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Abstract: Bacillus velezensis is an aerobic, gram-positive, endospore-forming bacterium that promotes
plant growth. Numerous strains of this species have been reported to suppress the growth of
microbial pathogens, including bacteria, fungi, and nematodes. Based on recent phylogenetic analysis,
several Bacillus species have been reclassified as B. velezensis. However, this information has yet
to be integrated into a well-organized resource. Genomic analysis has revealed that B. velezensis
possesses strain-specific clusters of genes related to the biosynthesis of secondary metabolites,
which play significant roles in both pathogen suppression and plant growth promotion. More
specifically, B. velezensis exhibits a high genetic capacity for synthesizing cyclic lipopeptides (i.e.,
surfactin, bacillomycin-D, fengycin, and bacillibactin) and polyketides (i.e., macrolactin, bacillaene,
and difficidin). Secondary metabolites produced by B. velezensis can also trigger induced systemic
resistance in plants, a process by which plants defend themselves against recurrent attacks by virulent
microorganisms. This is the first study to integrate previously published information about the
Bacillus species, newly reclassified as B. velezensis, and their beneficial metabolites (i.e., siderophore,
bacteriocins, and volatile organic compounds).

Keywords: Bacillus velezensis; bioactive compound; volatile organic compound; induced
systemic resistance

1. Introduction

Rhizosphere is a highly competitive environment, where microorganisms constantly battle for
resources to survive [1]. The term rhizosphere was first coined by Lorentz Hiltner in 1904 [2] to describe
the nutrient-rich zone of soil (usually 1–3 mm around roots), where plant root exudates facilitate
colonization by microbial communities [1,3]. Some such rhizosphere-associated bacteria, i.e., plant
growth-promoting rhizobacteria (PGPR), are recognized for their ability to promote plant weight and
crop yield [4], by (1) producing antimicrobial secondary metabolites (i.e., antagonism), (2) competing
for niches and nutrients (i.e., colonization), and (3) stimulating induced systemic resistance (ISR) [5].

Bacillus species are considered important PGPR, producing a vast array of biologically active
secondary metabolites that can potentially inhibit the growth of plant pathogens and deleterious
rhizospheric microorganisms [5]. Bacillus spp. are preferred in agricultural systems, due to their ability
to form endospores, which can survive to heat exposure and desiccation, and capacity to be formulated
into stable dry powders with long shelf lives [6]. Furthermore, because Bacillus spp. are already
common inhabitants of plant root microflora, Bacillus spore-based biocontrol agents have little, if any,
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effect on the composition of the plant root microbial communities [7]. Several Bacillus-based products
are now commercially available, including RhizoVital® (Bacillus amyloliquefaciens FZB42; ABiTEP,
GmbH, Berlin, Germany), Amylo-X® WG (B. amyloliquefaciens subsp. plantarum D747; Certis Europe
BV, Netherlands), RhizoPlus® (B. subtilis FZB24; ABiTEP), Sonata® (B. pumilus QST2808; AgraQuest,
Inc., Davis, California, USA), Taegro® (B. subtilis var. amyloliquefaciens FZB24; Novozymes Biologicals,
Inc., Salem, Virginia, USA [8].

Recently, different strains of B. velezensis, which is a typical PGPR, have received considerable
attention. For example, living spores of B. amyloliquefaciens FZB42, now reclassified as a strain of
B. velezensis, have been formulated into the commercially available bio-inoculant RhizoVital®, which is
used to control a variety of soil-borne diseases [9]. The strain is capable of stimulating plant growth and
producing different types of biologically active secondary metabolites that suppress plant pathogenic
microflora [10]. Meanwhile, B. velezensis has been formulated into the commercially available fungicide
Botrybel (Agricaldes, Spain), owing to its activity against Botrytis cinerea, the etiological agent of gray
mold, which reportedly infects over 200 plant species worldwide [11].

2. Emergence of B. velezensis from the B. subtilis Species Complex

Bacillus is a large and heterogeneous collection of aerobic or facultatively anaerobic, rod-shaped,
endospore-forming bacteria that are widely distributed throughout the environment. B. subtilis,
B. licheniformis, and B. pumilus have been identified as the ‘original members’ of the genus Bacillus [12]
(Figure 1). In 1943, Fukumoto first isolated B. amyloliquefaciens, a bacterium that produces liquefying
amylase from soil [13]. Later, B. amyloliquefaciens was combined with the closely related B. licheniformis,
B. pumilus, and B. subtilis into the ‘B. subtilis species complex’, based on phylogenetic and phenetic
evidence [14]. This classification was done based on the highly conserved nature of the protein-encoding
sequences in B. subtilis species complex [15]. For many years, these closely related species were difficult
to classify using classic taxonomical parameters such as morphology, physiological characteristics,
guanine-cytosine content, and phylogenetic analysis through 16S rRNA gene sequencing.

B. velezensis (strain CR-502T and strain CR-14b) was first isolated from environmental samples
taken from the mouth of the Vélez River at Torredelmar in the province of Málaga, Spain [16].
Phenotypic tests and phylogenetic analyses indicated that the strains were members of the genus
Bacillus and closely related to B. subtilis and B. amyloliquefaciens. Further DNA–DNA hybridization
experiments revealed that the novel strains possessed less than 20% similarity with other Bacillus
species and, therefore, represented a distinct species of Bacillus [16] (Figure 1).

Meanwhile, B. siamensis (strain PD-A10T) was first isolated from the salted crab (poo-khem) in
Thailand [17]. As found in B. velezensis, phenotypic and chemotaxonomic analyses indicated that the
novel strain was a member of the genus Bacillus (Figure 1), and the 16S rRNA gene sequence of the
strain PD-A10T was similar to those of both B. amyloliquefaciens NBRC 15535T (99.5%) and B. subtilis
DSM10T (99.4%) [17].

B. methylotrophicus (strain KACC 13105T) was isolated from rice rhizospheric soil in Korea [18].
The strain was capable of utilizing methanol, trimethylamine, and ethanol as carbon sources, and was
closely related to members of the B. subtilis species complex, with 16S rRNA gene sequence similarity
values ranging from 98.2 to 99.2% [18].

In 2011, B. amyloliquefaciens strains were divided among the subspecies B. amyloliquefaciens subsp.
amyloliquefaciens and B. amyloliquefaciens subsp. plantarum, based on complete genome analysis [19].
Strains of B. amyloliquefaciens subsp. plantarum are plant-associated and typically used as biological
control agents and/or plant growth promoters [20]. Furthermore, comparative genomic analysis
of B. amyloliquefaciens subsp. plantarum and B. methylotrophicus indicated that the genomes were
highly similar (95%), with only minor differences within their genomic sequences [21]. Therefore,
B. amyloliquefaciens subsp. plantarum was synonymized with B. methylotrophicus [21] (Figure 1), and
successively, B. methylotrophicus was synonymized with B. velezensis, owing to the high phenotypic
and genotypic coherence of the taxa [22].
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Figure 1. Bacillus velezensis is the conspecific species integrating B. amyloliquefaciens subsp. plantarum
and B. methylotrophicus (adapted by Dunlap et al. [22]). The significance of the numbers are explained
at the bottom of the same column.

The taxonomic statuses of 66 closely related B. amyloliquefaciens strains were assessed by comparing
complete RNA polymerase beta-subunit (rpoB) sequences and core genome sequences [23]. The strains
were clustered into a single clade, i.e., the “B. amyloliquefaciens operational group”, which contains
three tightly linked branches: (1) B. amyloliquefaciens subsp. amyloliquefaciens, (2) B. siamensis, and (3)
B. velezensis, a taxon that includes all the strains previously classified as B. velezensis, B. methylotrophicus,
and B. amyloliquefaciens subsp. plantarum (Figure 1).

This review focuses on B. velezensis, which includes a variety of previously reported strains, namely,
B. amyloliquefaciens subsp. plantarum FZB42 [22], B. amyloliquefaciens FR203A [24], B. amyloliquefaciens
SQR9 [25], B. amyloliquefaciens NJN-6 [26], B. amyloliquefaciens SQRT3 [27], B. methylotrophicus KACC
13105T [22], B. velezensis CR-502T and CR-14b [16], and B. subtilis GB03 [28]. Based on rpoB gene analysis
and other analyses, these taxa are synonymous with B. velezensis and are each capable of suppressing
pathogens. A phylogenetic tree inferred from the type strains of species from the “B. subtilis species
complex” is presented in Figure 2. According to phylogenomic analysis, Bacillus species synonymous
with B. velezensis were clustered into clades consisting of B. amyloliquefaciens, B. amyloliquefaciens subsp.
plantarum, and B. methylotrophicus.
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3. Bioactive Molecules Synthesized by B. velezensis

In 2007, B. amyloliquefaciens FZB42 was reported as the first gram-positive biocontrol bacteria
to have its genome sequenced [15]. The strain harbors an array of nine giant gene clusters that
function to produce a spectrum of bioactive secondary metabolites (Figure 3) by modularly organized
mega-enzymes, known as nonribosomal peptide synthetases and polyketide synthases (Table 1). Five
of these nine gene clusters (i.e., srf, bmy, fen, nrs, and dhb; 137 kb) are involved in synthesizing cyclic
lipopeptides molecules, such as surfactin, bacillomycin-D, fengycin, an unknown peptide, and the
iron-siderophore bacillibactin. Meanwhile, three other gene clusters (i.e., mln, bae, and dfn; 199 kb)
were reported to direct the synthesis of antibacterial polyketides, such as macrolactin, bacillaene, and
difficidin, and the last gene cluster (bac; 6.9 kb) was reported to direct the synthesis and export of the
antibacterial dipeptide bacilysin [29]. Altogether, about 10% (340 kb) of the B. amyloliquefaciens FZB42
genome is dedicated to the nonribosomal synthesis of lipopeptide and polyketide-type antimicrobial
molecules, siderophores, and bacteriocins [29]. Closely related Bacillus species are also capable of
synthesizing bioactive metabolites that exhibit activity against a wide range of microorganisms (Table 2).
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3.1. Antibacterial Molecules

Difficidin and bacilysin are the most effective antibacterial agents produced by B. amyloliquefaciens
FZB42 [7]. Little is known about the antibacterial properties of macrolactin and bacillaene [30].
B. amyloliquefaciens FZB42 exerts biocontrol activity by synthesizing difficidin and bacilysin, which
facilitates the control of several economically important rice diseases, such as bacterial blight and
bacterial leaf streak, which are caused by Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola,
respectively [7]. Erwinia amylovora, the causative agent of fire blight disease, can also be effectively
controlled by B. amyloliquefaciens FZB42 [31]. However, a mutant strain of B. amyloliquefaciens FZB42
that produces difficidin, but not macrolactin or bacillaene, was reported to exhibit equal or slightly
higher activity against E. amylovora than the wild-type FZB42 strain. Bacilysin, one of the antibacterial
molecules produced by B. amyloliquefaciens FZB42, is reported to exert an inhibitory effect against
E. amylovora [31]. Bacilysin, also possesses anticyanobacterial activity against the harmful alga
Microcystis aeruginosa, with a killing rate of 98.78%, and can, therefore, be used as a targeted biocontrol
agent [32]. Meanwhile, bacillomycin-D and fengycin from B. velezensis might play redundant roles
in defense mechanisms against Ralstonia solanacearum, an etiological agent of tomato wilting [33].
The expression of lipopeptide biosynthesis genes (srfAB, ituC, and fenD for the synthesis of surfactin,
iturin, and fengycin, respectively) was greatly induced in co-cultures of B. velezensis and pathogens,
such as R. solanacearum [33].

Bacteriocins are ribosomally synthesized peptidic toxins that are synthesized by bacteria. In the
plant rhizosphere, such toxins may be produced to kill neighboring pathogenic microbes and
nematodes, usually in response to environmental stresses [34,35]. The first known bacteriocin, colicin,
was isolated from Escherichia coli by Gratia in 1925 [36]. Recent genomic analysis of B. amyloliquefaciens
FZB42 revealed ribosomally encoded gene clusters for plantazolicin, a novel antibacterial and
nematicidal agent [37], and amylocyclicin, an antibiotic (Table 1) [38]. Plantazolicin is synthesized
by a cluster of 12 genes, which span nearly 10 kb of the B. amyloliquefaciens FZB42 genome [37], and
amylocyclicin is a highly hydrophobic cyclic peptide that is synthesized by a cluster of six genes, which
span nearly 4.5 kb, and are involved in the compound’s production, modification, exportation, and
self-immunization [38].

3.2. Antifungal Molecules

The inoculation of lettuce seeds with commercial B. amyloliquefaciens FZB42 can reduce the severity
of bottom rot disease caused by Rhizoctonia solani [20]. Ultra-performance liquid chromatography
coupled with mass spectrometry suggested that this suppression might be due to the presence of cyclic
lipopeptide molecules (i.e., surfactin, bacillomycin-D, and fengycin) in the lettuce root rhizosphere [20].

B. amyloliquefaciens FZB42 has been reported to exhibit antagonistic interactions with Fusarium
graminearum, a plant-pathogenic fungus that threatens the production and quality of wheat and
barley worldwide [39]. The antifungal activity exerted by B. amyloliquefaciens FZB42 has primarily
been attributed to the nonribosomal synthesis of lipopeptide compounds [40]. For example, a
bacillomycin-D deficient mutant strain of B. amyloliquefaciens FZB42 exhibited severely impaired
antifungal activities, thereby suggesting that bacillomycin-D contributes significantly to the antifungal
action of B. amyloliquefaciens FZB42 [29]. A double mutant of B. amyloliquefaciens FZB42 that was
deficient in both bacillomycin-D and fengycin (∆bmyA ∆fenA) was heavily impaired in its ability to
inhibit the growth of F. oxysporum, thereby indicating synergistic effects among such lipopeptides
against target organisms [41]. Bacillomycin-D also induces morphological changes in the plasma
membranes and cell walls of F. graminearum hyphae and conidia [39].

3.3. Nematocidal Molecules

Plant-parasitic nematodes cause serious damage to many commercially important crops
throughout the world [42]. Rhizospheric microorganisms control parasitic nematodes by secreting
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a variety of metabolites, enzymes, and toxins that suppress nematode reproduction, hatching,
and juvenile survival [43]. A variety of nematophagous microbes, including Bacillus spp., have
been reported to possess nematicidal activity [44,45]. For example, treating tomato seedlings with
B. amyloliquefaciens FZB42 reduced numbers of nematode eggs in tomato roots and of juvenile worms
in soil and suppressed the incidence of tomato plant galls [44]. The nematicidal effect exerted by strain
FZB42 has been attributed to plantazolicin, a novel compound encoded by the pzn gene cluster [45].
Culture filtrates of B. amyloliquefaciens FR203A have also been used as biocontrol agents for control of
the nematode Xiphinema index, a pest of grape crops in Chile [24].

3.4. Siderophore Production

Iron is essential for growth in all living organisms, and most organisms depend on iron as a
cofactor for important biochemical processes, including oxygen binding, electron transport, and
catalysis [46]. In B. amyloliquefaciens FZB42, nonribosomal peptide synthetases are involved in the
synthesis of siderophore bacillibactin [15], which play an important role in facilitating the acquisition
of ferric ions (Fe3+) from minerals and organic compounds in the rhizosphere [46]. The binding
of siderophores with environmentally free ferric ion facilitates the formation of siderophore–iron
complexes that are transported back into bacterial cells through specific receptors (i.e., siderophore
binding proteins) in the cell membrane. In gram-positive bacteria, siderophore-binding proteins,
siderophore-permeases, and ATPases are involved in the transport of siderophore–iron complexes
into the cytoplasm [46], where the ferric ions are reduced to ferrous (Fe2+) ions, thereby becoming
available for microbial growth [47]. Rhizospheric B. amyloliquefaciens FZB42, which produces high
concentrations of the siderophore bacillibactin, inhibits the growth of phytopathogenic bacterial and
fungal competitors by depriving them of essential iron ions [15].

3.5. Production of Volatile Organic Compounds (VOCs)

VOCs are a complex mixture of low-molecular-weight, odorous, lipophilic compounds that are
usually produced by plants and microorganisms [48]. Plant- and soil-associated microorganisms that
produce VOCs have been reported to suppress virulent microbes, thereby indicating their potential
as biocontrol agents against plant diseases [49]. Indeed, the VOCs released by B. amyloliquefaciens
FZB42 possess antimicrobial activity and also promote plant growth and systemic resistance [50],
whereas the VOCs, acetoin, and 2,3- butanediol, in particular, released by B. subtilis GB03 stimulate
ISR in Arabidopsis seedlings and reduce the severity of disease in seedlings challenged with the soft rot
pathogen E. carotovora subsp. carotovora [28,51].

The VOCs produced by B. amyloliquefaciens NJN-6 also inhibit fungal growth by suppressing
mycelial growth and spore germination in F. oxysporum [26]. In fact, F. oxysporum growth was
inhibited by approximately 30–40% [26]. In a similar study, a combination of 22 VOCs produced by
B. amyloliquefaciens SQR9 were found to inhibit the growth of the tomato wilt pathogen R. solanacearum
by 70% [52], and proteomic analysis indicated that the VOCs also affected pathogen virulence by
downregulating catalase and superoxide dismutase activities. The SQR9 VOCs also reduced motility,
biofilm formation, tomato root colonization by R. solanacearum, thereby clearly demonstrating the
importance of VOCs in controlling pathogenic microbes [52].
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Table 1. Genes and gene clusters encoding for the secondary metabolites in B. velezensis.

Metabolite Genes and gene clusters Enzyme Size
(kb) Functions Controlling Effects References

Nonribosomal synthesis of lipopeptides (LP)
Surfactin srfABCD NRPS 32.0 Biofilm, Induction of ISR Fungi [20]
Fengycin fenABCDE NRPS 38.2 Induction of ISR Fungi [41]

Bacillomycin-D bmyCBAD NRPS/PKS 39.7 Induction of ISR Fungi [33,41]
Bacillibactin dhbABCDEF NRPS 12.8 Siderophore production Microbial competitors [53]

Nonribosomal synthesis of polyketides (PK)
Difficidin dfnAYXBCDEFGHIJKLM NRPS 71.1 Direct suppression Bacteria [7,40]
Bacillaene baeBCDE, acpK, baeGHIJLMNRS PKS/NRPS 74.3 Direct suppression Bacteria [40]

Macrolactin mlnABCDEFGHI NRPS 53.9 Direct suppression Bacteria [30,54]
Nonribosomal synthesis of dipeptide antibiotics

Bacilysin bacABCDE, ywfG NRPS 6.9 Direct suppression Bacteria, Cyanobacteria [55]
Ribosomal synthesis of bacteriocins

Plantazolicin pznFKGHIAJC DBEL - 9.96 Direct suppression Bacteria, Nematodes [37,56]
Amylocyclicin acnBACDEF - 4.49 Direct suppression Bacteria [38]

Synthesis of VOCs

Acetoin and
2,3-butandiol alsSD; bdhA

Acetolactate
synthase/decarboxylase and

2,3-butanediol dehydrogenase
3.6 Induction of ISR Bacteria, Fungi [28,52]

NRPS = nonribosomal peptide synthetases; PKS = polyketide synthases; ISR = induced systemic resistance; VOCs: volatile organic compounds.

Table 2. List of various bioactive metabolites synthesized by B. velezensis and the closely related species.

Bacillus Species Bioactive Metabolites References

B. velezensis Amylocyclicin, Bacilysin, Bacillomycin-D, Bacillibactin, Bacillaene, Difficidin, Fengycin, Macrolactin,
Plantazolicin, Surfactin [15]

B. subtilis Bacillibactin, Bacillaene, Bacilysin, Difficidin, Bacitracin, Fengycin, Locillomycin, Subtilosin, Surfactin [23,57]
B. amyloliquefaciens subsp. amyloliquefaciens Bacillibactin, Bacillaene, Bacillomycin-D, Bacilysin, Fengycin, Surfactin [23,58]

B. siamensis Bacillomycin-D, Bacillaene, Difficidin, Fengycin, Surfactin [59]
B. licheniformis Bacitracin, Lichenysin, Lichenin [60]

B. pumilus Amicoumacin, Bacilysin, Bacircine, Pumilacidin [61]
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4. Stimulation of Induced Systemic Resistance (ISR) by B. velezensis

The application of PGPR to seeds or seedlings can stimulate ISR in the treated plants upon
recognition of pathogens (Figure 4). The term ISR was first coined by van Peer et al. [62] to describe the
resistance of carnation plants, in which the root had been previously treated with the rhizobacterium
Pseudomonas WCS417r, against F. oxysporum f. sp. dianthi. The process of ISR depends on the recognition
of PGPR-secreted elicitors, such as lipopolysaccharides, peptidoglycans, flagellin, quorum-sensing
molecules, cyclic lipopeptides, and iron chelating siderophores [63,64].
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It is now recognized that PGPR induce ISR in plants through the jasmonic acid/ethylene (JA/ET)
signaling pathways [5,65] (Figure 4) and that the cellular defense responses of plants include oxidative
bursts, cell-wall reinforcement, the accumulation of defense-related enzymes, and the production of
antimicrobial phytoalexins [66]. The well-characterized JA/ET responsive genes of Arabidopsis include
LOX (lipoxygenase), VSP (vegetative storage protein), PDF1.2 (plant defensin factor 1.2), Hel (hevein),
CHI (chitinase), and PAL (phenylalanine ammonia lyase) [67]. Interactions between PGPR and host
plants can also activate both the JA/ET and salicylic acid signaling pathways, which are intertwined
molecularly through their reliance on a functional version of NPR1 (non-expressor of PR1), a gene
that encodes a defense-related regulatory protein (Figure 4). For example, the PGPR B. cereus AR156
induces the simultaneous expression of the JA/ET-responsive marker gene PDF1.2 and the salicylic
acid-responsive marker genes PR1, PR2, and PR5 in the leaves of Arabidopsis thaliana when exposed to
the pathogen P. syringae pv. tomato DC3000 [68].

Surfactin and other nonribosomally synthesized secondary metabolites that are produced
by B. amyloliquefaciens FZB42 have been reported to enhance plant defense responses in the root
rhizosphere [20]. To examine the role of surfactin in the regulation of plant defense responses
against R. solani, lettuce seedlings were bacterized with B. amyloliquefaciens FZB42 and two mutant
strains of B. amyloliquefaciens FZB42, namely, CH1 (surfactin deficient) and CH5 (lipopeptide and
polyketide deficient). Quantitative real-time PCR analysis indicated that PDF1.2 was upregulated
in the FZB42-bacterized plants in presence of R. solani but not in plants bacterized with the mutant
strains [20].

In another study, a soil drench that contained both B. amyloliquefaciens SQRT3 and the pathogen
R. solanacearum upregulated the expression of several defense-related marker genes (i.e., Pin2, PR-1a,
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and Osmotin-like) in tomato leaves over that observed in the control plants (drenched with R.
solanacearum only). B. amyloliquefaciens SQRT3-mediated ISR was also reported to involve JA, salicylic
acid, and ET-dependent signaling pathways and to reduce tomato bacterial wilt by 68.1% [27].

5. Biofilm Formation by B. velezensis

In the rhizosphere, plants create environments that are nutritionally and physicochemically
beneficial for root microflora by continuously releasing a variety of organic molecules. Some of these
molecules function as chemical signals that attract motile bacteria to move towards the root surface (i.e.,
chemotaxis), thereby favoring the formation of biofilms [5], which are aggregations of cells that live
on either liquid or solid surfaces in a sticky, self-produced matrix of hydrated extracellular polymeric
substances. Such extracellular polymeric substances are composed of polysaccharides, proteins, nucleic
acids, and lipids and mainly function to facilitate cell stability, adhesion, cohesion, interconnection,
and transient immobilization of cells in a biofilm [69].

The formation of biofilms in plant rhizospheres can promote plant growth and protect plants from
infectious microbes, both through the secretion of antimicrobial compounds and through systemic
resistance. For example, when A. thaliana is infected with P. syringae, the plant secretes malic acid
in order to recruit rhizospheric bacteria and, consequently, to enhance Bacillus biofilm formation,
thereby promoting immunity against phytopathogenic microbes [70]. The formation of biofilm by
B. amyloliquefaciens SQR9 in liquid culture could be regulated by maize root exudates that contained
glucose, citric acid, and fumaric acid, and transcriptional profiling of the SQR9 strain revealed that
the maize root exudates activated the expression of genes related to extracellular matrix production.
Several genes related to fengycin, bacillibactin, and bacilysin synthesis were also upregulated as a result
of biofilm formation, thereby providing further evidence of the beneficial role of SQR9 in the maize
rhizosphere [25]. As the global transcription regulator, AbrB has been shown to negatively regulate
chemotaxis and biofilm formation in Bacillus [25], and the disruption of abrB in B. amyloliquefaciens SQR9
was reported to significantly increase biofilm formation and biocontrol ability [71]. When compared
with control seedlings, symptoms of Fusarium wilt were reduced to 50% in B. amyloliquefaciens
SQR9-treated cucumber seedlings, and to as low as 20% in seedlings that had been treated with
the abrB mutant of B. amyloliquefaciens SQR9 [71].

These results suggest that B. velezensis can also reduce the severity of plant diseases by forming
biofilms and that the disease-controlling capacity of the strain can be improved by deleting genes that
negatively regulate chemotaxis and biofilm formation.

6. Conclusions and Future Prospects

Increased use of chemical fertilizers and pesticides has resulted in the accumulation of residual
chemical compounds in the environment, and pathogenic microorganisms are starting to develop
resistance. To circumvent these undesirable effects, it is of utmost importance to use biological
agents, such as bio-fertilizers and bio-pesticides. Among the closely related Bacillus species,
B. velezensis is attracting attention as a valuable biocontrol agent. Accordingly, in order to develop and
formulate bio-based products, it is increasingly important to understand the antimicrobial potential of
biosynthesis of B. velezensis. Furthermore, the elucidation of genes responsible for bioactive secondary
metabolites and the ability to control such genes are additional important steps for increasing the
production of metabolites by beneficial microbes and for facilitating metabolic engineering. B. velezensis
may represent a practical and powerful biocontrol agent that can be used as an effective alternative to
synthetic agro-chemicals.
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