Exchange Mechanism of Alkaline and Alkalineearth Elements in Zeolite N

Monireh Khosravi ^{1,*}, Vinuthaa Murthy ² and Ian D R Mackinnon ¹

- ¹ Institute for Future Environments and Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
- ² College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia.
- * Correspondence: monireh.khosravinasab@qut.edu.au;

Atom	Atomic	Force fields	Number of atoms	
	charges	assigned	(001)	(110)
Si 1	1.756	si4z	16	16
Si 2	1.718	si4z	64	64
Al 1	1.654	al4z	16	16
Al 2	1.623	al4z	64	64
О	-1.0886	o2z	304	312
O-OH	-0.8453	o2z	32	16
Н-он	0.299	h1o	32	16
K1	+1	k+	32	32
К2	+1	k+	64	64
Cl	-1	cl+	16	16
Ow	-0.82	o2*	128	128
Hw	0.41	h1o	256	256

Table S1. The Mulliken partial cherges, force field assigned types and number of framework, extraframework and water atoms used in this study.

Figure S1. The retention of guest cations in (a) ZM-001 and (b) ZM-110, the number of retained chlorides and per unit cell of (c) ZM-001 and (e) ZM-110; ZM-001 and number of remained water molecules in each cage of (d) ZM-001 and (f) ZM-110.

Figure S2. (a-d) ion concentration profiles along *z* direction after 8.5 ns MD simulations. The two red dashed lines indicate the location of ZM-001 surfaces in electrolyte solution.

Figure S3. (a-d) ion concentration profiles along *z* direction after 8.5 ns MD simulations. The two red dashed lines indicate the location of ZM-110 surfaces in electrolyte solution.

Figure S4. Density field maps of (a) K^+ in K^+/K^+ system and M^n guest cations in (b) K^+/Rb^+ , (c) K^+/Mg^{2+} and (d) K^+/Ca^{2+} systems retained inside ZM-001 after 8.5 ns MD simulations.

Figure S5. Density field maps of (a) K^+ in K^+/K^+ system and M^n guest cations in (b) K^+/Rb^+ , (c) K^+/Mg^{2+} and (d) K^+/Ca^{2+} systems retained inside ZM-110 after 8.5 ns MD simulations.

Figure S6. RDFs, g(r) for guest cations to framework atoms, chlorides and water molecules inside ZM-001 membrane.

Figure S7. RDFs, g(r) for guest cations to framework atoms, chlorides and water molecules inside ZM-110 membrane.

Figure S8. Self-diffusion coefficient of ions (D) inside electrolyte vs. ionic radius. The black labelled points are D values of guest cation in each system. The D values of K cations in electrolyte of each system are identified with different colours.

Figure S9. The concentration profile of water molecules along *z* direction for different times of MD simulations for K^+/Cs^+ system of ZM-001. The two red dashed lines indicate the location of ZM-001 surfaces in electrolyte solution.