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Abstract: This work reviews the new isolated cembranoid derivatives from species of the genera
Sarcophyton, Sinularia, and Lobophytum as well as their biological properties, during 2016–2018.
The compilation permitted to conclude that much more new cembranoid diterpenes were found in
the soft corals of the genus Sarcophyton than in those belonging to the genera Lobophytum or Sinularia.
Beyond the chemical composition, the biological properties were also reviewed, namely anti-microbial
against several Gram-positive and Gram-negative bacteria and fungi, anti-inflammatory and
anti-tumoral against several types of cancer cells. In spite of the biological activities detected in almost
all samples, there is a remarkable diversity in the results which may be attributed to the chemical
variability that needs to be deepened in order to develop new molecules with potential application
in medicine.
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1. Introduction

The cembrane skeleton is isoprenoid and consists of a fourteen-membered carbocyclic ring
with an isopropyl residue at position 1 and three methyl groups at positions 4, 8, and 12 (Figure 1).
The basic structure of this diterpene usually presents cyclic ether, lactone, or furan moieties around
the macrocyclic ring. There are also cembranoids variants which contain a 12 or 13-membered carbon
skeleton [1–3].

In nature, this class of diterpenoids has been found in marine invertebrates, lower and higher
plants, insects (termites), and even paracloacal glands of Chinese male alligators (Alligator sinensis) [4,5].
Cembranoids from marine invertebrates are particularly isolated from soft corals of the genera Sinularia,
Lobophytum, Eunicea, Clavularia, and Sarcophyton, and from the gorgonian octocorals, mainly of the
genera Pseudopterogorgia, Leptogorgia, and Lophogorgia [1,6,7].

Soft corals (phylum, Cnidaria; class, Anthozoa; subclass, Octocorallia; order, Alcyonaceae; family,
Alcyoniidae) have been the target of study since the nineteenth century. The subclass Octocorallia
includes soft corals, gorgonians, and sea pens. Most soft corals belong to the order Alcyonacea
that comprises several families, including Alcyoniidae. This family contains the genera Sarcophyton,
Sinularia, and Lobophytum [8]. Soft corals are found in Indo Pacific reefs whereas Gorgonian octocorals
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dominate the biomass in coral reef environments of the north-western Atlantic Ocean and in the
Caribbean Sea [7].
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In nature, cembranoids may act as chemical defense compounds against fish predators and/or
competing for reef organisms, bacteria, parasites, to ensure their protection and survival [7,9].
Multiple in vitro biological properties of cembranoids of marine origin have been reported
such as anti-inflammatory, anti-tumoral, anti-bacterial, anti-viral, neuroprotective, antiarthritic,
calcium-antagonistic, and cytotoxic [9,10]. This is the first step for the in vivo assays which will
determine whether or not they constitute potential therapeutic agents.

Yang et al. [10] review all the metabolites of cembrane diterpenes either from terrestrial or marine
organisms up to 2010. They were divided into several different families according to the variety of
ring sizes, oxidation patterns, and the respective biological activities. Several other reviews have been
made regarding new compounds and their biological activities. These compounds have been isolated
from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians,
bryozoans, mollusks, tunicates, echinoderms, mangroves and other intertidal plants, from 2013 until
2017 [11–14]. Marine invertebrates isolated from soft corals of the genera Sinularia, Lobophytum, Eunicea,
and Sarcophyton are also included in these reviews.

Liang and Guo [15], in a review on the terpenes from the soft coral of the genus Sarcophyton
(S. elegans, S. glaucum, S. ehrenbergi, S. trocheliophorum, S. molle, S. mililatensis, S. crassocaule, S. latum,
S. cherbonnieri, S. stolidotum, S. tortuosum, S. infundibuliforme, S. flexuosum, S. solidum, and some
undefined species) from different geographical origins, reported 165 diterpenes, 29 biscembranoids,
among other terpene compounds, during the period 1995–July 2011. Some of these compounds
possessed biological properties.

The present work will review the new cembranoid diterpenes isolated from species belonging to
the family Alcyoniidae, which contains the genera Sarcophyton, Sinularia, and Lobophytum as well as
their biological properties, since 2016. For this review, only the Web of Science was used as a database
for research by utilizing the keywords cembrane, and cembranoid.

2. Chemical Structure of Cembranoids from Marine Origin

According to Rodríguez et al. [16], the cembrane skeleton of marine origin is derived from the
cyclization of geranylgeranyl pyrophosphate. This hypothesis is based on the fact that the double
bonds of the cembrane skeleton have the geometry E which is observed in geranylgeraniol.

Cembrane diterpenoids have diverse structural variations with a multitude of functional groups
(lactone, epoxide, furan, ester, aldehyde, hydroxyl, carboxyl moieties) and cyclizations, which permit
to group them in several families [10,17]. According to the review of Yang et al. [10], the cembrane-type
diterpenoids may be classified as depicted in Table 1.

Cembranolides possess a 14-membered carbocyclic nucleus, generally fused to a 5-, 6-, 7-,
or 8-membered lactone ring. Furanocembranoids possess a 14-membered carbocyclic nucleus as
well as a furan heterocycle. They also have a butenolide moiety involving C-10–C-12, and C-20.
Biscembranoids possess a 14-6-14 membered tricyclic backbone of tetraterpenoids [10]. The structure
of polymaxenolide (13) comprises a 14-membered cembranoid skeleton linked via a spiro ring system,
to an africanane skeleton (Table 1) [18].
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Table 1. Classification of cembrane diterpenoids.

Type Subtype Examples Source Structures

Simple cembrane Isopropyl cembranes Sarcophytol M (1) Sarcophyton
glaucum
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of solvents and further column chromatography eluting with a gradient of solvents with increasing 
polarity. Different fractions originate the cembranoid compounds, which can be subjected to semi- 
or preparative HPLC (high performance liquid chromatography). The identification of compounds 
is generally made through 1H-NMR (proton nuclear magnetic resonance), 13C-NMR (Carbon-13 
nuclear magnetic resonance), one dimensional and two dimensional nuclear magnetic resonance (1D-
NMR and 2D-NMR) including 1H-1H COSY, HMQC, HMBC, and NOESY spectra (Correlation 
Spectroscopy, Heteronuclear Multiple-Quantum Correlation, Heteronuclear Multiple-Bond 
Correlation Spectroscopy, Nuclear Overhauser Effect Spectroscopy, respectively), Time-Dependent 
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[9,20–58]. 

The review upon the source, chemistry and bioactivities of new cembrane diterpenes from 
marine organisms, since 2016 (27 works) (Tables 2–4) revealed that the most important sources of 
cembrane derivatives found in that period were coming from the genus Sarcophyton (14 works), 
Sinalarina (8 works) and Lobophytum (5 works). There is still one work in which the authors did not 
isolate new cembrane compounds but they checked the biological properties of the crude methanolic 
extract of Lobophytum crassum from the coast of Madagascar [24]. In other work, Al-Footy et al. [53] 
reported that among diverse secondary metabolites isolated from the soft coral Lobophytum sp. 
collected off the Red Sea Coast, in Jeddah, Saudi Arabia, only the known cembrane diterpenoid 
(cembrene A) had an antibacterial activity against several Gram-positive and Gram-negative 
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Table 1. Cont.

Type Subtype Examples Source Structures

Cembrane glycosides Calyculaglycoside A (12)

Caribbean
Gorgonian
Octocoral

Eunicea sp.
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There are also the polycyclic norcembranoid diterpenes, rare and found exclusively in soft corals
of the genus Sinularia. These diterpenes are within the family of furanecembranoids which lack a
C-18 carbon substituent in comparison with C20-cembranoids. They co-occur with 14-membered
macrocyclic norcembranoids with a furan heterocycle in which also lacks a C-18 carbon substituent [19].
The mechanisms leading to the occurrence of norcembranoid diterpenes are not well understood
but they may include the production of anionic and radical intermediates along with competitive
transannular carbon-to-carbon bond-forming reactions. However, these are only proposals that,
according to the authors [19], must be validated in forthcoming biosynthetic studies.

The extraction of cembranoid diterpenes was generally made with organic solvents (acetone,
chloroform, ethanol, ethyl acetate, methanol, and methylene chloride) by maceration (Tables 2–4),
followed by the concentration under vacuum. Afterwards, the residue is partitioned between pairs
of solvents and further column chromatography eluting with a gradient of solvents with increasing
polarity. Different fractions originate the cembranoid compounds, which can be subjected to semi- or
preparative HPLC (high performance liquid chromatography). The identification of compounds is
generally made through 1H-NMR (proton nuclear magnetic resonance), 13C-NMR (Carbon-13 nuclear
magnetic resonance), one dimensional and two dimensional nuclear magnetic resonance (1D-NMR
and 2D-NMR) including 1H-1H COSY, HMQC, HMBC, and NOESY spectra (Correlation Spectroscopy,
Heteronuclear Multiple-Quantum Correlation, Heteronuclear Multiple-Bond Correlation Spectroscopy,
Nuclear Overhauser Effect Spectroscopy, respectively), Time-Dependent Density Functional Theory
Electronic Circular Dichroism (TDDFT/ECD), Density Functional Theory (DFT)/NMR calculations,
FTIR (Fourier-transform infrared spectrosocopy), single crystal X-ray diffraction, and LC-MS-IT-TOF
(liquid chromatography–mass spectrometry-ion trap-time-of-flight) [9,20–57].

The review upon the source, chemistry and bioactivities of new cembrane diterpenes from marine
organisms, since 2016 (27 works) (Tables 2–4) revealed that the most important sources of cembrane
derivatives found in that period were coming from the genus Sarcophyton (14 works), Sinalarina
(8 works) and Lobophytum (5 works). There is still one work in which the authors did not isolate new
cembrane compounds but they checked the biological properties of the crude methanolic extract of
Lobophytum crassum from the coast of Madagascar [24]. In other work, Al-Footy et al. [52] reported
that among diverse secondary metabolites isolated from the soft coral Lobophytum sp. collected off
the Red Sea Coast, in Jeddah, Saudi Arabia, only the known cembrane diterpenoid (cembrene A) had
an antibacterial activity against several Gram-positive and Gram-negative microorganisms. For this
reason, the brief review aims at identifying the new compounds found in those species belonging to
these genera, during that period.
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3. New Cembrane Derivatives from the Genus Sarcophyton

The genus Sarcophyton presents a large number of species. Many of these species have
been chemically examined. Some examples of groups of compounds include sesquiterpenes,
diterpenes, diterpene dimers, prostaglandins, steroids, and ceramides, which have been extensively
reviewed [10–15,17,58]. Among those metabolites, terpenes are the most frequently detected,
possessing many biological properties (anti-inflammatory, anti-viral, anti-fouling, cytotoxic,
neuroprotective) according to the review made by Yang et al. [10].

Fourteen works regarding new cembranoid diterpenes from the genus Sarcophyton (S. cherbonnieri,
S. ehrenbergi, S. elegans, S. stellatum, S. subviride, and S. trocheliophorum) were found during the last three
years. These species of soft corals were collected at several places: seven samples in the South China
Sea (one Sarcophyton sp., one S. ehrenbergi, one S. elegans, one S. stellatum, one S. subviride and two
S. trocheliophorum); two samples of Sarcophyton sp. in the Celebes Sea; one sample of S. stellatum in the
Indian Ocean; one sample of S. cherbonnieri in the Philippine Sea; and three samples collected in the
Red Sea Coast (one S. ehrenbergi and two S. trocheliophorum) (Table 2).

There is a work in which the isolation and identification of metabolites were not performed.
Only the antimicrobial and cytotoxicity activities of extracts of two soft corals (Lobophytum
microlobulatum, Sarcophyton auritum), three seaweeds (Caulerpa racemosa, Caulerpa sertularioides,
Kappaphycus alvarezii), and a marine sponge (Spheciospongia vagabunda) collected from Malaysian
coast were determined. Hexane extract of Sarcophyton auritum exhibited strong fungicidal activity
against dimorphic yeast Cryptococcus neoformans, with minimal inhibitory concentration (MIC) and
minimum fungicidal concentration (MFC) values of 0.04 mg/mL (in both). The ethyl acetate extract
of S. auritum showed strong inhibition on the cytopathic effect induced by the Chikungunya virus
(a re-emerging mosquito-borne virus) with 50% effective concentrations of 176.6 +/− 9.7 mu g/mL.
According to Chan et al. [59], extracts from the two soft corals (L. microlobulatum and S. auritum)
possessed stronger antimicrobial activity than the seaweeds and the sponge.

Beyond the publications regarding the discovery of new cembrane diterpenoids in the genus
Sarcophyton as well as their biological properties, three other publications with distinct approaches
were found. One of them aimed at examining the effect of oxylipin analogues [prostaglandin E1
(PG-E1), methyl jasmonate, and arachidonic acid in addition to the geranylgeranylpyrophosphate]
and wounding on the secondary metabolism of the soft corals Sarcophyton glaucum and Lobophyton
pauciflorum [60]. According to the authors, the PG-E1 was more effective for upregulating
campestene-triol and a cembranoid than methyl jasmonate in the soft corals Sarcophyton glaucum.
In addition, the effect of the elicitors in Lobophyton pauciflorum was poorer than that in Sarcophyton
glaucum [60]. The second one applied the quantitative NMR (qNMR) for assessing the diterpene
variation in 16 soft coral specimens in the context of their genotype, origin, and growing habitat.
The study revealed higher diterpene amounts in Sarcophyton sp. than in Sinularia or Lobophyton [29].
In their publication, Farag et al. [29] reported the metabolite profile of the soft coral genus
Sarcophyton in different habitats along the coastal Egyptian Red Sea, was performed through
1H-NMR and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). At the same
time, the authors compared the metabolite profile of these wild soft corals with those growing in
aquarium. Generally, wild soft corals presented more bioactive compounds than aquarium grown
ones. This discrepancy found between wild and aquarium grown corals were attributed, by the
authors, to the lack of necessity for producing compounds acting as defenses against predators absent
in tanks.

The large-scale metabolomics analyses were made for the first time in 16 Sarcophyton species,
comparing MS (mass spectra) and NMR results. The metabolomic fingerprinting and profiling of those
soft coral extracts were made through 1D and 2D-NMR without any preliminary chromatographic
assay. In parallel to the chromatographic mass spectrometry techniques, permitted to identify
120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. The authors
have used statistical multivariate analyses such as principal component analysis (PCA) and orthogonal
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projection to latent structures-discriminant analysis (OPLS-DA) for samples classification [30].
In the same work, they concluded that UPLC-MS (ultra-performance liquid chromatography-mass
spectrometry) revealed to be better tool for a compound based classification of coral species than NMR
technique. However, NMR or UPLC−MS data sets were likewise effective in foreseeing the species
origin of unknown Sarcophyton after applying PCA [30].

Kamada et al. [21] from a Malaysian specimen of Sarcophyton sp., collected at the
Karah Island (West Malaysia), isolated, identified and evaluated the antibacterial activity of
16-hydroxy-cembra-1,3,7,11-tetraene (15) (Figure 2), a new cembrane, along with the known
cembrane diterpenes 15-hydroxycembra-1,3,7,11-tetraene (16), sarcophine (17), and sarcophytoxide
(18). The antimicrobial activity of all compounds was assayed against antibiotic resistant clinical
bacterial strains Staphylococcus aureus and Escherichia coli. Only the new compound presented inhibition
against Staphylococcus aureus. Its MBC (Minimum Bactericidal Concentration) and MIC (Minimum
Inhibitory Concentration) were 75 and 25 µg/mL, respectively [21].
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Figure 2. Cembranoid diterpenes isolated from Sarcophyton sp., collected at the Karah Island (West
Malaysia) [21].

From dominant soft coral species of the genus Sarcophyton sp. on the reef at Mahengetang Island
(Indonesia), Januar et al. [31] isolated a new compound 2-hydroxy-crassocolide E (19) alongside with
5 known cembranoid compounds sarcophytoxide (20), sarcrassin E (21), 3,7,11-cembretriene-2,15-diol
(22), 11,12-epoxy-sarcophytol A (23), and sarcophytol A (24) (Figure 3a). However, and according to the
structures presented by the authors, the known cembranoid compounds should be, by the same order,
11,12-epoxysarcophytol A (25), sarcophytol A (26), sarcophytoxide (27), 3,7,11-cembretriene-2,15-diol
(28), and sarcrassin E (29) (Figure 3b). All compounds inhibited the growth of human breast tumor cell
lines MCF-7, being the IG50 (inhibition growth 50) value of 18.3 ppm for the new compound [31].
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Figure 3. Cembranoid diterpenes isolated from Sarcophyton sp. on the reef at Mahengetang Island
(Indonesia) [31]. (a) The names are attributed according to the authors: sarcophytoxide (20), sarcrassin
E (21), 3,7,11-cembretriene-2,15-diol (22), 11,12-epoxy-sarcophytol A (23), and sarcophytol A (24);
(b) names attributed to the literature (11,12-epoxysarcophytol A (25), sarcophytol A (26), sarcophytoxide
(27), 3,7,11-cembretriene-2,15-diol (28), and sarcrassin E (29).

Kamada et al. [32] isolated and identified one new cembrane diterpene, 1S,2E,4R,6E,8S,11S,12S)-
11,12-epoxy-8-hydroperoxy-4-hydroxy-2,6-cembradiene (30) (Figure 4), from a population of soft
coral genus Sarcophyton sp. collected from the coastal waters Bohey Dulang, Sabah, Malaysia.
This compound did not exhibit cytotoxic activity against human promyelocytic leukemia cells
(HL-60) (IC50 > 30 µg/mL). The same compound was not able to prevent the accumulation of nitric
oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in
lipopolysaccharide (LPS)-induced mouse leukaemic monocyte macrophage (RAW 264.7 cells), that is,
it did not possess anti-inflammatory activity. In contrast, the new compound showed strong activity
against the seaweed pathogens Alteromonas sp., Cytophaga-Flavobacterium and Vibrio sp. [32].
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Figure 4. New cembranoid diterpene isolated from Sarcophyton sp. collected from the coastal waters
Bohey Dulang, Sabah, Malaysia [32].

The chemical composition and biological properties of S. ehrenbergi from the South China
Sea were studied by [27]. This study led to the isolation and identification of eight cembrane
diterpenoids, including the five new sarcophytonoxides A–E (31–35), and three known ones,
(2S,11R,12R)-isosarcophytoxide (36), (+)-isosarcophine (37), and 8-hydroxyisosarcophytoxide-6-ene
(38) (Figure 5). All cembranoids were inactive (IC50 > 25 µM) against the human ovarian cancer cell
line A2780 [27].
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Sarcoehrenbergilid A–C (39–41), three new cembane diterpenoids, along with two known
cembrane diterpenoids, sarcophine (17), (+)-7α,8β-dihydroxydeepoxysarcophine (42) (Figure 5),
among other terpenoids, were isolated and characterized from the Red Sea soft coral S. ehrenbergi [20].
Cytotoxic activity of cembrane diterpenoids was performed using three human tumor cell lines
(lung or A549; colon or Caco-2; and liver or HepG2). The compounds (39), (41), (42), and the
non-cembrane diterpenoids sinulolide A and sinulolide B were moderately active against A549 and
HepG2, with IC50 = 43.6 − 98.6 µM [20].

From the South China Sea coral S. elegans, Li et al. [22] isolated two novel biscembranoids,
sarelengans A (43) and B (44), five new cembranoids, sarelengans C–G (45–49) (Figure 6), along with
the two known cembranoids sartrolide E (50) and sarcophelegan B (51). The two novel biscembranoids
had a trans-fused A/B-ring conjunction between the two cembranoid unities, in contrast to all
biscembranoids. Such finding led the authors to hypothesize an unusual biosynthetic pathway
of these compounds [22]. Sarelengans B (44) and C (45) had moderate inhibitory activity against the
lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages. Their half
maximal inhibitory concentration (IC50) values were 18.2 and 32.5 µM, respectively.
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Figure 6. Biscembranoids and cembranoid diterpenes isolated from Sarcophyton elegans, collected at
Xisha Islands in the South China Sea [22].

From the ethyl acetate extract of S. stellatum, collected along the Coast of Dongsha Atoll,
Taiwan, in the north of the South China Sea, Ahmed et al. [33] isolated and identified six the new
polyoxygenated cembrane-based diterpenoids stellatumolides A-C (52–54), stellatumonins A (55) and
B (56), and stellatumonone (57) (Figure 7) together with two known related cembrane compounds
but isolated for the first time from a natural source [hydroperoxyde obtained by autoxidation of
dihydrofuranocembranoid (58) and 7β-acetoxy-8α-hydroxydeepoxy-sarcophyne (59)], and eight
known related compounds [sarsolilide (60), (+)-sarcophine (61), laevigatol (62), sarcophytonin E
(63), sarcophytonin C (64), 17-hydroxycarcophytoxide (65), 7β,8α-dihydroxydeepoxy-ent-sarcophine
(66), and crassumol A (67)]. Only (61) showed anti-inflammatory activity by reducing the expression of
cyclooxygenase-2 (COX-2) at 25–100 µM, and inducible nitric oxide synthase (iNOS) in LPS-stimulated
RAW264.7 cells, at 50 and 100 µM. (+)-Sarcophine (61) were even better nonselective COX-2 inhibitor
than ibuprofen and aspirin, but less effective than the selective COX-2 inhibitor celecoxib [33].
The compounds isolated were not cytotoxic against the human hepatocellular liver carcinoma
(HepG2), human breast cancer (MDA-MB231), and human lung adenocarcinoma (A549) cell lines
(IC50 > 20 µg/mL) [33].

Rahelivao et al. [24] investigated three soft corals (S. stellatum, Capnella fungiformis and
Lobophytum crassum) and the sponge Pseudoceratina arabica from the coast of Madagascar
(Indian Ocean). Concerning S. stellatum, the authors reported a new (+)-enantiomer of the
cembranoid (1E, 3E)-7,8-epoxycembra-1,3,11,15-tetraene (68) produced by this organism. More three
cembranoids were isolated and identified, by the authors, from S. stellatum: (+)-(7S,8S)-epoxy-7,8-
dihydrocembrene C (69), (+)-(7R,8R,14S,1Z,3E,11E)-14-acetoxy-7,8- epoxycembra-1,3,11-triene (70),
and (−)-(2R,7R,8R)-sarcophytoxide (71) (Figure 7). The biological properties, particularly
antiplasmodial activity against the FCM29 strains of Plasmodium falciparum and antimicrobial was
only studied with some extracts of the sponge Pseudoceratina arabica. Only the methanolic extract of
S. stellatum, was biologically evaluated against P. falciparum. It presented only a moderate inhibition
activity (IC50 = 35.20 µg/mL) [24].
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and coast of Madagascar [24].

Two new biscembranoid-like compounds were obtained from the soft coral Sarcophyton subviride
from the coast of Xisha, Hainan Province (China) [26]. They were bissubvilides A (72) and B
(73) (Figure 8), that resulted from a Diels-Alder cycloaddition of two cembrane monomers. These
compounds did not present any cytotoxic activity against human osteosarcoma MG-63 (IC50 > 30 µM)
or A549 lung cancer (IC50 > 25 µM) cells or Huh7 human hepatology cancer stem cells (IC50 > 50 µM).
Sarsolilide (60) was also detected in the soft coral Sarcophyton subviride from the coast of Xisha [26].
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The antimicrobial activity of two new cembranoid diterpenes [sarcotrocheldiol A (74) and B (75)]
and one new tetracyclic biscembrane hydrocarbon [trocheliane (76)] (Figure 9) isolated from the Red
Sea soft coral Sarcophyton trocheliophorum was evaluated by Zubair et al. [28]. Along with this new
compounds, the known diterpene cembrene C (77) was also isolated and identified from the same
natural source. Trocheliane (76) was active against the two multidrug-resistant bacteria Acinobacter
baumannii and Staphylococcus aureus. The MIC of this compound ranged from 4 to 6 µM for all the
tested bacteria (A. baumannii, S. aureus, S. epidermidis, Streptococcus pneumoniae, Escherichia coli, Klebsiella
pneumonia, and Pseudomonas aeruginosa) [28].

Along with the known compounds sarcotrocheliol acetate (78), (+)-sarcophytol A (79),
and (−)-sarcophytonin A (80) (Figure 9), Shaaban et al. [25] isolated and identified
9-hydroxy-10,11-dehydro-sarcotrocheliol (81), a new pyrane-based cembranoid diterpene, from the
organic extract of the Red Sea soft coral S. trocheliophorum. All compounds isolated by the authors
from the soft coral S. trocheliophorum did not possess any antimicrobial activity towards Bacillus subtilis,
S. aureus, Streptomyces viridochromogenes (Tü 57), Escherichia coli, Candida albicans, Mucor miehei, Chlorella
vulgaris, Chlorella sorokiniana, Scenedesmus subspicatus, Rhizoctonia solani, and Pythium ultimum, at 40 µg
per disk. The cytotoxicity of the four compounds against brine shrimp was also absent [25].

Nine new cembranoids, sarcophytrols M–U (82–90) (Figure 9), were isolated from the South
China Sea soft coral S. trocheliophorum, along with one already known. Such new compounds possess
diverse types of cyclized rings: furan rings in sarcophytrols M-P (82–85), pyran rings in sarcophytrols,
oxepane, and peroxyl rings in sarcophytrols T (89) and U (90), respectively. Sarcophytrols R (87) and
S (88) had a rare bicyclic skeleton of the decaryiol-type, as reported for the first time for the same
genus of soft coral S. decaryi [23]. The bioassay for evaluating the capacity for inhibiting human
protein tyrosinase phosphatase 1B (PTP1B) enzyme, important for the treatment of type-2 diabetes
and obesity, all compounds isolated from the soft coral S. trocheliophorum did not provide positive
results. Cytotoxicity against the human tumor cell lines HL-60 (Human promyelocytic leukemia
cells) and K-562 (human erythroleukemia cells), as well as the antibacterial activity of the same
compounds against P. aeruginosa also revealed negative [23]. Later on, the authors isolated and
identified highly oxidative new cembranoids with dienoate moieties [sarcophytonolides S-U (91–93)]
or an α,β-unsaturated ε-lactone [sartrolides H-J (94–96)] (Figure 9) from the soft coral S. trocheliophorum
collected in the same region (Yalong Bay, Hainan Province, South China Sea), along with seven
known related analogues [deacetylemblide (97), 4Z,12Z,14E-sarcophytolide (98), sarcrassin D (99),
emblide (100), sarcophytonolide A (101), (E,E,E)-7,8-epoxy-l-isopropyl-4,8,12-trimethylcyclotetradeca
-l,3,11-triene (102), and (4Z,8S,9R,12E,14E)-9-hydroxy-1-isopropyl-8,12-dimethyl-oxabicyclo [9.3.2]-
hexadeca-4,12,14-trien-18-one (103)] [34]. Sartrolide H (94) and 4Z,12Z,14E-sarcophytolide (98) had
moderate inhibitory activity against protein tyrosine phosphatase 1B (key target for the treatment of
type-II diabetes and obesity) with IC50 = 19.9 and 15.4 µM, respectively, significantly less than the
positive control, oleanolic acid (IC50 = 2.6 µM). 4Z,12Z,14E-Sarcophytolide (98) had also moderate
inhibitory activity against Staphylococcus aureus Newman strain (MIC50 = 250 µM), less than the positive
control, fosfomycin (MIC50 = 137.4 µM) [34].

Six new cembranoids, cherbonolides A–E (104–108) and bischerbolide peroxide (109) (Figure 10)
were isolated from the Formosan soft coral S. cherbonnieri, along with one known cembranoid,
isosarcophine (37) (Figure 5). All compounds exhibited the capacity for inhibiting the production
of superoxide anions and elastase release in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin
B (fMLF/CB)-induced human neutrophils, that is, they possessed anti-inflammatory activity.
Bischerbolide peroxide (109) exhibited the highest capacity for inhibiting the generation of superoxide
anions (IC50 = 26.2 µM), but moderate activity on elastase release at the same concentration along with
104 and 106, at 30 µM [35].
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Table 2. Harvesting locations of the soft corals of the genus Sarcophyton, extraction solvent, new compounds identified and their biological properties.

Soft Coral Extraction New Bioactive Cembranoid
Diterpene Type Biological Activities Location Reference

Red Sea Coast

Sarcophyton
trocheliophorum

Acetone/room
temperature Trocheliane (77) Biscembrane hydrocarbon

Activity against the two multidrug
resistant bacteria Acinobacter baumannii

and Staphylococcus aureus (MIC = 4.2 and
4.0 µM, respectively)

North of Jeddah,
Saudi Arabia, Red Sea

Coast (21◦29′31′’N,
39◦11’24′’E)

[28]

Sarcophyton
trocheliophorum Not reported 9-Hydroxy-10,11-dehydro-sarcotrocheliol

(82)
Pyrane-based cembranoid

diterpene

- Inactive against Bacillus subtilis,
Staphylococcus aureus, Streptomyces

viridochromogenes (Tü 57), Escherichia coli,
Candida albicans, Mucor miehei, Chlorella

vulgaris, Chlorella sorokiniana,
Scenedesmus subspicatus, Rhizoctonia

solani, and Pythium ultimum at
40 µg per disk.

- no cytotoxicity on against brine shrimp
at a concentration 10 µg/mL (24 h)

Red Sea [25]

Sarcophyton
ehrenbergi

Methylene
chloride:methanol/room

temperature
Sarcoehrenbergilid A–C (39–41) 5-Membered lactone

Moderate anti-proliferative activities
against two human tumor cell lines:

lung (A549) (IC50 = 50.1 − 76.4 µM), and
liver (HepG2) (IC50 = 53.8 µM, only for
sarcoehrenbergilid C (41)), and weak

activity against colon (Caco-2)
(IC50 > 100 µM).

Hurghada (Egyptian
Red Sea costal) [20]

South China Sea

Sarcophyton sp. Methanol/room
temperature

16-Hydroxycembra-1,3,7,11-tetraene
(15) Isopropyl cembrane

Antibacterial activity against
Staphylococcus aureus (MBC and MIC

values were 75 µg/mL and 25 µg/ mL,
respectively. The MBC/MIC ratio was

calculated to be 3.0 which indicated that
the compound exhibits

bactericidal activity

Karah Island,
Terengganu, West

Malaysia
(5◦35′52.6′’N,103◦03′47.0E)

[21]

Sarcophyton
elegans

Ethanol/room
temperature

Sarelengans A and B (44 and 45)
The cembranoids sarelengans C–G

(46–50)

- Biscembranoids
- (46): furanocembranoid; (47) and
(50): 7-membered lactone; (48) and

(49): 6-membered lactone

Sarelengan B (45) and sarelengan C (46)
showed moderate inhibitory activities

on nitric oxide production in RAW264.7
macrophages, with IC50 values being at

18.2 and 32.5 µM, respectively

Coast of Xisha Island [22]

Sarcophyton
subviride

Acetone/room
temperature

The biscembranoid-like compounds
bissubvilides A (73) and B (74) Biscembranoids

These two molecules did not exert any
cytotoxicity against human

osteosarcoma MG-63 (IC50 > 30 µM) or
A549 lung cancer (IC50 > 25 µM) cells or

Huh7 human hepatology cancer stem
cells (IC50 > 50 µM)

Coast of Xisha Island [26]
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Table 2. Cont.

Soft Coral Extraction New Bioactive Cembranoid
Diterpene Type Biological Activities Location Reference

Sarcophyton
ehrenbergi

Acetone/room
temperature Sarcophytonoxides A–E (31–35) Furanocembranoids

All of the cembranoids were inactive
against the human ovarian cancer cell

line A2780 (IC50 > 25 µM)

North Reef (Beijiao),
Xisha Islands [27]

Sarcophyton
stellatum

Ethyl acetate/not
reported

Stellatumolides A–C (52–54)
Stellatumonins A (55) and B (56)

Stellatumonone (57)

- 5-Membered lactone
- Furanocembranoids

- Isopropyl/isopropenyl acid
cembranes

Only (+)-sarcophine (61) able to reduce
the expression of cyclooxygenase-2
(COX-2) at 25–100 µM, and iNOS in

LPS-stimulated RAW264.7 cells, at 50
and 100 µM, better nonselective COX-2
inhibitor than ibuprofen and aspirin, but
less effective than the selective COX-2

inhibitor celecoxib.
Absence of anti-cancer activity (HepG2,
MDA-MB231 and A549 cell lines) of all

compounds (IC50 > 20 µg/mL)

Dongsha Atoll,
Taiwan [33]

Sarcophyton
trocheliophorum

Acetone/room
temperature

Bicyclic cembranoids sarcophytrols
M–U (82–90) Isopropyl cembranes

No inhibitory activity against human
protein tyrosine phosphatase 1B (PTP1B)
enzyme, target for the treatment of type

2 diabetes and obesity.
No cytotoxicities against the human

tumor cell lines HL-60 and K-562, nor
antibacterial activity against

Pseudomonas aeruginosa.

Yalong Bay, Hainan
Province [23]

Sarcophyton
trocheliophorum

Acetone/room
temperature

Sarcophytonolides S-U (91–93)
Sartrolides H-J (94–96)

- Isopropyl cembranes
- Isopropyl cembranes

Sartrolide H (94) and
4Z,12Z,14E-sarcophytolide (98) had
moderate inhibitory activity against
PTP1B enzyme with IC50 = 19.9 and

15.4 µM, respectively, significantly less
than the positive control, oleanolic acid

(IC50 = 2.6 µM).
4Z,12Z,14E-Sarcophytolide (98) had
moderate inhibitory activity against
Staphylococcus aureus Newman strain

(MIC50 = 250 µM)

Yalong Bay, Hainan
Province [34]
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Table 2. Cont.

Soft Coral Extraction New Bioactive Cembranoid
Diterpene Type Biological Activities Location Reference

Philippine Sea

Sarcophyton
cherbonnieri

Ethyl acetate/not
reported

Cherbonolides A-E (104–108)
Bischerbolide peroxide (109)

- 5-Membered lactone
- Biscembranoids

Bischerbolide peroxide (109) exhibited
the highest capacity for inhibiting the

generation of superoxide anions
(IC50 = 26.2 µM)

Bischerbolide peroxide (109),
cherbonolide A (104) and cherbonolide
C (106) exhibited moderate activity on

elastase release at 30 µM

Jihui Fish Port,
Taiwan [35]

Indian Ocean

Sarcophyton
stellatum

Methanol/room
temperature

(+)-Enantiomer of the cembranoid
(1E,3E,11E)-7,8-epoxycembra-

1,3,11,15-tetraene (68)
Isopropyl cembrane

Not determined, only the crude
methanol extract. This showed

moderate antimalarial activity (FCM29
strain of Plasmodium falciparum):

IC50 = 35.20 µg/mL

Inner reef of
Mohambo, Tamatave

province, the east
coast of Madagascar

(17◦29′15.0′’S,
49◦28′32.1′’E)

[24]

Celebes Sea

Sarcophyton sp. Ethanol/not reported 2-Hydroxy-crassocolide E (19) 5-Membered lactone
It exhibited cytotoxic activity against
human breast tumor cell lines MCF-7

(IG50 = 18.13 ppm)

Mahengetang Island
(Indonesia) [31]

Sarcophyton sp. Methanol/not reported
1S,2E,4R,6E,8S,11S,12S)-11,12-epoxy-8-

hydroperoxy-4-hydroxy-2,6-
cembradiene (30)

Isopropyl cembrane

It did not exhibit cytotoxic activity
against human promyelocytic leukemia

cells (HL-60) (IC50 > 30 µg/mL)
It was not able to prevent the

accumulation of NO, PGE2 and
pro-inflammatory cytokines (TNF-α,
IL-1β and IL-6) in LPS-induced RAW
264.7 cells, that is, it did not possess

anti-inflammatory activity
It had strong activity against the

seaweed pathogens Alteromonas sp.,
Cytophaga-Flavobacterium and Vibrio sp.

Bohey Dulang, Sabah,
Malaysia [32]
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4. New Cembrane Derivatives from the Genus Sinularia

Soft coral Sinularia consists of more than 150 species [36]. As aforementioned for Sarcophyton sp.,
reviews have also been made regarding the discovery of new compounds and their biological activities
up to 2016 [11–14,17]. During the period 2016-2017, only three publications could be found in the
Web of Science utilizing the words cembrane, cembranoid, and Sinularia (one study in 2016 [37] and two
studies in 2017 [38,39]), whereas in the first half of 2018 seven publications could be found using the
same database [40–46]. The species reported in eight works included one S. erecta, one S. compacta,
two Sinularia sp., and four S. flexilibis, all of them from the South China Sea (Table 3). In addition,
there are other works in which one of them was focused on the biological activity of sinularin extracted
from marine soft corals (S. flexibilis and S. manaarensis) [40] and the other one identified five cembranoid
diterpenes (isosinulaflexiolide K, sinulaflexiolide K, sandensolide, sinularin, and dendronpholide F)
obtained from cultured soft coral S. flexibilis [41] but without any biological activity determination.
The anti-breast cancer activity (SKBR3 and MDA-MB-231 cells) of sinularin extracted from marine
soft corals (S. flexibilis and S. manaarensis) were detected by [40], nevertheless, it was almost non-toxic
against breast normal (M10) cells, at least after 24 h treatment. On the SKBR3 cells, the mechanisms
involved on the anticancer activity included the induction of the G2/M cycle arrest, apoptosis of
cells, and oxidative stress and DNA damage, as well as the pancaspase activity, and activation of
poly(ADP-ribose) polymerase (PARP), and caspases 3, 8, and 9 [40].

Not only does the sinularin have anticancer activity; but also species of the genus Sinularia are
rich in bioactive cembranoids and norcembranoids [37]. These authors reported for the first time two
new norcembranoids [sinulerectol A (110) and B (111)] (Figure 11), a new cembranoid [sinulerectol C
(112)] and a new degraded cembranoid sinulerectadione (113), alongside some known isoprenoids
[norcembrene, sinularectin (114) and ineleganolide (115)] and an unnamed norcembrene (116) isolated
from an extract of the marine soft coral Sinularia erecta from South China Sea (off the coast of Dongsha
Atoll) [37]. Sinulerectadione (113) exhibited inhibitory activity against myelogenous leukemia (K-562)
and acute lymphoblastic leukemia (MOLT-4) cell lines with IC50 values of 8.6 and 9.7 µM, respectively,
whereas sinulerectol C (112) was effective against MOLT-4 cell lines (9.2 µM). The anti-inflammatory
activity of 110 and 111 on neutrophil pro-inflammatory responses was potent when evaluated by
measuring the capacity for suppressing formyl-Met-Leu-Phe/cytochalasin B (fMLP/CB)-induced
superoxide anion generation (IC50 = 0.9 and 3.8 µM, respectively) and elastase release in human
neutrophils (113 and 93% inhibition at the same concentration, respectively) [37].
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Table 3. Harvesting locations of the soft corals of the genus Sinularia, extraction solvent, new compounds identified and their biological properties.

Soft Coral Extraction New Bioactive
Cembranoid Diterpene Type Biological Activities Location Reference

South China
Sea

Sinularia sp. Methanol/room
temperature Sinularolide F (128) 5-Membered lactone

It showed potential anti-inflammatory activities
against LPS-stimulated RAW 264.7 with IC50

values less than 6.25 µg/mL It exhibited
anticancer activity against HL60 cell lines

Mantanani
Island, Sabah [42]

Sinularia sp.
Methanol using

ultrasound/room
temperature

Sinulins C and D (132) and
(133) Furanocembranoids

Sinulin D (133) showed mild target inhibitory
activities against PTP1B (IC50 = 47.5 mM)
positive control (sodium orthovanadate

IC50 = 881 µM)

Yongxing
Island [43]

Sinularia
compacta

Ethanol and then
methylene

chloride:methanol
(1:1)/room

temperature

Lobomichaolide (117),
michaolide F (118),

20-acetylsinularolide B
(119)

- 5-Membered lactone
- 5-Membered lactone
- 5-Membered lactone

Michaolide F (118) and 20-acetylsinularolide B
(119) exhibited lethality toward brine shrimp
Artemia salina with lethal ratios of 90.5% and

90.0% at a concentration of 50 µg/mL,
respectively

Tongguling
National
Nature

Reserve of
Coral Reefs

[38]

Sinularia
erecta

Ethyl acetate/not
reported

Norcembranoids
sinulerectols A (110) and B

(111), a cembranoid
sinulerectol C (112), and a

degraded cembranoid
sinulerectadione (113)

- (110): Isopropenyl
cembrane

- (111): Isopropenyl
acid cembrane

- (112): Isopropenyl
cembrane

- Sinulerectadione (113) exhibited cytotoxicity
toward K-562 and MOLT-4 cancer cell lines with
IC50 values of 8.6 and 9.7 ± 2.9 µM, respectively.
Sinulerectol C (112) showed cytotoxicity toward
the K-562 cell line with an IC50 value of 9.2 µM.

- Sinulerectols A (110) and B (111) exhibited
potent anti-inflammatory activities in the

inhibition of superoxide generation and elastase
release.

- Sinulerectol C (112) only exhibited significant
activity in inhibiting elastase release

Coast of
Dongsha Atoll [37]
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Table 3. Cont.

Soft Coral Extraction New Bioactive
Cembranoid Diterpene Type Biological Activities Location Reference

Sinularia
flexibilis

Methanol/not
reported Epoxycembrane A (155) Isopropenyl

cembrane

Antifouling activity against the bryozoan
Bugula neritina and the barnacle Balanus

albicostatus (EC50 = 21.37 and 30.60 µg/mL,
respectively)

Sanya Bay,
Hainan Island [39]

Sinularia
flexibilis

Ethyl acetate/not
reported

- Flexibilisins D and E (146)
and (147)

- Secoflexibilisolides A and
B (148) and (149)

- Flexibilisolide H (150)

- Isopropenyl
cembrane

- Seco cembrane
derivatives

- 7-Membered lactone

Non-toxic towards selective P-388, and HT-29
cancer cell lines

No antioxidant activity
No anti-inflammatory activity

Coast of
Liuqiu,
Taiwan

[45]

Sinularia
flexibilis

Methanol/not
reported - ent-Sinuflexibilin D (141) 6-Membered lactone

It was active against adult T-cell leukemia
(ATL), S1T cells

It was active against against three strains of
marine fungi Exophiala sp. NJM 1551,

Lagenidium thermophilum IPMB 1401 and
Haliphthoros sabahensis IPMB 1402 (MIC = 25, 25

and 50 µg/mL, respectively). MIC positive
control (itraconazole) = 3.2 µg/mL

Mengalum
Island, Sabah [44]

Sinularia
flexibilis

Methanol/not
reported

- Sinulaflexiolides L-O
(151–154)

- ent-Sinuflexibilin D (141)

-6-Membered lactone
-6-Membered lactone

Inhibitory activity of new cembranoids on
LPS-induced NO production and the levels of

TNF-á in RAW 264.7 macrophages under
non-toxic concentrations (25 ìM): 16–33% and

26–53%, respectively

Yalong bay,
Sanya in
Hainan

province,
China

[46]
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Figure 11. Cembranoid diterpene derivatives isolated from Sinularia erecta from South China Sea [37]. Figure 11. Cembranoid diterpene derivatives isolated from Sinularia erecta from South China Sea [37].

In the first report about chemical constituents of S. compacta, Wang et al. [38] reported three new
compounds in the genus Sinularia [lobomichaolide (117), michaolide F (118), and 20-acetylsinularolide
B (119)], along with more eight compounds already found in the same genus of soft coral
[presinularolide B (120), 14-acetoxy-3,4-epoxycembra-7,11,15-trien-17,2-olide (121), sinularolide C
(122), 5-epi-sinuleptolide (123), 1-isopropyl-4,8,12-trimethyl-cyclotetradeca-2,4,7,11- -tetraene (124),
(1R,4R,2E,7E,11E)-cembra-2,7,11-trien-4-ol (125), sinulariol B (126), and sinulariol D (127)] (Figure 12),
all of them are 14-membred cembranoid diterpenes. The first six cembranoid diterpenes possess a
α-methylene-γ-lactone moiety, make them cytotoxic, as well as anti-HIV and antituberculosis [43].
However, only 5-epi-sinuleptolide (123) exhibited cytotoxic activity against the tumor cell lines
HCT-116 and A-549 (IC50 values of 10.1 and 14.7 µM, respectively). Michaolide (119) and
20-acetylsinularolide (119) were lethal toward brine shrimp Artemia salina with lethal ratios of 90.5%
and 90.0%, respectively, at a concentration of 50 µg/mL [38].
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Sea (Tongguling National Nature Reserve of Coral Reefs) [38].

Sinularolide F (128) (Figure 13), a new cembranoid, along with the known denticulatolide (129),
isolated from the Bornean Sinularia sp. (Mantanani Island, Sabah) also exhibited anticancer activity
against HL60 cell lines (human pro-myelocytic leukemia) by triggering apoptosis [42]. The possible
mechanisms involved include the upregulation of Bax (bcl-2-like protein 4), the down regulation of
Bcl-xL (B-cell lymphoma-extra-large) and the activation of caspase-3 [42]. Sinularolide F (128) and
denticulatolide (129) also had anti-inflammatory activity by inhibiting NO, IL-1β and IL-6. According
to the authors the activities found could be attributed to the β-configuration of methyl group at C-8 as
well as to the presence of hydroperoxy or peroxy groups also bound to C-8 [42]. Cembranolide (130),
(E,E,E)-6,10,14-trimethyl-3-methylene-cis-3,4,5,8,9,12,13,15-octahydrocyclotetradeca[β]furan-2(3H)-one
(131).
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Qin et al. [43] identified new sesquiterpenoids and cembranoids in the Xisha soft coral
Sinularia sp. Sinulins C (132) and D (133) (Figure 13) were the new cembranoids isolated and
identified by the authors. Of the new cembranoids, only sinulin D (133) had mild inhibitory
activity against PTP1B (protein tyrosine phosphatase 1B), nevertheless the known cembranoid
5-episinuleptolide (123) (Figure 12) showed activity against HeLa (human cervical epitheloid
carcinoma) and HCT-116 (human colon carcinoma) cell lines [43]. Seven known cembranoid diterpenes
were also detected in the Xisha soft coral Sinularia sp.: (1R,3S)-cembra-4,7,11,15-tetraen-3-ol (134),
(1R,3S,4S,7E,11E)-3,4-epoxycembra-7,11,15-triene (135), norcembrene 5 (136), norcembrenolide C (137),
sinularcasbane O (138), scabrolide F (139), and sinuleptolide (140).

ent-Sinuflexibilin D (141) (Figure 14) was a new cembranoid isolated by [44] from a population of
Bornean soft coral Sinularia flexibilis, along with seven known compounds, including a sesquirerpene
(muurolene) only detected until now in Cistus ladanifer. The new cembranoid together with the
known cembranoid diterpenes [14-deoxycrassin (142), sinularin (143), 5-dehydrosinulariolide (144)
and 11-epi-sinulariolide acetate (145)] exhibited activity against adult T-cell leukemia (ATL). In addition,
(141) and the remaining cembranoid diterpenes were also able to act against the growth of three strains
of marine fungi Exophiala sp. NJM 1551, Lagenidium thermophilum IPMB 1401 and Haliphthoros sabahensis
IPMB 1402. These microorganisms cause infection in fishes and mangrove crabs, being H. sabahensis a
new fungal species described very recently [44].
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[flexibilisins D (146) and E (147), secoflexibilisolides A (148) and B (149), and flexibilisolide H (150)] 
(Figure 14) were isolated from this soft coral along with nine known compounds. The known 11-
dehydrosinulariolide (144) possessed selective cytotoxicity towards P388 (murine leukemia) cell line, 
and (145) presented remarkable cytotoxicity activity and selectivity on P-388 and HT-29 (human 
colon carcinoma) cell lines [45]. The new compounds, however, did not exhibit any activity towards 
these two types of cells since they presented IC50 values over than 40 μM. The anti-inflammatory 
activity was also determined but only (142) had capacity for inhibiting superoxide anion formation 
and elastase release in N-formyl-methionyl-leucyl-phenylalanine/ cytochalasin B (fMLF/CB)-induced 
human neutrophils at a concentration of 10 μM [45]. The anti-inflammatory activity of the 
cembranoids isolated from the S. flexibilis collected off the coast of Yalong bay, Sanya in Hainan 
province (China) was also evaluated by Zhao et al. [46] through the capacity for inhibiting the LPS-
induced NO and TNF-α generation in the RAW264.7 macrophage cells. Sinularin (143) was the best 
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Figure 14. Cembranoid diterpene-derivarives from Sinularia flexibilis from the South China Sea (Sanya
Bay, Hainan Island; Mantanani Island, Sabah; Megalum Island, Sabah; Yongxing Island, Coast of
Liuqiu, Taiwan) [39,44–46]. 5-Dehydrosinulariolide and 11-dehydrosinulariolide have the same number,
because the chemical structure found in the references is the same for both names.

Cytotoxicity activity of cembranoids isolated from the Taiwanese soft coral S. flexibilis was
evaluated by Wu et al. [45]. According to the authors five new cembranoid-related diterpenes
[flexibilisins D (146) and E (147), secoflexibilisolides A (148) and B (149), and flexibilisolide H (150)]
(Figure 14) were isolated from this soft coral along with nine known compounds. The known
11-dehydrosinulariolide (144) possessed selective cytotoxicity towards P388 (murine leukemia) cell line,
and (145) presented remarkable cytotoxicity activity and selectivity on P-388 and HT-29 (human colon
carcinoma) cell lines [45]. The new compounds, however, did not exhibit any activity towards these two
types of cells since they presented IC50 values over than 40 µM. The anti-inflammatory activity was also
determined but only (142) had capacity for inhibiting superoxide anion formation and elastase release
in N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophils
at a concentration of 10 µM [45]. The anti-inflammatory activity of the cembranoids isolated from the
S. flexibilis collected off the coast of Yalong bay, Sanya in Hainan province (China) was also evaluated
by Zhao et al. [46] through the capacity for inhibiting the LPS-induced NO and TNF-α generation
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in the RAW264.7 macrophage cells. Sinularin (143) was the best among the compounds isolated by
the authors, displaying inhibition percentages higher than 80%, at 10 µM, significantly higher when
compared to the new cembranoid diterpenes [sinulaflexiolides L-O (151–154) and ent-sinuflexibilin D
(141)] identified by the authors [46].

Seven cembrane diterpenes were isolated from the soft coral of S. flexibilis from
China (Sanya Bay, Hainan Island) [epoxycembrane A (155), sinularin (143), sinulariolide
(156), (1R,13S,12S,9S,8R,5S,4R)-9-acetoxy-5,8:12,13-diepoxycembr-15(17)-en-16,4-olide (157),
11-dehydrosinulariolide (144), (-)14-deoxycrassin (142), and dihydrosinularin (158)] (Figure 14).
Epoxycembrane A (155) was for the first time reported in S. flexibilis [39]. Tributyltin and copper
are antifouling largely used in order to deter marine fouling organisms on the surfaces of artificial
structures submerged in the sea, but they present some drawbacks particularly due to their adverse
environmental impacts [39]. For this reason, several attempts have been made for finding more
environmental friendly compounds. Wang et al. [39] assayed the antifouling activity on the
larvae of the bryozoan Bugula neritina and the barnacle Balanus albicostatus of all the cembranoid
diterpenes isolated from S. flexibilis. With the exception of (143), all remaining ones presented activity,
and particularly (142) had the highest antifouling activity against both Bugula neritina and barnacle
Balanus albicostatus [the concentrations of the compound that inhibited settlement by 50% relative
to the control (EC50) were 3.90 µg/mL and 21.26 µg/mL, respectively], and low toxicity against
B. albicostatus larvae [the concentration that originates 50% mortality) (LC50) > 100 µg/mL]. According
to the authors [39], the antifouling activity of (142), (144), (155), (157), and (158) was reported for the
first time.

5. New Cembrane Derivatives from the Genus Lobophytum

The genus Lobophytum is rich in cembranoids and more than 250 different structures had been
isolated from the genus Lobophytum [9]. The number of publications about the structure of new
cembranoid diterpenes and/or their biological properties during the period 2016-2018, is as follows:
in 2014, three publication in Web of Science, using the terms cembrane, cembranoid, and Lobophytum could
be found [46–48], as well as in 2015 [49–51]), and 2016 [52–54]. In 2017, the number of publications
was 5 [9,24,55,56,60], whereas until August 2018, only one work was found [57].

During 2016–2018, the most studied of soft coral species was L. crassum, either in terms
of biological properties of known cembranoids or research of new cembranoid diterpenes.
This species was collected in several places (Table 4). Species L. crassum is well known to produce
oxygenated cembranoids. The structural variety of these metabolites is often correlated with
geographic variation and environmental conditions [54]. The soft coral L. crassum from the
South China Sea was studied by [54] and from this study, the authors isolated and identified
nine new cembranoids [locrassumin A (159), B (160), D-G (161-164), (-)-laevigatol B (165),
(-)-isosarcophine (166), and (–)-7R,8S-dihydroxydeepoxysarcophytoxide] (167), a diterpene possessing
a tetradecahydrobenzo [3,4] cyclobuta [1,2,8] annulene ring system (locrassumin C) (168), and eight
known cembranoids [(-)-sarcophytoxide (18), ent-sarcophine (169), sarcophytonolide O (170), sartrolide
G (171), emblide (100), sarcrassin D (99), ketoemblide (172), and methyl sarcotroate B (173)] (Figure 15).
The anti-inflammatory activity of all compounds was evaluated, after measuring the lipopolysaccharide
(LPS)-induced NO (nitric oxide) production in mouse peritoneal macrophages. Compounds (159),
(161), (169), (170), and (172) exhibited moderate inhibition against LPS-induced NO production
with IC50 values of 8–24 µM (Table 4). The remaining metabolites did not present inhibitory effect
(IC50 > 30 µM) [54].
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The wild soft coral of L. crassum, collected around 8 m off the coast of Pingtung, Taiwan,
was isolated and identified two new compounds [lobophyolide A (174) and B (175)], and
the known cembranoid diterpenes [16-methoxycarbonyl-cembrene A (176), sinarone (177),
sinulariol D (127), 16-acetyl-sinulariol D (178), and (E,E,E)-6,10,14-trimethy-3-methylene-trans-
3a,4,7,8,11,12,15,15a-octahydrocy clotetradeca[β]furan-2(3H)-one) (179) (Figure 15) [9].
The anti-inflammatory activity of the cembranoid compounds was evaluated studying the
effect of these compounds on the LPS-induced interleukin 12 (IL-12) release and NO production in
dendritic cells [9]. The results showed that (174), (176) and sinulariol D (127) (<50 µg/mL) presented a
potent inhibitory effect of IL-12 and NO release (86.1–96.2%). Moreover, the same compounds also had
considerable cytotoxicity (Table 4) [9].

Mohamed et al. [56] isolated from L. crassum, collected off the coast of Dongsha Atoll (South
China Sea), three new cembranoids [lobophylins F-H (180–182)], together with three known ones
lobophylin C (183–185) (Figure 15). Rahelivao et al. [24] did not isolate cembranoids from the soft
coral L. crassum extract from the coast of Madagascar, but only they reported the moderate activity
of the crude methanol extract against the malarial parasite FCM29 strain of Plasmodium falciparum
(IC50 value of 33.15 µg/mL). In other work, Lin et al. [55] studied the anticancer ability of lobocrassin
B (186) (Figure 15), a natural cembrane diterpenoid previously isolated from the soft coral L. crassum.
The authors reported that this compound exerted cytotoxic effects for concentrations <10 µM on lung
cancer CL-15 and H520 cells lines, not only by decreasing cell viability but also by inducing apoptosis,
oxidative stress and mitochondrial dysfunction (increased level of Bax, cleaved caspase-3, -9 and
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-8, and suppression of Bcl-2). Nevertheless, much higher concentration was necessary to add to the
normal human bronchial epithelium (BEAS-2B) for exerting cytotoxic effect (>25–50 µM), which means
that (186) preferably causes cell death of carcinogenic cells than normal cells.

Recently, Peng et al. [57] studied the chemical composition and biological activity of cembranoid
diterpenes isolated from aquaculture soft coral L. crassum and compared the results with those of
wild type. Two new cembrane-based diterpenoids [culobophylins D (187) and E (188)] (Figure 15)
were identified in the aquaculture soft coral together with ten known cembranoids. The known
13-acetoxysarcocrassocolide (189), lobocrassin B (186) and 14-deoxycrassin (142) were the most active
compounds against diverse leukemia cell lines (K562, U937, Molt4, and Sup-T1). These results may
reveal that the presence of α-methylene-γ-lactone or α-methylene-δ-lactone moieties in the cembranoid
diterpenes is important for the cytotoxic activities found by the authors [57].

Al-Footy et al. [52] isolated diverse secondary metabolites (sesquiterpenes, steroid type
compounds and only one known cembrane diterpene) from the soft coral Lobophytum sp. were collected
off the Red Sea Coast, in Jeddah, Saudi Arabia. The isolated cembrane diterpene was cembrene A
(190). This cembrane diterpene showed moderate antibacterial activity against Acinetobacter sp.,
E.coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis,
Streptococcus pneumonia. But it presented high toxicity against brine shrimp A. salina and
antitumor activity against Erhlich carcinoma cells with median lethal dose (LD50) values of 25 and
50 µg/mL, respectively.

Roy et al. [53] isolated and identified 7 cembrane-type diterpenes from the coast of Irabu Island
(Okinawa, Japan), a soft coral Lobophytum sp.: a new rare casbane-tipe diterpenoid A, two new
cembrane diterpenoids (B and C); and four known cembrane diterpenoids (D–G). The authors did
not attribute names for the structures presented (Figure 16). The structures of the compounds were
obtained by analysis of spectroscopic data, using IR, 1H-NMR and 13C-NMR, 1D and 2D-NMR
measurements (COSY, HSQC, HMBC, and NOESY), and HRESIMS spectra, after extraction with
acetone and fractionation by chromatographic processes. The authors reported that the compounds
A–E showed weak anti-bacterial activity (Staphylococcus aureus, Salmonella enterica and E. coli).
Compounds A–C showed moderate cytotoxicity against human colon cancer cells (HCT116) with
IC50 values ranging from 135.57 to 177.11 µM, and anti-inflammatory activity in LPS/IFN-γ
(LPS/interferon-γ)- -stimulated RAW 264.7 macrophages cells (IC50 41.21–74.76 µM) [53].
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Table 4. Harvesting locations of the soft corals of the genus Lobophytum, extraction solvent, new compounds identified and their biological properties.

Soft Coral. Extraction New Bioactive Cembranoid
Diterpene Type Biological Activities Location Reference

Indian Ocean

Lobophytum
crassum

Methanol/room
temperature No cembranoids were isolated

Moderate activity of the crude methanol
extract against the malarial parasite

FCM29 strain of Plasmodium falciparum
(IC50 value of 33.15 µg/mL)

Inner reef of
Mohambo, Tamatave

province, the east
coast of Madagascar

(17º29′15.0′’S,
49º28′32.1′’E)

[24]

Red Sea Coast

Lobophytum sp. Chloroform:methanol
(1:1)/room temperature

Cembrene A (190) (this is not new,
but was the sole that presented

biological activity among several
metabolites)

Isopropenyl cembrane

Moderate antibacterial activity against
Acinetobacter sp., E.coli, Klebsiella

pneumonia, Pseudomonas aeruginosa,
Staphylococcus aureus, Staphylococcus
epidermidis, Streptococcus pneumonia
- High toxicity against brine shrimp

Artemia salina (LD50 = 25 µg/mL)
- Antitumor activity against Erhlich
carcinoma cells (LD50 = 50 µg/mL,

respectively

Saudi Arabia Red Sea
Coast at Jeddah [52]

South China Sea
Lobophytum

crassum
Ethyl acetate/not

reported Lobophylins F-H (180–182) Isopropenyl cembrane Not evaluated Coast of Dongsha
Atoll [56]

Lobophytum
crassum

Ethyl acetate/not
reported

Lobophyolide A and B (174) and
(175) 5-Membered lactone

- Both (<50 µg/mL) presented a potent
inhibitory effect on IL-12 and NO release

(inhibition rates of >90%) in
LPS-activated dendritic cells

- Lobophyolide A (174) and B (175) also
had considerable cytotoxicity with

survival percentage of dendritic cells,
under the concentration of 50 µg/mL, of

76 and 52, respectively.

Coast of Pingtung,
Taiwan [9]
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Table 4. Cont.

Soft Coral. Extraction New Bioactive Cembranoid
Diterpene Type Biological Activities Location Reference

Lobophytum
crassum Methanol/not reported

Locrassumins A,B, D-G (159),(160),
(161)-(164), locrassumin C (168)

(–)-laevigatol B (165),
(–)-isosarcophine (166)

(–)-7R,8S-
dihydroxydeepoxysarcophytoxide

(167)

Locrassumins A-C, E: Isopropyl
cembrane;

Locrassumin D: 7-membered
lactone;

Locrassumin F and
(–)-isosarcophine: 5-membered

lactone;
Locrassumin G, (–)-laevigatol B

and (–)-7R,8S-
dihydroxydeepoxysarcophytoxide:

Furanocembranoid

Locrassumins A (159) and G (164), (169),
(170) and (172) showed moderate

inhibition against LPS-induced NO
production in mouse peritoneal

macrophages with IC50 values of 17 and
13 µM, 24, 8 and 17 µM, respectively. No

inhibitory effect was observed for the
other compounds (IC50 > 30 µM)

Inner coral reef of
Meishan, Hainan

Province
[45]

East China Sea

Lobophytum sp. Acetone/not reported

Compound A (a new rare
casbane-tipe diterpenoid), two new
cembrane diterpenoids (Compounds

B and C)

- Casbane
- Isopropyl cembranes

- Weak anti-bacterial activity
(Staphylococcus aureus, Salmonella enterica

and E. coli)
- Moderate cytotoxicity against human
colon cancer cells (HCT116) with IC50

values ranging from 135.57 to 177.11 µM
- Anti-inflammatory activity in

LPS/IFN-γ
(LPS/interferon-γ)-stimulated RAW

264.7 macrophages cells (IC50
41.21–74.76 µM)

Irabu Island,
Okinawa, Japan [53]

Aquaculture

Lobophytum
crassum

Ethyl acetate/not
reported Culobophylins D (185) and E (186)

Culobophylins D: Isopropenyl
cembrane; Culobophylins E:
Isopropenyl acid cembranes

13-Acetoxysarcocrassocolide (187),
lobocrassin B (186) and 14-deoxycrassin

(142) were active against diverse
leukemia cell lines (K562, U937, Molt4,
and Sup-T1) with IC50 values ranging

from 1.2 to 7.1 µM

National Museum of
Marine Biology and

Aquarium (Pingtung,
Taiwan)

[57]
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6. Concluding Remarks

The use of increasingly sophisticated equipment has permitted to identify new compounds,
including natural compounds of marine origin. The aim is to find remarkable biological properties
for possible application in Medicine. A huge diversity of chemical structures have been isolated
and evaluated in biological terms from marine organisms. The soft corals belonging to the family
Alcyoniidae are not an exception. They are, indeed, the target of several studies in searching for new
products with biological properties, particularly antimicrobial, anti-inflammatory, and anti-tumoral
activities. Cembranoids from soft corals of the genera Sinularia, Lobophytum, and Sarcophyton are the
most well studied secondary metabolites of the specimens belonging to these genera. The chemical
diversity of cembranoid diterpenes is remarkable and evident from previous studies. Such diversity
can be attributed to the differences in environmental conditions between the different localities, like:
surface temperature, salinity, nutrient concentrations, and turbidity. However, in the present review it
is important to emphasize the following points: in Sarcophyton species the new compounds isolated by
the authors belonged predominantly and by descending order to: isopropyl cembranes, 5-membered
lactones, biscembranoids, and furanocembranoids; in Sinularia species, the new cembrane compounds
were predominantly lactones (5 or 6-membered ones) and isoprenyl cembranes; in the Lobophytum
species there was no predominance of any type of cembrane diterpenoids. In this case, isopropyl,
isopropenyl, isoprenyl acid, 5- and 7-membered lactones, furanocembranoid or even casbane types
were detected without any predominant one.

The diversity of results in what concerns the biological properties reported in several works
can be partly attributed to the variability of chemical structures found, even though the presence of
some chemical groups or their arrangement in the cembranoid diterpene core can be determinant
in such activities. In the present review, citotoxicity was evaluated in seven works using diverse
tumor cell lines (lung, liver, colon, osteosarcoma, ovarian, breast, leukemia) the species of the
genus Sarcophyton. However, moderate activity was detected in only two researches; mainly against
liver, lung (S. ehrenbergi from the Red Sea Coast) and breast (Sarcophyton sp. from Celebes Sea).
The antibacterial activity was the second most important activity scrutinized by the researchers,
but the activity was only moderate to weak or even absent for the microorganisms used. For example,
for Staphylicoccus aureus, the activity found ranged for inactive (pyrane-based cembranoid diterpene) to
active against multidrug resistant strain (the biscembrane hydrocarbon trocheliane). Anti-inflammatory
activity was positive in all assays independent on the methodology used: inhibition of production
of NO, interleukins, prostaglandins, TNF-α by LPS-LPS-stimulated macrophage cells; inhibition of
expression of COX-2 or inhibition of superoxide anions generation. In contrast, in Sinularia species,
there is a species (S. flexibilis) in which no anti-inflammatory or antioxidant activity was found,
whereas in other cases S. flexibilis presented an anti-inflammatory activity. The citotoxicity towards
several tumor cell lines were detected either in species of the genus Sinularia or Lobophytum, but with
diverse strengths.

Although such diversity of results can be attributed to the chemical groups and their arrangement
in the core structure, it would be advisable to find other approaches to identify biological properties.
Sometimes it is unclear the reasons that led the researchers to determine certain activities as well as the
choice of some cells or parameters. Whether for plant kingdom, the ethnobotany or ethnopharmacology
are strong tools for searching bioactive compounds, in the marine world cannot provide enough
information, whereby other approaches must be taken into account. World data libraries compiling
the results obtained so far, along with structure-based drug design methods (e.g., molecular docking,
structure-based virtual screening and molecular dynamics) can predict in some extent possible
activities and interactions with diverse targets, maybe more adequate and less expensive than the
current way generally followed. The resistance of microorganisms to antibiotics is of great concern,
therefore the bactericidal activity found for 16-hydroxycembra-1,3,7,11-tetraene, or the activity against
the two multidrug resistant bacteria Acinobacter baumannii and Staphylococcus aureus of trocheliane
should be deeply studied not only in the search of new compounds with similar structures or,
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even better, those molecules can serve as templates for the construction of new molecules after
adequate modifications.
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