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Abstract: Based on medicinal chemistry tools, new compounds for malaria treatment were designed.
The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine,
mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline
and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR)
Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model.
Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed,
which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine.
Hybrids between chloroquine–atorvastatin and primaquine–atorvastatin were also synthesized and
shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives,
new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained
excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the
synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline
derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (Pf DHODH)
enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.

Keywords: malaria; P. falciparum; Pf DHODH; quinoline; triazolopyrimidine; pyrazolopyridine;
pyrazolopyrimidine; chloroquine; primaquine; mefloquine

1. Introduction

Malaria is one of the world’s most serious public health problems. According to the latest World
Health Organization (WHO) World Malaria Report, no significant gains were achieved in reducing
malaria cases in the period from 2015 to 2017. The estimated number of malaria deaths in 2017,
at 435,000, remained broadly unchanged relative to the previous year, which was 445,000 deaths (WHO,
2019) [1].

Due to the high parasitic resistance exhibited by Plasmodium falciparum to most drugs available,
monotherapy is no longer used to treat malaria.

To prevent recurrence and delay the development of parasite resistance, the WHO recommends the
use of artemisinin-combined therapies (ACTs), which are based on the simultaneous use of drugs with
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different modes of action [2]. Artemisinin derivatives have very short in vivo half-lives, but they are
fast acting against the intraerythrocytic asexual blood-stage malaria parasites. Therefore, artemisinin
derivatives are coadministered with drugs with longer half-lives [2]. There is an urgent need for
novel antimalarials with better safety profiles than current medicines due to the resistance against
antimalarial drugs and for the prevention of transmission and relapse of the disease [3–6].

In the recent literature, a number of new antimalarial compounds in different stages of preclinical
and clinical development have been described [7–10]. Notably, quinoline derivatives are still the
predominant class of antimalarial drugs. [11–13].

The exchange of the quinoline ring with another heterocyclic ring is an important strategy in
drug design and the chemical modification of available drugs to develop novel, biologically active
compounds. Many heterocyclic compounds have been developed in an attempt to find new drugs to
treat malaria [14].

Recent studies by Boechat and coworkers present the design and synthesis of a broad class of
quinoline and non-quinoline compounds with anti-P falciparum. These compounds had their structures
modified using some medicinal chemistry tools, such as molecular hybridization. The rational sequence
of modifications made from the parent drugs and/or prototypes to obtain the novel hybrid compounds
is summarized in Figure 1.
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Figure 1. Rational approach to the design quinoline and non-quinoline compounds.

Therefore, twenty-six new derivatives of the [1,2,4]triazolo[1,5-a]pyrimidine system (1–26),
with different substituents at the 2, 5 and 7 positions, were designed using standard medicinal
chemistry and modeling principles, such as isosteric replacement, based on ring isosterism with
the antimalarial drugs mefloquine, chloroquine and amodiaquine (Figure 2) [15]. Additionally, the
CF3 group present in mefloquine was added at the 2 position of the triazolopyrimidine ring, and
aromatic and aliphatic amine moieties were incorporated at the 7 position, taking into consideration the
amodiaquine scaffold. The trifluoromethyl moiety is one of the most widespread fluorine-containing
functional groups in bioactive molecules. Due to its highly electronegative feature, it can exert
significant electronic influences on neighboring groups. Another advantage is the improvement in
lipophilicity, making this moiety useful for targeting molecules to enzymatic active sites [16–18].

The reaction of 3-amino-1,2,4-triazoles 27a–c with ethyl acetoacetate or ethyl
4,4,4-trifluoroacetoacetate in toluene under reflux with catalytic p-toluenesulfonic acid, for 24 h produced
[1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-ones 28a–d in 50–90% yield [19]. Compounds 28a–d were treated
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with POCl3 under reflux for 6 h to obtain the respective 7-chloro[1,2,4]triazolo[1,5-a]pyrimidines 29a–d
in 58–90% yield. The nucleophilic aromatic substitution reaction of intermediates 29a–d with the
appropriate amines [20] afforded target compounds [1,2,4]triazolo[1,5-a]pyrimidine derivatives 1–26
in 30–90% yield (Figure 3).
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Figure 2. Rational approach to the design of [1,2,4]triazolo[1,5-a]pyrimidine derivatives 1–26.
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6 h; (iii) appropriate amine, EtOH, 25 ◦C, 16–18 h; (iv) appropriate amine/azol, DMF, 120 ◦C, 12 h;
(v) appropriate amine, EtOH, 25 ◦C, 43 h.
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Synthesized compounds 1–26 were evaluated in vitro against the W2 chloroquine-resistant
(CQR) P. falciparum clone strain, which showed IC50 values in the range of 0.023 to 20 µM and
did not present toxicity to HepG2 cells. The trifluoromethyl group, as a substituent at the 2
position of the [1,2,4]triazolo[1,5-a]pyrimidine ring, contributed to an increase in anti-P. falciparum
activity. Compounds 2 (2-naphthyl; IC50 = 0.023 µM), 5 (3,4-diCl; IC50 = 0.55 µM), 8 (4-OCH3;
IC50 = 0.4 µM), and 13 (4-CF3; IC50 = 0.3 µM) were the most potent of the series. However, the
5-methyl-7-N’-(N,N-diethylpentane-1,4-diamine)-2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidine
derivative that contained a trifluoromethyl group showed poor antimalarial activity. Derivative 2,
which contains a β-naphthylamine group in its structure at the 7 position, and the trifluoromethyl
group at the 2 position, has an important contribution to anti-P. falciparum activity when compared
with the other derivatives that contain aryl/alkylamine groups at the 7 position. Derivative 2 was
therefore used as a prototype compound (prototype I) for future investigations in the search for
compounds for the treatment of malaria (Figure 4).
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The inhibition of P. falciparum dihydroorotate dehydrogenase (Pf DHODH) has been shown
to be an attractive strategy to search for new substances with antiplasmodial activity [21,22].
Synthetic compounds have been identified as inhibitors of class 2 DHODH enzymes. Some
[1,2,4]triazolo[1,5-a]pyrimidin-7-amines were discovered by Phillips and coworkers as inhibitors
of Pf DHODH [23–26]. Following these good results, new 7-arylaminopyrazolo[1,5-a]pyrimidines
were designed by ring isosterism from prototype I [27]. The [1,2,4]triazolo[1,5-a]pyrimidine ring was
modified to a pyrazolo[1,5-a]pyrimidine ring and changed by molecular hybridization (Figure 5).
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Figure 5. Rational approach to the design of pyrazolo[1,5-a]pyrimidine derivatives 30–44.

Different arylamines were incorporated into the structure to investigate the importance of the
substituent at the 7 position of the pyrazolopyrimidine nucleus, and the β-naphthylamine moiety was
also incorporated. In a previous work, we observed that a trifluoromethyl group at the 2 position of
the triazolopyrimidine ring plays an important role in antiplasmodial activity. This time, CF3 was also
added as a substituent in the 2 or 5 position of the pyrazolo[1,5-a]pyrimidine scaffold to investigate the
influence of this group on the anti-P. falciparum activity.

Fifteen compounds, 30–44, were synthesized in 44%–92% yield using the same synthetic
methodology described above (Figure 6) [15].
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These compounds were evaluated in vitro against the P. falciparum W2 CQR clone, in vivo
against P. berghei-infected mouse model, and in vitro as Pf DHODH inhibitors. In addition,
a molecular docking study was performed to evaluate the possible binding mode of the
7-arylaminopyrazolo[1,5-a]pyrimidine compounds to Pf DHODH.

Among the 15 pyrazolopyrimidines synthesized, 13 exhibited anti-P. falciparum activity, with IC50

values ranging from 1.2 to 92.4 µM. Compounds 33 (R1 = CF3, R2 = CH3), 38 (R1 = CH3, R2 = CH3) and
44 (R1 = CH3, R2 = CF3) with β-naphthylamine at the 7 position were the most active. Compounds 33
and 38 exhibited low toxicity and low IC50 values of 1.2 and 5.1 µM, respectively, and consequently,
the highest SI (selectivity index) values of 467.8 and 79.6, respectively. Therefore, compounds 33 and
38 were selected for in vivo in P. berghei-infected mouse model. On day 5 upon treatment at 5 mg/kg,
administered orally, both compounds reduced parasitemia by 50%. Compound 44 showed the best
inhibition of the Pf DHODH enzyme with an IC50 = 0.16 µM, which was more potent than prototype I
(IC50 = 0.70 µM), whereas 33 and 38 had IC50 values of 6.0 and 4.0 µM, respectively.
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The proposed bioisosteric replacement of the [1,2,4]triazolo[1,5-a]pyrimidine ring on prototype I by
the pyrazolo[1,5-a]pyrimidine ring was shown to be a positive proposition according to the molecular
docking study. These results demonstrated the potential of 7-arylpyrazolo[1,5-a]pyrimidine derivatives
as inhibitors of Pf DHODH and may represent new leads for developing drugs against malaria.

Although quinoline derivatives continue to dominate the antimalarial drug, new synthetic hybrid
compounds have been described in recent literature [28–34]; however, due to resistance to this class of
drugs, searching for other analogous compounds is extremely important [35].

In an effort to obtain novel quinoline derivatives for the treatment of malaria, new
quinolinyl-1H-1,2,3-triazoles (48–58) were designed to find new compounds with anti-P. falciparum
activity [36].

The literature describes several compounds containing a 1H-1,2,3-triazole ring with P. falciparum
activity [37]. Previous works described by our group demonstrated that 1,2,3-triazoles are active
against Mycobacterium tuberculosis [38] and Leishmania amazonensis [39]. Therefore, it was planned to
connect this ring to the 7-chloroquinoline moiety present in CQ and amodiaquine and incorporate a
variety of substituents at the 4 position (Figure 8).
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The synthetic route that was used to prepare the 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinolines 48–58
is shown in Figure 9.
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NaN3, MeOH, reflux, 24 h; (ii) appropriate acetylene, L-ascorbic acid sodium salt, CuSO4.5H2O,
H2O/t-BuOH/THF (1:1:1), 25 ◦C, 24 h; (iii) ClCOCOCl, CH2Cl2, DMSO, TEA, −78 ◦C, 6 h; (iv) DAST,
CH2Cl2, 25 ◦C, 24 h.

The raw material 4,7-dichloroquinoline (59) was treated with sodium azide in MeOH under
reflux for 24 h to obtain the 4-azido-7-chloroquinoline (60) derivative in 70% yield. The 1,3-dipolar
cycloaddition reaction between azide derivative 60 and the respective alkyne was performed with
sodium ascorbate and a Cu(I) catalyst, in H2O/t-BuOH/THF (1:1:1) at 25 ◦C to obtain the 1,4-regioisomer
of 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinolines 48–58 in 40–77% yield [38].
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Alcohol derivative 55 was used for the synthesis of compounds 56, 57 and 58. Aldehyde 56 was
prepared in 55% yield, by the Swern oxidation of 55. The reaction of 55 with dimethylaminosulfur
trifluoride (DAST) in CH2Cl2 at 25 ◦C for 24 h produced the monofluorinated derivative 57 in 70%
yield. The difluorinated derivative 58 was obtained with 60% yield from the reaction of aldehyde 56
with DAST.

We synthesized eleven new hybrid 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinolines 48–58. Six
compounds, 48, 50–52, 56 and 58, exhibited in vitro activity against the P. falciparum W2 CQR
clone, with IC50 values ranging from 1.4 to 46 µM. None of these compounds were toxic to HepG2 cells.

The most active compound 56 (Figure 10) contained an aldehyde group at the 4 position of
1H-1,2,3-triazol-1-yl, with an IC50 = 1.4 µM and SI = 351.
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Hybrid antimalarial drugs have advantages over combined drugs since they decrease the risk of
adverse drug-drug interactions and facilitate treatment adherence. Through a rational drug design
approach, single hybrid molecules with dual functionality and/or targets have been planned and
may have either the same mechanism of action as the precursor drugs or a distinct mechanism of
action [40,41].

A hybrid salt of artesunate and mefloquine, MEFAS (61) (Figure 11), was active against both the
CQS 3D7 and CQR W2 strains of P. falciparum, with IC50 = 0.001 µM. This hybrid salt was at least 5-fold
more potent than mefloquine alone, more potent than artesunate against 3D7, as effective as artesunate
against W2, and more potent than mixtures of the drugs. In vivo tests against P. berghei-infected mice,
at a dose of 10 mg/kg, led to cure without recrudescence of parasitemia. The in vivo cytotoxicity of
MEFAS has demonstrated that its toxicity is 5-fold lower than that of mefloquine. The combined fixed
dose of ASMQ (artesunate + mefloquine) was 3-fold more toxic than MEFAS [42]. MEFAS has been
demonstrated to be an active blood schizonticidal and can also block the infectivity of P. falciparum
gametocytes, 280- and 15-fold more effectively than mefloquine and artesunate alone, respectively [43].
These results make this compound very promising to target both the asexual parasites and gametocytes,
improving the antimalarial effects.
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PRIMAS (62) (Figure 11) is also a hybrid salt between artesunate and primaquine under
development by Boechat and coworkers [44]. This hybrid was designed with the goal of minimizing
primaquine toxicity. Indeed, the PRIMAS hybrid salt is more active in vivo and in vitro and less toxic
than primaquine.
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Hybrid compounds that have been designed through the incorporation of different pharmacophoric
groups into the quinoline ring have generated effective derivatives. Some are already in the clinical
trial phase [45].

In an effort to enhance the anti-P. falciparum activity of quinoline derivatives 63–77, a series of
15 molecules was designed from the precursor drugs chloroquine and sulfadoxine (Figure 12) [46]. These
compounds contain the pharmacophore groups of a 7-chloroquinoline and arylsulfonamide, separated
by a distinct linker that is not found in the individual drug molecular frameworks. The 7-chloroquinoline
moiety was included because it is present in CQ, which is used to treat malaria, while the arylsulfonamide
moiety is present in sulfadoxine. The pharmacophore groups were connected by a linker group
containing 2–4 CH2 units.
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Figure 13. Synthetic route used to prepare compounds 63–77. Reagents and conditions: (i) appropriate
diamine, reflux, 4 h; (ii) appropriate sulfonyl chloride, MeOH, TEA, 25 ◦C, 24 h.

The nucleophilic substitution reaction of 4,7-dichloroquinoline (59) with the corresponding
diamine was performed to obtain intermediates N1-(7-chloroquinolin-4-yl)alkyldiamine 78–80 in 85-90%
yield [47]. The addition-elimination reaction between the N1-(7-chloroquinolin-4-yl)alkyl-diamines
78–80 and the appropriate sulfonyl chloride in MeOH and TEA at 25 ◦C afforded the
N-(2-((7-chloroquinolin-4-yl)amino)alkyl)benzenesulfonamides 63–77 in 50–77% yield [48].

The 15 synthesized compounds 63–77 with different substituents at the 4 position of the
arylsulfonamide group were tested against the W2 chloroquine and sulfadoxine-resistant P. falciparum
clone and for their cytotoxicity.

All the compounds presented activity, and 10 of them showed IC50 values ranging from 0.05 to
0.40 µM in the anti-HPR2 assay, which are lower than those of CQ and sulfadoxine, and none of them
were toxic to BGM cells.

A direct relationship was observed between the increase in the number of methylene groups
(CH2) used as the linker and the increase in activity. Compounds with 4 and 3 methylene group
(CH2) linkers showed greater activity against P. falciparum than CQ, while the series of compounds
containing 2 methylene groups were less active than CQ, with IC50 values in the range of 0.48 to 1.63 µM.
Compounds 68–72, with three methylene groups as the linker, showed IC50 values ranging from 0.10
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to 0.35 µM. Compounds 74–77 containing four methylene groups as the linker were the most active of
the series, with IC50 values ranging from 0.05–0.15 µM. Compound 73 (R = H) (IC50 = 0.40 µM) was an
exception. Compounds with substituents at the 4 position of the arylsulfonamide group increased the
P. falciparum activity, while the derivatives without a substituent on the arylsulfonamide group were
the least potent. Compounds 72 (R = F; IC50 = 0.10 µM), 74 (R = CH3; IC50 = 0.05 µM), 75 (R = Cl; IC50

= 0.09 µM) and 77 (R = F; IC50 = 0.15 µM) had the highest SI values: 3386.0, 2489.0, 1102.2 and 1031.3,
respectively, so they were also evaluated for their antimalarial activity in P. berghei-infected mice.

Compounds 74 and 77 were partially active and inhibited P. berghei-parasitemia by 27% and 30%,
respectively on day 5 upon treatment at 10 mg/kg, administered orally, whereas compounds 72 and 75
showed parasitemia inhibition at rates of 47% and 49%, respectively.

Due to the advantages of the hybrids with the best results exhibited herein, compound 75
(Figure 14) was used as an antimalarial prototype (prototype II) to proceed with other studies to
overcome the burden of resistance in P. falciparum.
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Continuing the search for new quinoline derivatives with antimalarial activity, a new class of
hybrids 81–84 with atorvastatin (AVA) was planned inspired by prototype II [49]. The design of
these molecules was based on the proven AVA antimalarial activity. The molecular hybridization of
chloroquine derivatives 81–84 included the aminoquinoline moiety with the pyrrole of AVA. To connect
these two pharmacophoric groups, the 7-chloroquinoline moiety was bound to the pentasubstituted
pyrrole by a linker group containing 2–4 CH2 units. Hybrid 84 was made by the direct attachment of
primaquine to the pentasubstituted pyrrole (Figure 15).
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The Paal–Knorr [50] reaction between the key intermediate used in prototype II
synthesis [47] N-(7-chloroquinolin-4-yl)alkyldiamines 78–80 or primaquine and 1,4-diketone 85,
new pyrrole-chloroquine 81–83 and pyrrole-primaquine 84 derivatives were obtained, respectively,
in 18-64% yield (Figure 16). The N-(7-chloroquinolin-4-yl)alkyldiamines 78–80 were obtained as
previously described [46].
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Figure 16. Synthetic route used to prepare compounds 81–84. Reagents and conditions: (i) pivalic acid,
THF: cyclohexane, 80–100 ◦C, 18–64%.

All compounds synthesized showed activity against the P. falciparum W2 clone, and none of
them were significantly toxic to the BGM cell line. Chloroquine-AVA hybrids 81, 82 and 83 were the
most active, with IC50 values of 0.99, 0.65 and 0.40 µM, respectively, which were in a similar range to
chloroquine (IC50 = 0.59 µM), and all were better than primaquine (IC50 = 1.89 µM) and atorvastatin
(IC50 = 10.3 µM), with good SI values. Herein, the activity of the compounds increased with the length
of the carbon chain, which was similarly shown for the quinoline-sulfonamide derivatives that have
four methylene groups as the linker. Compound 83 (n = 4) (Figure 17) exhibited better activity despite
the exchange of the terminal amine for a polysubstituted pyrrole ring and was 26-fold more active
than AVA. Primaquine derivative 84 (IC50 = 1.41) was the least potent of the series. However, it was
significantly less toxic and more active than primaquine and 7-fold more active than AVA (IC50 = 10.3
µM). This indicates that compound 84 is promising and may be a prototype in the search for a drug
that is able to replace primaquine, because 84 was shown to be safer (SI > 1107) than primaquine (SI
of 239). Additionally, to evaluate the importance of the pyrrolic moiety in the hybrid compounds,
a pentasubstituted pyrrole without the aminoquinolinyl moiety was synthesized. This compound
had no toxicity in vitro and was more potent (IC50 = 6.39 µM) than AVA. This result suggests that the
pentasubstituted pyrrole might be the pharmacophoric group of AVA for antimalarial activity. New
compounds containing pentasubstituted pyrrole-quinolines will be synthesized with the expectation
of enhanced potency and solubility and will also be assayed for cerebral antimalarial activity to clarify
the importance of AVA in this scaffold.
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In an effort to enhance the anti-P. falciparum activity of prototype II, new non-quinoline
derivatives 86–95 were planned [51]. Therefore, the pyrazolopyridine system was selected as
an isostere of quinoline, and the literature has demonstrated that this heterocycle possesses
antimalarial activity [52]. The design of the non-quinoline derivatives consists of a ring isosterism in
which the 7-chloroquinoline moiety is replaced by the 1-phenyl-1H-pyrazolo[3,4-b]pyridine system.
An N-(4-aminobutyl)benzenesulfonamide group was attached to the 4 position of this heterocyclic
ring. The 1H-pyrazolo[3,4-b]pyridine ring remains separated from the benzenesulfonamide moiety by
the linker containing four methylene groups, which is similar to the linker found in the individual
molecular framework of prototype II (Figure 18).
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1 h, 70%; (ii) H3PO4, 170 ◦C, 6 h, 86%; (iii) EtOH, reflux, 2 h, 86–88%; (iv) POCl3, reflux, 6 h, 84%; (v)
butane-1,4-diamine, 1,4-dioxane, 25–80 ◦C, 1–4 h, 66–79%; (vi) appropriate sulfonyl chloride, MeOH,
TEA, 25 ◦C, 24 h, 59–70%; (vii) Dowtherm, 250 ◦C, 40 min, 71%; (viii) POCl3, reflux, 6 h, 90%.

From the reaction of phenylhydrazine and ethyl 2-cyano-3-ethoxyacrylate, in ethanol under
reflux, the ethyl 5-amino-1-phenyl-1H-pyrazole-4-carboxylate (96) was prepared at 70% yield.
Hydrolysis followed by decarboxylation of this compound afforded 5-amino-1-phenyl-1H-pyrazol
(97) in 86% yield. Michael addition of 97 with ethyl 2-cyano-3-ethoxyacrylate or diethyl
2-(ethoxymethylene)malonate in ethanol under reflux gave derivatives 98 and 99 in 86% and 88% yield,
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respectively. From the reaction of diethyl 2-(((1-phenyl-1H-pyrazol-5-yl)amino)methylene)malonate
(98) with phosphorus oxychloride under reflux, the intermediate ethyl
4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (100) was prepared in 84% yield [53].
However, the derivative 4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (101)
could not be obtained using this methodology. To obtain 101, the cyclization of ethyl
2-cyano-3-((1-phenyl-1H-pyrazol-5-yl)amino)acrylate (99) was performed in refluxing Dowtherm for
40 min and 4-oxo-1-phenyl-4,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (102) was isolated
by precipitation from hexane with a yield of 84% [20]. Derivative 102 was treated with phosphorus
oxychloride to produce 101 in 90% yield. From the nucleophilic substitution reaction between
4-chloro-1-phenyl-1H-pyrazolo[3,4-b]pyridines 100 and 101 and butane-1,4-diamine, the intermediates
ethyl 4-((4-aminobutyl)amino)-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (103) and
4-((4-aminobutyl)amino)-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (104) were synthesized
in 79% and 66% yield, respectively [54]. The addition-elimination reaction between the appropriate
sulfonyl chloride and amines 103 and 104 was performed in MeOH and TEA (1.0 mmol) at 25 ◦C to obtain
target compounds N-(4-((1-phenyl-1H-pyrazolo[3,4-b]pyridin-4-yl)amino)butyl)benzenesulfonamides
86–95 in 59–70% yield [46].

Ten derivatives of 1-phenyl-1H-pyrazolo[3,4-b]pyridine 86–95 were synthesized with different
substituents at the 4 position of the benzenesulfonamide group and tested in vitro against the W2
chloroquine and sulfadoxine-resistant P. falciparum clone and for their cytotoxicity. All the compounds
exhibited low toxicity to BGM cells and IC50 values lower than that of the control drug sulfadoxine
(IC50 = 15.0 µM). However, the observed activity was lower than that of chloroquine (IC50 = 0.55 µM)
and the quinoline-sulfonamide hybrid II.

The IC50 values ranged from 3.46 to 9.30 µM in the anti-HPR2 assay. Derivative (R2 = CH3) 87
with IC50 = 3.46 µM, derivative 89 (R2 = Cl) and 92 (R2 = CH3), both with IC50 values of 3.60 µM,
were the most active against P. falciparum (Figure 20). Compound 89 also showed the highest SI value:
>277.77.
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It was observed that the 3 compounds with R1 = CO2Et at the 5 position of the
1H-pyrazolo[3,4-b]pyridine ring showed higher activity than those with CN at the same position.

Continuing the search to obtain new non-quinoline antimalarials, we used prototype II to design the
new derivatives N-(4-((1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)butyl)benzenesulfonamides
105–113 [55]. The 7-chloroquinoline moiety was replaced by the 1H-pyrazolo[3,4-d]pyrimidine
system by ring isosterism, and at the 4 position of the heterocyclic ring, the
N-(4-aminobutyl)benzenesulfonamide moiety was attached, designing the 1H-pyrazolo[3,4-b]pyridine
derivatives (Figure 21).
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The synthetic route for preparing N-(4-((1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-
yl)amino)butyl)benzenesulfonamides 105–113 is shown in Figure 22.
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Figure 22. Synthetic route used to prepare compounds 105–113. Reagents and conditions: (i) EtOH, reflux,
2 h, 61–80%; (ii) HCOOH, reflux, 12 h, 73–89%; (iii) POCl3, reflux, 24 h, 78–97%; (iv) butane-1,4-diamine,
CH3CN, 25 ◦C, 24 h, 23–36%; (v) appropriate sulfonyl chloride, DMF, TEA, 90 ◦C, 24 h, 25–79%.

The reaction of the appropriate phenylhydrazine and 2-(ethoxymethylene)malononitrile in ethanol
under reflux for 2 h was performed to obtain the 5-amino-1-phenyl-1H-pyrazole-4-carbonitrile 114a–c
compounds in 61–80% yield [56]. Reaction of the suitable 5-aminepyrazoles 114a–c and formic acid
under reflux for 12 h afforded the 1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-ols (115a–c) in 73–89%
yield [57]. Derivatives 115a–c were treated with phosphorus oxychloride under reflux for 24 h to produce
4-chloro-1-phenyl-1H-pyrazolo[3,4-d]pyrimidines (116a–c) in 78–97% yield [51,54]. Nucleophilic
substitution between 116a–c and butane-1,4-diamine in CH3CN at 25 ◦C for 24 h was performed to
obtain intermediates N1-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)butane-1,4-diamines (117a–c) in
23–36% yield [46,51]. The addition-elimination reaction between diamines 117a–c and the appropriate
sulfonyl chloride in DMF and triethylamine (TEA) at 90 ◦C for 24 h afforded target compounds
N-(4-((1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl)amino)butyl)benzenesulfonamides (105–113) in
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25–79% yield [46,51]. The nine derivatives of 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (105–113)
that were synthesized were tested in vitro for their efficacy against the W2 chloroquine- and
sulfadoxine-resistant P. falciparum clone and for their cytotoxicity. The anti-P. falciparum activities
of the quinoline and 1H-pyrazolo[3,4-d]pyrimidine systems were then compared. Compounds
105–108, 111, and 113 showed IC50 values ranging from 5.13 to 43.40 µM in the anti-HPR2 assay
and low toxicity to BGM cells. Among the compounds (105–113) synthesized, six compounds
exhibited anti-P. falciparum activity in vitro against chloroquine-resistant parasites, and none were
toxic to BGM cells. This study showed that compound 107 (R1 = F / R2 = CH3) presented an
IC50 value of 5.13 µM, which was lower than that of the control drug sulfadoxine (IC50 = 15.00
µM) in the anti-HRPII assay. In addition, most of the compounds in this series have higher
SI values than sulfadoxine. However, the 1H-pyrazolo[3,4-d]pyrimidine derivatives were not
more potent than the control drug chloroquine (IC50 = 0.55 µM) and quinoline prototype II
(IC50 = 0.09 µM). It is interesting to note that, similar to 1H-pyrazolo[3,4-d]pyridine 87, the most
active derivatives in this series have CH3 at the 4 position of the benzenesulfonamide moiety.
Compounds 1H-pyrazolo[3,4-d]pyrimidine 107 and 1H-pyrazolo[3,4-b]pyridine 87 were equipotent;
however, prototype II was still the most active (Figure 23). It is possible to conclude that the
1H-pyrazolo[3,4-d]pyrimidine and 1H-pyrazolo[3,4-b]pyridine systems are promising for further
studies of their anti-P. falciparum activities.
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Figure 23. Comparison of prototype II with 87 and 107.

New mefloquine derivatives 118–133 were designed using molecular hybridization and ring
bioisosterism. The pharmacophoric subunit 2,8-bis-(trifluoromethyl)quinoline, which is present in
mefloquine, and the aminoaryl moiety of amodiaquine were linked to provide potent antimalarial drugs
(Figure 24) [58]. The importance of the arylmethanol moiety in mefloquine, also present in quinine,
is highly important for the antimalarial activity however, the arylmethanol moiety was replaced by
phenylamino group present in amodiaquine. A variety of aliphatic, aromatic and heteroaromatic
substituents were added to provide the electronic and lipophilic properties to research the contributions
of each fragment to the activity profile of this new class of compounds. Compound 134 was also
prepared to compare the importance of the 2,8-bis-(trifluoromethyl)quinoline moiety versus the
7-chloroquinoline moiety for antiplasmodial activity.
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Figure 24. Rational approach to the design of compounds 118–134.

The synthetic route to prepare the N-substituted-2,8-bis(trifluoromethyl)-quinolin-4-amine
derivatives 118–133 is shown in Figure 25. Reaction of 2-(trifluoromethyl)aniline
with ethyl 4,4,4-trifluoroacetoacetate in polyphosphoric acid (PPA) for 3 h produced
2,8-bis(trifluoromethyl)quinolin-4-ol (135) in 91% yield [59], which was then treated with phosphorus
oxychloride at 80 ◦C to obtain 4-chloro-2,8-bis(trifluoromethyl)quinoline (136) in 98% yield [15].
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Figure 25. Synthetic route used to prepare compounds 118–134. Reagents and conditions: (i) ethyl
4,4,4-trifluoroacetoacetate, PPA, 150 ◦C, 3 h; (ii) POCl3, 80 ◦C, 4 h; (iii) appropriate amine, NaH, DMSO,
25 ◦C, 1–24 h; (v) pyridin-4-amine, EtOH, 25 ◦C, 24 h.

The nucleophilic aromatic substitution reaction of intermediates 136 with the appropriate amine
afforded target compounds 118–133 in 42–88% yield (Figure 24) [60].

Compound 7-chloro-N-(pyridin-4-yl)quinolin-4-amine (134) was obtained from the reaction of
pyridin-4-amine with the commercially available 4,7-dichloroquinoline (59) in 89% yield [15].

First, a comparison was made between the importance of the 2,8-bis(trifluoromethyl)quinoline
versus the 7-chloroquinoline moieties. Compounds 119 (IC50 = 8.4 ± 1.7 µM) and 134 (IC50 = 11.7 ± 3
µM) were equipotent, demonstrating that substitution of the quinoline core was not relevant for anti-P.
falciparum activity. Compounds 132 (IC50 = 31.5 µM) and 133 (IC50 > 143 µM), which are both tertiary
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amines, were less active and inactive, respectively. This proves that the presence of the quinoline-NH
group in this class of molecules is important. The reduction of anti-P. falciparum activity of 132 and
133 can be justified through the more rigid conformational structures of the cyclic tertiary amines
compared to the arylamino derivatives. This rigidity interferes with the ability of the compounds
to interact with the biomacromolecule receptor, although the NH group could still interact with the
bioreceptor via hydrogen bonding. The most active compound 129 (IC50 = 0.083 µM) was 3-fold more
potent than chloroquine (IC50 = 0.25 µM) (Figure 26). However, it was less active than mefloquine
(IC50 = 0.019 µM). Moreover, as an advantage, its chemical structure is simpler than that of mefloquine
because it does not contain a stereogenic center, and consequently, its synthesis in the laboratory is
easier and less expensive. When the CH3 substituent was exchanged for H or CF3 on the triazole ring,
as in 128 (IC50 = 2.9 µM) and 130 (IC50 = 11.5 µM), respectively, significantly lower activities were
observed. The isosteric replacement of the 5-methyltriazole unit in 129 with the 5-methylthiadiazole
unit in 131 (IC50 = 1.8 µM) decreased the activity, showing the importance of the triazole nucleus for
anti-P. falciparum activity. Derivative 123 (IC50 = 9.6 µM), with the amine β-naphthyl group, was three
times more active than 122 (IC50 = 28.0 µM), with the amine phenyl group, showing the importance
of lipophilicity in this region on biological activity; however, 123 was not selective and showed high
toxicity. Aminepyridin-4-yl derivative 119 (IC50 = 8.4 µM) was 2.5-fold more active and selective than
aminepyridin-2-yl derivative 118 (IC50 = 19.6 µM). Moreover, when we evaluated the effect of the
aminepyrimidin-2-yl derivative 120 (IC50 = 8.4 µM), it showed equipotent anti-P. falciparum activity
and the same toxicity as 119.
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2. Conclusions

During our research on new drugs for malaria treatment, we sought out medicinal chemistry to
make structural modifications and hybridizations to obtain new compounds that are more selective
and less toxic. In the search of non-quinolinic compounds, a series of [1,2,4]triazolo[1,5-a]pyrimidine
derivatives were designed. These compounds exhibited anti-P. falciparum activities, and none of
the compounds were toxic to HepG2 cells. Compound 2, with the CF3 group at the 2 position and
β-naphthylamine at the 7 position, was the most active, and it has an important contribution to anti-P.
falciparum activity with IC50 = 0.023 µM. Derivative 2 was used as a prototype compound (prototype
I) for future investigations in the search for compounds for the treatment of malaria. Bioisosteric
replacements of the triazolo[1,5-a]pyrimidine ring on prototype I by the pyrazolo[1,5-a]pyrimidine
ring were shown to be effective. Derivatives with β-naphthylamine at the 7 position were the most
active. Compounds 33 (R1 = CF3, R2 = CH3) and 38 (R1 = CH3, R2 = CH3) exhibited low toxicity and
the low IC50 values of 1.2 and 5.1 µM, respectively, and consequently the highest SI values of 467.8
and 79.6, respectively. These compounds showed a 50% reduction of parasitemia in the in vivo anti-P.
berghei malaria evaluation. Compound 44 (R1 = CH3, R2 = CF3) showed the best inhibition of the
enzyme Pf DHODH with an IC50 = 0.16 µM, which was more potent than prototype I (IC50 = 0.70 µM).

A hybrid salt of artesunate and mefloquine, MEFAS (61), has been demonstrated to be 280- and
15-fold more effective than both mefloquine and artesunate alone, respectively, against P. falciparum
gametocytes. Against P. berghei-infected mice, a dose of 10 mg/kg led to cure, and the toxicity of 61
was 5-fold lower than that of mefloquine. PRIMAS (62) is also a hybrid salt between artesunate and
primaquine. This hybrid salt is more active in vivo and in vitro and less toxic than primaquine.
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The 1,2,3-triazol-1-yl quinoline derivatives exhibited activity in vitro against the P. falciparum
W2 CQR clone without toxicity to HepG2 cells. The most active compound 56 showed an IC50

= 1.4 µM, and SI = 351. Compound 75 (R = Cl; IC50 = 0.09 µM) had an SI value of 1102.2 and
was evaluated for its antimalarial activity in P. berghei-infected mice, showing 49% inhibition of
parasitemia. This compound was used as an antimalarial prototype (prototype II) to proceed with
other studies to overcome the burden of resistance in P. falciparum. From prototype II, derivatives
1H-pyrazolo[3,4-d]pyrimidine and 1H-pyrazolo[3,4-b]pyridine were designed. These cores were active
against P. falciparum with 87 giving an IC50 = 3.46 µM and 107 showing an IC50 = 5.13 µM, which were
lower than that of the control drug sulfadoxine; however, prototype II was still the most active.
Chloroquine/primaquine-atorvastatin (AVA) hybrids showed similar activity to chloroquine but were
better than primaquine. The primaquine derivative was significantly less toxic and more active than
primaquine, 7-fold more active than AVA and was shown to be safer (SI > 1107) than primaquine (SI of
239). The 2,8-bis-(trifluoromethyl)quinoline derivatives are chemical structures simpler than those of
mefloquine. Compound 129, the most active compound, showed an IC50 = 0.083 µM and was 3-fold
more potent than chloroquine (IC50 = 0.25 µM). We can conclude that these compounds are promising
for further studies of antimalarial. However, the antimalarial activity of promising compounds to
reverse artemisinin resistance can only be seen by establishing the ring-stage survival assay (RSA) [61].
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