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Abstract: Due to the enormous threat of protactinium to the environment and human health,
its disposal and chemistry have long been important topics in nuclear science. [PaO(H2O)6]3+

is proposed as the predominant species in hydrous and acidic solutions, but little is known about
its formation mechanism. In this study, density functional theory (DFT) calculations demonstrate
a water coordination-proton transfer-water dissociation mechanism for the formation of PaO3+ in
hydrous solutions. First, Pa(V) ion preferentially forms hydrated complexes with a coordination
number of 10. Through hydrogen bonding, water molecules in the second coordination sphere easily
capture two protons on the same coordinated H2O ligand to form [PaO(H2O)9]3+. Water dissociation
then occurs to generate the final [PaO(H2O)6]3+, which is the thermodynamic product of Pa(V) in
hydrous solutions.

Keywords: Pa(V); hydrous solutions; density functional theory (DFT); mechanism

1. Introduction

The traditional uranium-plutonium fuel cycle is faced with many problems, such as the depletion
of uranium fuel, the high cost of materials, the tendency to produce fission products with long half-lives,
and the post-processing difficulties [1,2]. In recent years, the thorium-uranium fuel cycle has attracted
increasing attention because of the abundant thorium resources [3–5], the formation of mostly short
half-life fission products and relatively easy post-treatment. Under irradiation, the thorium-uranium
fuel cycle occurs easily via the nuclear reaction of Th→Pa→U [6], and the main product 233U is a
frequently used reactor nuclear fuel.

At present, mainly two strategies are used to separate 233U. One is to fully cool down after
irradiation, and then to separate the generated 233U from the irradiated material. The 233U extracted
by this method contains a little 232U, which easily produces 228Th nuclides in subsequent treatment.
228Th is the main source of irradiation in nuclear fuel reprocessing [6,7]. The other strategy is to firstly
separate the intermediate 233Pa and store it to cool and naturally decay to 233U. The latter method
is a better choice because of the higher purity of the separated 233U and less long-lived nuclides in
use [6,8–10]. So far, this method is restricted by the necessity for fast-processing 233Pa to reduce the
irradiative danger and the possible interference of hazardous 231Pa formed in thorium-uranium fuel
cycle. To this end, the separation/extraction/stabilization of the highly purified 233Pa is fundamentally
important. Researches on the chemistry of Pa involved in the extraction/separation processes might
provide helpful insights into this topic [11–13].
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In recent years, the coordination structures of protactinium have been reported [14–19].
The element Pa mainly shows two possible valence states of Pa(IV) and Pa(V) in hydrous solutions [20].
Pa(IV) is only predominant in highly reductive systems, while Pa(V) is the main species in
neutral/acidic hydrous solutions. The +5 charge state and the larger ionic radius of Pa(V) favors the
binding of water molecules on the metal center to form a hydrolysis complex [21,22]. Instead of the
double M=O bonds frequently reported for other actinide hydrated complexes, formation of only
one Pa=O bond reported in the literature [23,24]. However, the reported studies mainly focus on
the Pa complexes formed after extraction or separation processes in aqueous solution, whereas how
the hydrated structure of Pa(V) ion was formed has been rarely reported [25–27]. Considering that
the direct binding of O atom to Pa(V) ion is unlikely, we anticipate the Pa=O is formed via a H2O
coordination-hydrogen transfer mechanism, but the details (e.g., the structure of the precursor, the
kinetic profile for the hydrogen transfer etc.) are still unknown.

In recent studies, the hydrated structure of Pa(V) was mainly deduced from the coordination
chemistry of the neighboring actinide elements. For example, the hydrated ions of Pa(V)
were suggested to be similar to UO2

2+, with five equatorial water ligands and two axial water
molecules [28–30]. In accordance with this proposal, the number of water ligands in the PaO3+ complex
was suggested to be six [23]. By contrast, referring to other actinide species, the number of water
molecules in hydrated Pa(V) complexes were also proposed to be higher than seven [23]. For example,
the water coordination numbers of Th4+, U4+, Cm3+ and Pu3+ were identified to range from 8–12.7,
9–11 [31–43], nine [44,45] and 10.2 [40–43] by experimental (such as EXAFS, extended X-ray absorption
fine structure) and theoretical (such as density functional theory calculations) methods. The preferential
coordination numbers of water molecules with Np4+ were suggested to be nine and five [40–43,46].
Meanwhile, AnO2

2+(VI) and AnO2
+(V) (An=Np, Pu) with five water molecules were relatively stable

species in hydrous solution [28–30].
According to the above discussions, the coordination number of the hydrated Pa(V) and its

accurate structure are still unsettled problems. Specifically, how these structures are finally formed
are still unknown. Therefore, we sought probe the formation mechanism of the Pa(V) species in
hydrous solutions with density functional theory calculations. This study starts from the possible
hydrated structures of Pa(V), and then examined the possible transformations from both kinetic and
thermodynamic aspects. Consistent with the recent findings [20,23,24], the hydrated structures of
[Pa(H2O)n]5+ (n = 1–12) are unstable, and [Pa=O(H2O)6]3+ are predominant in hydrous solution.
The reason mainly relates to the high thermodynamic stability of protactinium complexes, and the
high kinetic facility for the hydrogen transfer between the first-coordination-sphere water ligand and
the second-coordination-sphere water ligands.

2. Results and Discussion

2.1. Structure of hydrated Pa(V) ions

According to the reported hydrated structure of acitinides [23–46], 1–14 water molecules could
possibly ligate to the Pa(V) centre to form hydrated structures. The DFT calculations indicated the
coordination number of Pa(V) is unlikely to exceed 12, because the dissociation of water ligands on
the starting geometry of [Pa(H2O)n]5+ (n > 12) inevitably occurs during the geometry optimization
(please see the Supplementary Information for more details). Therefore, we suggest that 1–12 are
plausible coordination numbers for hydrated Pa(V) structures. Figure 1 shows the optimized structures
of these species.

With only one water ligand, the Pa-O(H2O) bond distance of [Pa(H2O)]5+ is 2.246 Å. [Pa(H2O)2]5+

is a linear-like structure, with the O-Pa-O angle being 164.5◦. The [Pa(H2O)3]5+ ion adopts distorted
triangular structure, with one O-Pa-O angle being slightly smaller than the other two angles (112.7◦ vs.
124.3◦ and 123.0◦). [Pa(H2O)4]5+ forms a distorted tetrahedral structure, with three of the four Pa-O
bonds slightly longer than the fourth one (2.336, 2.343, 2.344 vs. 2.329 Å). In this regard, Pa(V) does not
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locate on the centre of the tetrahedron, but closer to one of the facets. [Pa(H2O)5]5+ forms a tetragonal
pyramid geometry. The five oxygen atoms locate on the five vertices: four of them on the bottom of
the square, while the last oxygen and Pa(V) locate on the normal of this square. [Pa(H2O)6]5+ forms
an octahedral-like structure, with the four oxygen atoms on the equatorial plane forming a rectangle,
instead of square planar. Pa(V) locates at the intersection of this rectangular diagonal, and the other
two water molecules locate on the normal of this rectangular crossing the intersection, one up and
one down. To this end, [Pa(H2O)6]5+ shows an approximately central symmetry with Pa(V) as the
symmetric centre. The structure of [Pa(H2O)7]5+ is similar to that of [Pa(H2O)6]5+ with six water
ligands locating as the vertex of the octahedron, while the last one locates outside one triangular plane
as a capping ligand (Figure 1).

Molecules 2019, 24, x FOR PEER REVIEW 3 of 14 

 

 

tetragonal pyramid geometry. The five oxygen atoms locate on the five vertices: four of them on the 
bottom of the square, while the last oxygen and Pa(V) locate on the normal of this square. [Pa(H2O)6]5+ 
forms an octahedral-like structure, with the four oxygen atoms on the equatorial plane forming a 
rectangle, instead of square planar. Pa(V) locates at the intersection of this rectangular diagonal, and 
the other two water molecules locate on the normal of this rectangular crossing the intersection, one 
up and one down. To this end, [Pa(H2O)6]5+ shows an approximately central symmetry with Pa(V) as 
the symmetric centre. The structure of [Pa(H2O)7]5+ is similar to that of [Pa(H2O)6]5+ with six water 
ligands locating as the vertex of the octahedron, while the last one locates outside one triangular 
plane as a capping ligand (Figure 1).  

 
Figure 1. Optimized geometries of [Pa(H2O)n]5+ (n=1-12) calculated with B3LYP/GEN/IEF-PCM level 
of theory (GEN: SDD for Pa and 6-311G (d, p) for H & O atoms, and IEF-PCM denotes Integral 
Equation Formalism Polarizable Continuum Model). The blue, red, and white balls denote Pa, O, and 
H atoms, respectively.  

Therefore, it is a formally monocapped octahedral structure. Of note, the geometric structure of 
[Pa(H2O)7]5+ correlates with the one recently reported by Giandomenico and co-workers [47], but this 
[Pa(H2O)7]5+ structure is distinct from that of the five coordinated uranyl complexes [28–30], which 
formally adopt a configuration with five equatorial ligand and two axial oxygen atoms. [Pa(H2O)8]5+ 
forms a cube structure with a central Pa(V) atom. [Pa(H2O)9]5+ forms a tri-capped triangular prism 
configuration, which is a common geometry for 9-coordinated actinide structures. As shown in 
Figure 1, the upper three and the lower three water ligands constitute a triangular prism, while the 
remaining three water ligands locate on the vertical lines of the three side rectangles. This structure 
is very similar to the structure of [Cm(H2O)9]3+ determined by single-crystal X-ray crystallography 
[44,45]. [Pa(H2O)10]5+ forms a pentagonal anti-prism, and the ten oxygen atoms are divided into two 
groups, each five form an pentagon. The [Pa(H2O)10]5+ structure adopts an approximate C5i symmetry, 
with the Pa(V) acting as the symmetric centre. Compared to [Pa(H2O)10]5+, the additional water ligand 
on [Pa(H2O)11]5+ acts as a capped ligand on one of the pentagon, and thus the Pa-O bond therein is 
significantly larger than all the other ones (2.433 vs 2.480 Å). Due to the incorporation the 11th water 
ligand, the Pa(V) does not act as the symmetric centre of [Pa(H2O)11]5+. Meanwhile, the 11th water 
ligand locates on the vertical axis of [Pa(H2O)11]5+, and thus the C5 symmetry was maintained. 
[Pa(H2O)12]5+ adopts an icosahedron-like configuration. Alternatively, the optimized structure of 
[Pa(H2O)12]5+ could also be viewed as a bicapped pentagonal antiprism, with each pentagon further 
capped by one water ligand. 

Figure 1. Optimized geometries of [Pa(H2O)n]5+ (n=1-12) calculated with B3LYP/GEN/IEF-PCM
level of theory (GEN: SDD for Pa and 6-311G (d, p) for H & O atoms, and IEF-PCM denotes Integral
Equation Formalism Polarizable Continuum Model). The blue, red, and white balls denote Pa, O,
and H atoms, respectively.

Therefore, it is a formally monocapped octahedral structure. Of note, the geometric structure
of [Pa(H2O)7]5+ correlates with the one recently reported by Giandomenico and co-workers [47],
but this [Pa(H2O)7]5+ structure is distinct from that of the five coordinated uranyl complexes [28–30],
which formally adopt a configuration with five equatorial ligand and two axial oxygen atoms.
[Pa(H2O)8]5+ forms a cube structure with a central Pa(V) atom. [Pa(H2O)9]5+ forms a tri-capped
triangular prism configuration, which is a common geometry for 9-coordinated actinide structures.
As shown in Figure 1, the upper three and the lower three water ligands constitute a triangular
prism, while the remaining three water ligands locate on the vertical lines of the three side rectangles.
This structure is very similar to the structure of [Cm(H2O)9]3+ determined by single-crystal X-ray
crystallography [44,45]. [Pa(H2O)10]5+ forms a pentagonal anti-prism, and the ten oxygen atoms
are divided into two groups, each five form an pentagon. The [Pa(H2O)10]5+ structure adopts an
approximate C5i symmetry, with the Pa(V) acting as the symmetric centre. Compared to [Pa(H2O)10]5+,
the additional water ligand on [Pa(H2O)11]5+ acts as a capped ligand on one of the pentagon, and thus
the Pa-O bond therein is significantly larger than all the other ones (2.433 vs. 2.480 Å). Due to the
incorporation the 11th water ligand, the Pa(V) does not act as the symmetric centre of [Pa(H2O)11]5+.
Meanwhile, the 11th water ligand locates on the vertical axis of [Pa(H2O)11]5+, and thus the C5

symmetry was maintained. [Pa(H2O)12]5+ adopts an icosahedron-like configuration. Alternatively,
the optimized structure of [Pa(H2O)12]5+ could also be viewed as a bicapped pentagonal antiprism,
with each pentagon further capped by one water ligand.
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2.2. Analysis on Pa-O Bond Distance

Numbering can be added as follows: the Pa-O distances in [Pa(H2O)n]5+ (n = 1–12) are listed
in Table 1. For clarity, the average Pa-O distances in these complexes are designated as Pa-OAVG.
The trend of Pa-OAVG is shown in Figure 2. According to the calculation results, the Pa-OAVG distance
is commonly lengthened with the increase in the water molecule coordination number (Figure 2).
However, the Pa-OAVG distances of [Pa(H2O)n]5+ is not always larger than those of [Pa(H2O)n-1]5+.
For example, the Pa-OAVG of [Pa(H2O)4]5+ is relatively shorter than that of [Pa(H2O)3]5+. Similarly,
Pa-OAVG of [Pa(H2O)8]5+ is relatively shorter than that of [Pa(H2O)7]5+. The reason for such
observations mainly relates to the reduced electrostatic repulsions between the lone pairs of different
oxygen atoms (on different water ligands). Therefore, the Pa-OAVG distance regularly increases
within three groups of [Pa(H2O)n]5+, i.e., n = 1–3; 4–7; 8–12. Specifically, the difference in the Pa-OAVG

distance of [Pa(H2O)n]5+and [Pa(H2O)n-1]5+ in these three groups ranges from 0.017 to 0.081 Å. The tiny
change indicates that the incorporation of an additional water molecule does not significantly perturb
the coordination of existing water molecules. This proposal is further evidenced by the effective
coordination number (ECN) analysis (Table 1 and Figure 3).

Table 1. The Pa-O, Pa-OAVG distances (in Å), effective coordination numbers (ECN) and natural bond
orbital (NBO) charge distribution of [Pa(H2O)n]5+ (n = 1–12). All these data were gained with the
B3LYP/GEN/IEF-PCM method (for details see Figure 1 caption).

[Pa(H2O)]5+ [Pa(H2O)2]5+ [Pa(H2O)3]5+ [Pa(H2O)4]5+ [Pa(H2O)5]5+ [Pa(H2O)6]5+

Bond
Distances

Pa-O 2.246 2.320 2.317–2.420 2.329–2.344 2.301–2.391 2.344–2.401

Pa-OAVG 2.246 2.320 2.353 2.338 2.350 2.375

Effective coordination number
(ECN) 0.93 1.83 2.73 3.64 4.54 5.43

NBO Charges on

Pa 4.687 4.462 4.239 3.944 3.702 3.365

O −0.927 −0.928 −0.910 to
−0.928

−0.908 to
−0.910

−0.881 to
−0.915

−0.872 to
−0.893

OAVG −0.927 −0.928 −0.922 −0.909 −0.906 −0.882

[Pa(H2O)7]5+ [Pa(H2O)8]5+ [Pa(H2O)9]5+ [Pa(H2O)10]5+ [Pa(H2O)11]5+ [Pa(H2O)12]5+

Bond
distances

Pa-O 2.342–2.431 2.347–2.377 2.345–2.450 2.423–2.506 2.433–2.544 2.480–2.517

Pa-OAVG 2.389 2.362 2.399 2.455 2.475 2.496

Effective coordination number
(ECN) 6.32 7.26 8.10 8.90 9.74 10.59

NBO Charges on

Pa 3.004 2.288 1.933 1.815 1.371 0.931

O −0.851 to
−0.870

−0.818 to
−0.822

−0.802 to
−0.813

−0.802 to
−0.808

−0.783 to
−0.790

−0.769 to
−0.773

OAVG −0.861 −0.820 −0.807 −0.804 −0.787 −0.771
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As shown in Figure 3, ECN of [Pa(H2O)n]5+ shows an excellent linear correlation with the number
of water ligands, with a linear correlation coefficient of 0.9996 and root-mean standard deviation of
0.038. The slope of 0.881 indicates that the efficient coordination efficiency for the Pa-O bond in all
these hydrous structures is comparable, and close to 0.9. The efficiency shows little dependency on the
coordination number, which is mainly caused by the large atomic radius and high diffusion of the 5f
orbitals of the Pa(V) ion.

2.3. Thermodynamic analysis

The reaction energies (including ∆Hn, ∆Gn, and ∆Sn) of Equation (1) was used to evaluate the
thermal stability of different hydrated structures of Pa(V). The related results are given in Table 2.
For clarity, the trends of the reaction energy of these reactions were drawn in Figure 4a:

[Pa(H2O)n-1]5++ H2O→[Pa(H2O)n]5+ (1)

Table 2. The reaction enthalpies, Gibbs free energies, entropies and equilibrium constants for reaction
(1) and (2) calculated with B3LYP-D3(BJ)/GEN/IEF-PCM//B3LYP/GEN /IEF-PCM method (for
details see Figure 1 caption, BJ = Becke and Johnson correction).

n Reaction (1) Reaction (2)

∆Hn
(kcal/mol)

∆Gn
(kcal/mol)

T∆Sn
(kcal/mol) K ∆Hn

ref

(kcal/mol)
∆Gn

ref

(kcal/mol)
K’

2 −23.2 −12.3 −10.9 1.1 × 109 −23.2 −12.3 1.1 × 109

3 −14.1 −6.7 −7.3 8.7 × 104 −37.3 −19.0 8.7 × 1013

4 −12.9 −1.9 −11.0 2.5 × 101 −50.1 −20.9 2.1 × 1015

5 −28.6 −15.1 −13.5 1.2 × 1011 −78.7 −36.0 2.6 × 1026

6 −16.1 −5.1 −11.0 5.5 × 103 −94.8 −41.1 1.4 × 1030

7 −24.3 −12.5 −11.8 1.5 × 109 −119.1 −53.6 2.1 × 1039

8 −13.4 −1.6 −11.8 1.5 × 101 −132.5 −55.3 3.7 × 1040

9 −21.8 −10.9 −10.9 9.9 × 107 −154.3 −66.2 3.7 × 1048

10 −10.8 −1.3 −9.4 9.0 × 100 −165.0 −67.5 3.3 × 1049

11 −14.3 −3.3 −11.0 2.6 × 102 −179.4 −70.8 8.6 × 1051

12 −12.2 −3.0 −9.2 1.6 × 102 −191.6 −73.8 1.4 × 1054

It can be seen from Table 2 and Figure 4a, ∆Hn for all these entries are negative, indicating the
exothermic character of all these reactions. Meanwhile, ∆Gn shows almost the same trends with ∆Hn,
indicating that the T∆S are comparable in these systems (Table 2). The negative T∆S demonstrates
that the water ligation reactions are all disfavoured by the entropic effect, predominantly due to the
reduced freedom degree. However, ∆H dominates over T∆S, and thus the reaction Gibbs free energies
for all these elementary reactions are negative. Accordingly, the stability of the hydrated ions increased
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gradually with the increasement of the number of water molecules, and the possibility of the product
hydrated structures gradually increases.
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Interestingly, both ∆Hn and ∆Gn for n = 3 show clear zig-zag profiles. The results indicate that
the binding of an additional water on the even water ligated Pa(V) structure is favoured over the water
addition processes on odd water ligated structures. We anticipated that the higher symmetry of the
hydrated structures with even number of water ligands (compared to those with odd water ligands)
results in stronger intramolecular electrostatic repulsion between coordinated ligands and weaker
intermolecular Van der Waals interactions, and thus the binding of an extra-water ligand reduces the
geometric symmetry and enhanced the Van der Waals interactions.

Using [Pa(H2O)]5+ as an energy reference, the continuous water coordination results in the
formation of [Pa(H2O)n]5+ (n = 2–12, Equation (2)). The Gibbs free energy changes (∆Gn

ref) and the
enthalpy changes (∆Hn

ref) for the reactions (2) are given in Table 2, and ∆Gn
ref are used to determine

the overall thermodynamic facility of the water binding reactions, and the trends are shown in
Figure 4b for clarity reasons. From Figure 4b, the binding of water ligand on Pa(V) ion is continuously
favoured. The results seem to suggest that [Pa(H2O)12]5+ is thermodynamically more favoured than
the other hydrated structures. However, when extra water molecules are incorporated in the second
coordination sphere (to simulate the actual solution-phase environment), the hydrogen-bonding
induced by the extra-water molecule easily perturbs the structure of [Pa(H2O)12]5+ and [Pa(H2O)11]5+

to form hydrated Pa(V) structures with only nine or 10 water ligands. The results correlate with the
recent studies by Siboulet et al. on the similar uranyl system [48], which indicates that the incorporation
of water molecules on the second coordination sphere remarkably affect the vibrational frequencies and
U-O bond distances. According to these phenomena, we propose that [Pa(H2O)11]5+ and [Pa(H2O)12]5+

are inaccessible structures in hydrous solutions, and the largest number of water ligands tolerated on
hydrated Pa(V) ion should be 10. Because the energy of [Pa(H2O)10]5+ is relatively lower than those of
all other hydrated Pa(V) structures (Table 2 and Figure 4b), the transformation from [Pa(H2O)n]5+ to
Pa=O species were examined starting from [Pa(H2O)10]5+:

[Pa(H2O)]5++(n-1) H2O→[Pa(H2O)n]5+ (2)

Equilibrium constants K, K’ for reactions (1) and (2) were listed in Table 2. Formula−∆G=−RTlnK
was used for calculating equilibrium constants, in which R equals to 8.314 J/mol.K, and T
equals 298.15K.
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2.4. Formation of [Pa=O(H2O)x]3+ from [Pa(H2O)n]5+

From [Pa(H2O)10]5+, the incorporation of an extra water molecule in the second
coordination sphere results in a spontaneous hydrogen transfer during the geometry optimization.
The phenomenon originates from both the relatively higher thermodynamic stability of the formed
[Pa(OH)(H2O)9]4+(H3O)+, and the kinetic easiness to overcome the energy barrier of the hydrogen
transfer transition state. This assumption is verified by the partial geometry optimization calculations
(by fixing the O-H bond at different distances, i.e., 0.97 Å in the free [Pa(H2O)10]5+, 1.07 Å, 1.17 Å,
1.27 Å, 1.37 Å, 1.47 Å, 1.57 Å and 1.67 Å). For clarity reasons, the relative energy of [Pa(H2O)10]5+(H2O)
is set as the reference state in this section. According to the calculation results (please see Figure S3
for the details): starting from [Pa(H2O)10]5+(H2O), the partial optimization energy profile undergoes
a tiny barrier (1.2 kcal/mol) at 1.07 Å, after which the energy continuously decreased until the
formation of the intermediate [Pa(OH) (H2O)9]4+(H3O)+ (Figure 5). The relative energy of [Pa(OH)
(H2O)9]4+(H3O)+ is 5.2 kcal/mol lower than that of the starting point, i.e., [Pa(H2O)10]5+(H2O).
From [Pa(H2O)9(OH)]4+(H3O)+, the protonated water on the second coordination sphere could be
easily exchanged by another water molecule. This process is suggested to occur via a dissociative
mechanism, in which the H3O+ on the second coordination sphere first dissociates to form the
intermediate [Pa(OH)(H2O)9]4+ with an energy decrease of 16.3 kcal/mol. After that, the water
binding occurs easily to stabilize the protactinium complex via hydrogen bonding, with the formation
of [Pa(OH)(H2O)9]4+(H2O) as a result. Then, the hydrogen transfer from -OH on Pa to the water
on the second coordination sphere occurs easily. The partial geometry optimization (Figure S4)
indicates a very low energy barrier of 0.8 kcal/mol when the O-H bond distance reaches about 1.07 Å.
[PaO(H2O)9]3+(H3O)+ was then formed as the product of the second hydrogen transfer process, and its
relative energy is 36.5 kcal/mol lower than that of the initial hydrated structure [Pa(H2O)10]5+(H2O).
Similar to the aforementioned observations, the substitution of the H3O+ in the second coordination
sphere of [PaO(H2O)9]3+(H3O)+ with H2O is exergonic (Figure 5). By contrast, the direct dissociation
of the (H3O)+ is slightly endergonic by 4.9 kcal/mol. Therefore, PaO(H2O)9]3+(H2O) functions as the
final product of the hydrogen transfer pathway starting from [Pa(H2O)10]5+ (Figure 5).
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Figure 5. The Gibbs free energy profile for formation of [Pa(H2O)10]5+(H2O) to [PaO(H2O)9]3+(H2O)
calculated with B3LYP-D3(BJ)/GEN/IEF-PCM//B3LYP/GEN /IEF-PCM method (for details see
Table 2 caption). Note: the energy changes for the transformations of [Pa(H2O)10]5+(H2O)F→TS-H1F

and [(H2O)9Pa(OH)]4+(H2O)→TS-H2F are the total electronic energy changes, because the
thermodynamic corrections of the transition state structures obtained by partial optimization
are unavailable.
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In Figure 5, the kinetic profile for the transformation of [Pa(H2O)10]5+ to [PaO(H2O)9]3+ was
examined, and was found to be highly favoured both kinetically and thermodynamically. Because the
relative energy of the other hydrated Pa(V) structures, i.e., [Pa(H2O)n]5+ (n = 1–9) is significantly higher
than that of [Pa(H2O)10]5+ by over 1.2 kcal/mol (the energy demand for the overall transformations in
Figure 5), the direct participation of all other hydrated structures could be excluded.

Nevertheless, due to fast coordination equilibrium in the hydrous solutions (water
dissociation, exchange, and re-coordination) [30,46,48–50], the formation of other intermediates
with fewer water ligands (compared to the related ones in Figure 5) cannot not be precluded.
Therefore, the key intermediates, including [Pa(OH)(H2O)n-1]4+(H3O)+, [PaO(H2O)n-1]3+(H3O)+,
and [PaO(H2O)n-1]3+(H2O) with n = 6–9 were also examined. The detailed results, associated with
the results starting from [Pa(H2O)10]5+(H2O) are provided in Figure 6 for comparison. From Figure 6,
the relative energy for the species of n = 9 are always comparable to that of n = 10, indicating the
co-existence of these species. According to these results, despite the direct proton transfer on
[Pa(H2O)9]5+ is unlikely, the intermediates involved in Figure 5 might undergo fast water dissociation
and re-coordination, and thus both the black (n = 10) and the blue (n = 9) pathways are responsible
for the formation of the Pa=O products. By contrast, when n = 6–8, [Pa(OH)(H2O)n-1]4+(H3O)+

and [PaO(H2O)n-1]3+(H3O)+ are all unlikely to be formed, due to the remarkably higher energy of
these species compared the related ones when n = 9/10. However, for the final Pa=O product, it is
interesting to note that the most stable structure is [PaO(H2O)6]3+(H2O) (when n = 7, Figure 6),
whose energy is over 2 kcal/mol lower than all other [PaO(H2O)n-1]3+(H2O) (n = 6, 8–10) species.
As [PaO(H2O)6]3+(H2O) could be easily formed via the water dissociation from [PaO(H2O)8/9]3+(H2O),
we suggest that the predominant hydrated structure of Pa(V) is [PaO(H2O)6]3+(H2O). A small amount
of [PaO(H2O)8/9]3+(H2O) might also co-exist with [PaO(H2O)6]3+(H2O), due to the small energy gap
between these species. In the recent study reported by Toraishi and co-workers [23], [PaO(H2O)6]3+

was also suggested to be the most stable structure of PaO3+ hydrated ions.
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Figure 6. Comparison of Gibbs free energy profiles starting from [Pa(H2O)n]5+(H2O) (n = 6–10)
calculated with B3LYP-D3(BJ)/GEN/IEF-PCM//B3LYP/GEN /IEF-PCM method (for details see
Table 2 caption).

Note that in our calculations, we also examined the possibility for the formation of the
[(H2O)n-1Pa(OH)2]3+(H3O)+ structures via the H-transfer from the first-coordination-sphere water
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ligand of [(H2O)nPa(OH)]4+(H2O) to the second-coordination-sphere H2O. The partial optimization
starting from [(H2O)9Pa(OH)]4+(H2O) indicated a clear energy barrier of about 2 kcal/mol, which is
relatively disfavoured compared to the <1 kcal/mol energy barrier of the H-transfer from the hydroxide
group in Figure 5 (Please see Figure S6 for the details).

Finally, efforts were made to probe the geometric and electronic structure of [PaO(H2O)6]3+

and [PaO(H2O)6]3+(H2O). [PaO(H2O)6]3+ formally adopts a pentagonal bipyramidal geometry
(Figure 7) [23]. The Pa=O distance is significantly shorter than the equatorial Pa-O bond distances
(~1.80 vs. ~2.45 Å in average), while the axial Pa-O distance trans- to the Pa=O is relatively longer
than the equatorial Pa-O distances by about 0.2 Å (Figure S5). Meanwhile, the NBO charge on the axial
water ligand also deviates from those on the equatorial ligands (−0.850 vs. −0.876 in average, Table S1),
indicating the weaker electron donating ability of the axial water and the weaker Pa-O bond therein
(supported by Wiberg bond index (WBI) analysis, Table S1). To this end, we suggest that the axial water
is the most active ligand on the hydrated structure of Pa(V), and is thus labile to be replaced during
the extraction processes [51–53]. With the incorporation of an extra water molecule in the second
coordination sphere, [PaO(H2O)6]3+(H2O) could be easily formed to stabilize the protactinium complex.
This process is exergonic by 14.5 kcal/mol, which is caused by the hydrogen bonding between the
second-coordination-sphere water and the first-coordination-sphere water ligands. However, the key
Pa=O and Pa-O distances were hardly perturbed by the second-coordination-sphere water molecule,
because the related Pa-O/Pa=O bond distances are alike in these two molecules (~1.80 Å for Pa=O,
~2.45 Å for equatorial Pa-O, and ~2.60 Å for axial Pa-O distance, please see Figure S5 for details).
Therefore, the second-coordination-sphere water makes little influence on the Pa-O/Pa=O bond order,
strength and their chemistry.
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Figure 7. Optimized geometries and relative Gibbs free energies of [PaO(H2O)6]3+,
[PaO(H2O)6]3+(H2O) and [PaO(H2O)6]3+(H2O)’, the blue, red, and white balls denote Pa, O, and H
atoms, respectively. The energies are gained with the B3LYP-D3(BJ)/GEN/IEF-PCM//B3LYP/GEN
/IEF-PCM method (for details see Table 2 caption).

Despite the fact the second-coordination-sphere water molecule does not affect the relative
Pa-O/Pa=O binding strength in the first coordination sphere, some interesting observations regarding
the orientation of the second-coordination-sphere water molecule were noted. As shown in
Figure 7, the relative energy of another typical isomer, i.e., [PaO(H2O)6]3+(H2O)’, is significantly
higher than that of [PaO(H2O)6]3+(H2O). The results indicate that the type and position of the
second-coordination-sphere water molecules are pivotal to the thermodynamic stability of the
protactinium complexes. The main reason for the instability of [PaO(H2O)6]3+(H2O)’ relates to
the weakened Pa=O bond strength (evidenced by the relatively longer Pa=O distance, Figure S5).
The results correlate with the recent studies on the complex solvent effect of the second and even third
coordination sphere in actinide systems [45,54,55]. Motivated by these observations, we anticipated
that in actual hydrous solutions, the solvent molecules could constitute complex hydrogen bonding
interactions with the central protactinium complex. More efforts are currently underway in our group
to elucidate the detailed solvent effect.
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3. Computation Methods

As the B3LYP method has been frequently used to treat actinide systems [23], the geometry
optimization for all structures in this study were carried out using B3LYP functional in Gaussian
09 program [56]. The full electron 6-311G (d, p) basis set was used to treat the O and H elements,
while the small-core pseudo potential of SDD basis set was used to treat the actinides element Pa,
assuming the 60 electrons on inner layers of Pa as the core electrons [57,58]. As the relative energy of the
+5, +4 or +3 charged Pa(V) species and the energy demand of the related charge-separation processes
(please see supporting information for details) are highly sensitive to the solvent effect, all geometry
optimizations were conducted using the Integral Equation Formalism Polarizable Continuum Model
(IEF-PCM) solvation model [59–61] with water as the solvent. The same functional and basis set
were used for the vibrational analysis, to verify the gained structures are local minima and to gain
the thermal correction data. The temperature used for all calculations are 298.15 K. Based on the
optimized structures, the Becke and Johnson (BJ) corrections as described by Grimme [62] were used
to incorporate the dispersion interactions, and better describe the energy profiles. Note that the
incorporation of the Douglas-Kroll-Hess 2nd order scalar relativistic (DKH for short) in the single
point energy calculations does not change our conclusions (Table S2). The NBO charge [63–69],
effective coordination number [70], Wiberg Bond Index (WBI) bond order [71] and Kohn-Sham orbital
analysis were also performed with the same method. To test the influence of the relativistic, we used
the Douglas-Kroll-Hess 2nd order scalar relativistic (with the abbreviation of DKH) to calculate the
energy demands for formation of the possible hydrated ions ([PaO(H2O)n]3+(H2O), n = 5–9) and
[Pa(H2O)9]5+. The additional calculations showed consistency with those in Figure 6, and the details
are given in supporting formation (Table S2).

The different spin states (singlet, triplet, quintet, septet) of selected Pa(V) species ([Pa(H2O)5]5+

and [Pa(H2O)7]5+) are calculated [23]. The relative energy of the singlet state was found to be the
lowest in both cases, and thus all other Pa(V) structures are calculated with singlet state. The effective
coordination number (ECN) are calculated according to Equation (3) [70], in which dMjsp corresponds
to the Pa-O bond distance Tn Table 1, k equals to 2.0 a.u, and d0 equals to 3.5 Å:

ECN =
Nsp

∑
jsp=1

1

1 + ek(dMjsp−d0)
(3)

4. Conclusions

The chemistry and extraction of Pa(V) has been a long attractive but challenging problem in recent
decades. In this study, density functional theory (DFT) calculations were conducted to elucidate the
initial state of the normal Pa(V) in aqueous solutions, and their kinetic/thermodynamic profiles to
the formation of protactinium (Pa=O) complexes. According to the calculation results, the following
conclusions are obtained:

(1) The maximum allowed coordination number of water ligands on the Pa(V) centre is 10.
(2) [Pa(H2O)10]5+ is the initial species in aqueous solution, but is labile to the proton transfer with

the water ligands on the second coordination sphere, to form the stable Pa=O complexes with
higher thermodynamic stability. The transformations are kinetically highly feasible (with energy
demand < 1.5 kcal/mol).

(3) The most stable Pa=O structure in aqueous solution is [PaO(H2O)6]3+. This structure is formed
by the proton transfer-water dissociation mechanism starting from [Pa(H2O)10]5+.

(4) [PaO(H2O)6]3+ adopts a pentagonal bipyramidal geometry. The relatively weaker Pa-O bond
trans- to the Pa=O bond (compared to the equatorial Pa-O bonds) results in an easier replacement
in the ligand exchange and extraction reactions.
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Supplementary Materials: The following are available online, Figure S1: Optimized geometries of [Pa(H2O)n]5+

(n = 13,14); Figure S2: Pa-O Wiberg bond index (WBI) of [Pa(H2O)9]5+; Figure S3: Electronic energy profile
of the hydrogen transfer starting from [Pa(H2O)10]5+(H2O) calculated via the partial optimization by fixing
the selected O-H bond distance; Figure S4: Electronic energy profile of the hydrogen transfer starting from
[Pa(H2O)9(OH)]5+(H2O) calculated via partial optimization; Figure S5: Optimized geometries and key structural
parameters of [PaO(H2O)6]3+, [PaO(H2O)6]3+(H2O) and [PaO(H2O)6]3+(H2O)’; Figure S6: Electronic energy profile
of the hydrogen transfer processes starting from [Pa(OH)(H2O)9]4+(H2O) calculated via the partial optimization;
Table S1: Analysis of WBI and the NBO Charges of [PaO(H2O)6]3+; Table S2: The reaction enthalpies and Gibbs
free energies for the selected hydrogen transfer reactions obtained by different methods. Cartesian coordinates
and thermal energies of all species in this study.
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