurate and feasible.

Table 3. Determination of SY in beverage samples (n = 4).

Sample a Found b/µM Added/µM Total Found b/µM Recovery/%
Content

Determined by
HPLC b/µM

unified xiangchenduo 4.24 (±0.16) 4.00 8.35 (±0.03) 102.8 4.28 (±0.18)
huiyuan juice 6.28 (±0.31) 6.00 12.14 (±0.11) 97.7 6.17 (±0.34)

wahaha 8.37 (±0.37) 8.00 16.28 (±0.17) 98.9 8.45 (±0.46)
farmer’s orchard 5.65 (±0.23) 5.00 10.76 (±0.47) 101.0 5.52 (±0.24)

a All samples were collected from local supermarkets. b Average ± confidence interval, the confidence level is 95%.

3. Experimental

3.1. Chemicals and Solutions

Potassium permanganate (KMnO4), graphite powder, manganese sulfate (MnSO4) were provided
by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Sunset yellow (SY) was supplied
by Aladdin (Shanghai, China). All analytical grade reagents were used as received without further
purification. 0.04524 g of SY was dissolved in 100.00 mL deionized water to prepare a 1.0 mM standard
stock solution. A series of low concentration working solutions were prepared by further dilution
of the stock solution with water. 0.3 M citric acid-sodium citrate buffer with a pH of 4.5 was used as
supporting electrolyte.

3.2. Instruments

The characterization was implemented on a Hitachi S-4800 scanning electron microscope
(Hitachi, Tokyo, Japan) at an accelerating voltage of 30 kV and a powder X-ray diffractometer
(PANalytical, Amsterdam, The Netherlands) with Cu Kα radiation (0.1542 nm). Cyclic Voltammetry
(CV) was finished on a CHI 660E electrochemical workstation (Chenhua Corp. Shanghai, China).
Second derivative linear sweep voltammetry (SDLSV) was carried out on a JP-303E polarographic
analyzer (Chengdu Instrument Factory, Chengdu, China). A traditional three-electrode system for all
electrochemical experiments was composed of a bare or modified glassy carbon electrode as working
electrode, a platinum wire as auxiliary electrode and a saturated calomel electrode (SCE) as reference
electrode. A pH-3c exact digital pH meter (Shanghai Leichi Instrument Factory, Shanghai, China) was
used for solution pH measurements.

3.3. Preparation of GO-MnO2 NRs Nanocomposites

MnO2 NRs was synthesized by a hydrothermal method according to Gan et al. [38]. MnO2

NRs dispersions (1.0 mg/mL) were obtained by addition of MnO2 NRs (10 mg) to deionized water
(10 mL) and ultrasonication for 1 h. Graphite oxide was prepared using a modified Hummer’s method
according to our previous report [21]. GO was then exfoliated by dispersing GO (20 mg) in deionized
water (20 mL), followed by ultrasonication treatment for 2 h. Afterwards, it was centrifuged at
6000 rpm for 30 min in order to remove the unexfoliated graphite oxide and unoxidized graphite.
Then MnO2 NRs dispersion (5.0 mL, 1.0 mg/mL) was very slowly dropped into GO aqueous solution
(5.0 mL) and ultrasonically dispersed for 2 h. A homogeneous black dispersion was obtained

3.4. Electrode Fabrication

Before modification, the GCE with a diameter of 3 mm was polished on silk with 0.05 µM of
α-Al2O3 slurry. After that, it was washed thoroughly with deionized water and cleared in anhydrous
ethanol and deionized water in an ultrasonic bath. 5.0 µL of the obtained MnO2 NRs-GO dispersion
was coated on the GCE surface and dried under an infrared lamp, followed by electrochemically
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reduction at a constant potential of −1.2 V for 120 s in a phosphate buffer solution (pH 6.5).
The obtained modified electrode was denoted as MnO2 NRs-ERGO/GCE. For comparison, GO/GCE
and ERGO/GCE were also prepared by the similar way.

4. Conclusions

This study provides a simple and practical method for preparing the nanohybrid of
electrochemical reduced graphene oxide decorated with manganese dioxide nanorods (MnO2

NRs-ERGO), and the MnO2 NRs-ERGO-modified GCE exhibited superior electrocatalytic ability
towards the oxidation of SY, which can be attributed to the strong catalytic activity of MnO2 NRs, high
adsorption capacity and excellent conductivity of ERGO. The developed modified electrode exhibited
excellent analytical performance such as fast response, low cost, high sensitivity and selectivity, as well
as wide linear range and low detection limit for SY detection.
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