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Abstract: New enantiomerically pure Cyg-alkyl diamides derived from trihydroxy cyclohexane-1,
2-dicarboxylic acid have been synthesized from (—)-shikimic acid. The hydroxyl groups in these
compounds are free or, alternatively, they present full or partial protection. Their gelling abilities
towards several solvents have been tested and rationalized by means of the combined use of Hansen
solubility parameters, scanning electron microscopy (SEM), and circular dichroism (CD), as well
as computational calculations. All the results allowed us to account for the capability of each type
of organogelator to interact with different solvents and for the main mode of aggregation. Thus,
compounds with fully protected hydroxyl groups are good organogelators for methanol and ethanol.
In contrast, a related compound bearing three free hydroxyl groups is insoluble in water and polar
solvents including alcohols but it is able to gelate some low-polarity solvents. This last behavior
can be justified by strong hydrogen bonding between molecules of organogelator, which competes
advantageously with polar solvent interactions. As an intermediate case, an organogelator with two
free hydroxyl groups presents an ambivalent ability to gelate both apolar and polar solvents by means
of two aggregation patterns. These involve hydrogen bonding interactions of the unprotected
hydroxyl groups in apolar solvents and intermolecular interactions between amide groups in
polar ones.

Keywords: polyfunctional cycloalkane bisamides; organogelator; self-assembly; chirality;
hydrogen bonds

1. Introduction

Low molecular weight organogelators (LMWOGs) are soft materials widely used at present in
several fields that include products employed as lubricants, cosmetics, drug delivery systems, tissue
regeneration materials, biosensors, molecular electronic devices or chiral catalysts [1-5]. Very recently,
applications of supramolecular gels as materials for environmental remediation [6] or for practical and
eco-friendly oil spill recovery [7,8] have been reported.

The gelling ability of molecules in different solvents has been the subject of a number of studies.
However, the ultimate reasons for the hierarchical self-assembling of a gelator in a specific solvent still
remain incomplete [9,10]. Therefore, there is a lack of prediction tools. Rationalization of the gelling
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power of a LMWOG has been attempted based on various solubility indicators [11-15]. Among them,
Hansen solubility parameters (HSPs) [13,16] have been applied to elucidate the behavior of LMWOGs
towards solvents and to reduce the number of trials usually involved during the identification of
a suitable gelator for a particular application [17-19].

Amides have been reported as functional groups present in some of the simplest LMWOGs
that have been described [20]. We have previously developed good LMWOGs of peptide nature
based on chiral p-cyclobutane amino acids [21,22], or hybrid peptides presenting a cyclobutane
B-amino acid joined in alternation with linear residues [23]. In both cases, a model to explain
the self-assembly of the individual molecules to produce the gel was suggested by means of
computational calculations. More recently, we reported a combined experimental and computational
study to investigate and rationalize the gelling ability of diastereomeric 1,2-disubstituted carbocyclic
compounds (1, Figure 1) [24]. The influence of the cis/trans relative configuration of the monomers in
their hierarchical self-assembly was analyzed and their gelling behavior compared well with that of
trans-cyclohexane-1,2-diamine derivatives described by Hanabusa et al. [25] and van Esch et al. [26]
suggesting that regiochemistry does not play a relevant role in the gelation process. It was remarkable
that chiral aggregates were observed even from meso molecules cis-1 as an example of stochastic
symmetry breaking induced by sonication.

Otherwise, regarding polyhydroxylated organogelators, only few results on modified carbohydrate or
cholestane derivatives have been described and their ability to gelate organic solvents has been interpreted
by using different techniques in each case [27-30]. Nevertheless, as far as we know, there is neither
information in the literature on polyhydroxylated simple cycloalkane derivatives nor on compounds
susceptible of additional hydrogen-bonding promoted by further functional groups such as amides.

In this paper, we describe the investigation of five new polyhydroxylated cyclohexane bisamides
(cis- and trans-2, 3-5, Figure 2), prepared from (—)-shikimic acid. All of them bear two long alkyl
chains and three hydroxyl groups with different degrees of protection. These new polyfunctional
LMWOGs have been compared with their parent compounds cis- and trans-1 focusing the attention
on the influence of the polar functional groups at the ring, especially the free hydroxyl groups, on
their gelling power and aggregation mode in different solvents. With this purpose, the complementary
results obtained from several experimental techniques (use of Hansen parameters, SEM and CD
spectroscopy) as well as from computational calculations have been taken into account to understand
and rationalize the main interactions involved in each case.

CONHR CONHR
C( [ ],/ R = (CH2)15CH3
CONHR ‘CONHR

cis-1 trans-1

by

o o 0
}\/ O:O:CONHR }{ O:O,CONHR :@CONHR
N e
~Sho ~Sho CONHR
3

CONHR CONHR H
cis-2 trans-2
OH OH
}{HO/,, ~__,CONHR HO, < __CONHR
S'/ /O, /C(
) “CONHR HO CONHR
4 5

Figure 1. Previously studied LMWOGs (cis- and trans-1) [16] and new LMWOGs investigated in this
work (2-5).
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2. Results and Discussion

2.1. Synthesis of Organogelators 2-5

The synthesis of polysubstituted 1,2-cyclohexanedicarboxamides 2-5 was achieved from
polysubstituted lactone 6 and 2-nitromethylcyclohexanecarboxylic acid methyl ester (9). respectively,
previously obtained from commercially available (—)-shikimic acid (Scheme 1) [31].

For the preparation of 1,2-cyclohexanedicarboxamides cis-2, 3 and 5, lactone 6 was transformed
into acid 7 in 76% yield through a Nef reaction conducted under remarkably mild conditions, with
sodium nitrite and acetic acid using dimethylsulfoxide as solvent and carefully controlling the pH (not
lower than 3) in order to preserve the acetonide protecting group (Scheme 1). The resulting acid 7
was then condensed with hexadecylamine, using PyBop as coupling agent and diisopropylethylamine
(DIEA) as a base, to give amide 8 in 98% yield. Subsequent reaction with a second equivalent of
hexadecylamine in the presence of 2-hydroxypyridine afforded diamide 3 in 30% yield. In turn,
3 was transformed into fully protected derivative cis-2 by protection of the free hydroxyl group as
tert-butyldimethylsilyl ether by treatment with tert-butyldimethylsilyl chloride and imidazole (74%
yield). Alternatively, aqueous trifluoroacetic acid-promoted hydrolysis of the acetonide in 3 afforded
product 5 in 42% yield.

Following a similar route, nitroester 9 was transformed into amide 11 in 41% yield, for the two
steps. This intermediate afforded diamide trans-2 in 30% yield, when reacted with hexadecylamine
and 2-hydroxypyridine as catalyst. The acetonide in fully protected diamide trans-2 was removed as
described before giving diamide 4 in 47% yield, which surprisingly preserved the silyl ether group
that was inert under several conditions.
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Reagents. i: NaNO, AcOH, DMSO. ii: C4gH33NH, PyBop, DIEA, CH,Cls. jii: C1gH33NH,,
2-hydroxypyridine, THF. iv: TBDMSCI, imidazole. DMF. v: 2:1 TFA-H,O, MeOH.
Scheme 1. Synthesis of diamides 2-5.

2.2. Gelation Studies

The gelling ability of compounds 2-5 was studied using 14 protic or aprotic solvents with different
polarity. Compounds cis- and trans-2, 3 and 4 were soluble in water whereas 5 was insoluble; formation
of hydrogels was not observed in any case. Results for organic solvents are summarized in Table 1
where data for related compounds cis- and trans-1 [24] are also shown for comparison.
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The gels produced were stable at room temperature but unstable at 37 °C. Thus, a gel became
a solution by heating with a hand. Once the solution was left to cool down to room temperature,
the gel was formed again and remained unaltered for weeks (see the Experimental Section for details
on the gel preparation).

Compounds 2-5 presented a different behavior with respect to cis- and trans-1, as expected, clearly
indicating that the additional substitution of the ring plays a significant role. Compounds cis- and
trans-2, and 4 are able to gelate alcohols contrariwise to cis- and trans-1 that are insoluble as well
as trihydroxylated compound 5. In addition, cis-2 also promotes the formation of gels in pentane,
ethyl acetate and isopropanol although with higher mgc (minimum gelation concentration) values.
Nevertheless, the differences between these diastereoisomers are not very remarkable in contrast with
the behavior of isomers 1, being frans-1 a much better gelator than the cis diastereomer (Table 1) [24].

Table 1. Gelling behavior of previously known LMWOG 1'® and of the new compounds 2-5 in common

organic solvents & P €.

Pentane 1,4-Dioxane Toluene Et,0 CHCl3 EtOAc THF CH,Cl, PrOH Acetone EtOH MeOH CH3CN

30 51 100
cis-116 (48) (82) (161) 1 S I I I I 1 I I 1
0 [¢) 0
3 7 18
trans-116 I 5) (11) I (29) I I I I I I I I
T T T
83 100 100 21 17
cis-2 (101) S S S S (122) S S (122) S (26) (21) S
C 0 ) ) 0
50 16
trans-2 S S S S S S S S S S (61) (19) S
T 0
51 102
3 I (72) (144) S S S S S S S S S S
T T
54 61 64 70 45 22 56 70
4 (69) (78) (82) (90) S (58) S S S (28) (72) (90) S
0 [e) T o) ) [¢) 0] 0
102 82 82
5 I (193) (156) I (156) I S S I 1 I I I
[¢) T T

2 Dielectric constant increases from left to right; ® mgc (minimum gelation concentration) in mg mL~". mgc values in
mM in parentheses; € I: insoluble (precipitates before formation of a gel), S: soluble, C: clear, O: opaque, T: translucent.

Compound 3 is a bad organogelator because it is soluble in nearly all solvents tested, except in
1,4-dioxane and toluene, but it exhibits very high mgc values. Compound 3 is related to cis-2 but
with a free hydroxyl group; comparing their behavior, it seems clear that having an unprotected
alcohol disfavors the gelling ability especially in methanol and ethanol. Compound 4, bearing two
free hydroxyl groups, gelates a large variety of solvents of very different dielectric constants and it is
a good organogelator for acetone. Comparison with trans-2 suggests that the structural features of 4
exert a significant influence on its properties allowing it to gelate plenty more solvents. Compound 5
has all three hydroxyl groups unprotected. Its behavior is similar to that of disubstituted cyclohexanes
cis- and trans-1 as it forms gels in 1,4-dioxane, toluene and chloroform and it is insoluble in most other
solvents (except in THF and dichloromethane), although the mgc values are significantly higher for
5. It is noteworthy that, although this compound bears three free hydroxyl groups, it is insoluble in
all the alcohols tested (methanol, ethanol and isopropanol) as well as in water. Some rational behind
these observations will be discussed below.

2.3. Hansen Solubility Parameters (HSPs)

Inspection of the data in Table 1 makes evident that the gelling properties observed for the studied
LMWOGs do not only depend on the dielectric constant of the solvents but also other factors need to
be considered for their understanding.
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Plotting the HSPs of each solvent, a 3D space is generated and the solvents are sorted over the
space depending on three parameters: 84, which accounts for dispersive interactions that dominate
for low polarity solvents; d,, which is related to polar interactions, and 6y, that arises from hydrogen
bonding interactions. The representation of the HSPs for 4 shows two areas of solvents corresponding
to those gelated by this organogelator, which are highlighted in blue, and those in red in which it is
soluble (Figure 2a,b). In order to better observe the two areas, the plane 5,-84 was also represented
showing that there are two clusters of gelling solvents which can be related to two different aggregation
patterns. One area corresponds to apolar solvents with low 8, and high 84 and the other to aprotic
(acetone) or protic (alcohols) polar solvents, with higher &, and also higher &, in the case of methanol
and ethanol (Figure 2a). These results suggest that 4 could interact with the solvent both through the
unprotected hydroxyl groups and through hydrogen bonding between the amide groups. These facts
resulting in two types of aggregates as corroborated by SEM (see below).
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Figure 2. (a,c) HSPs representation and (b,d) 2D representation of 5, vs. 84 for the gelation study of
compounds 4 (a,b) and 5 (c,d). Red: Solvents in which 4 or 5 are soluble; blue: solvents gelled.

Despite bearing three unprotected hydroxyl groups, compound 5 is insoluble in polar solvents,
especially in alcohols and also in water. One could have expected that the interaction of the three
free hydroxyl groups of 5 should be favorable for solubility or gelation through hydrogen bonding.
Instead, as shown in Figure 2, compound 5 is only soluble in apolar solvents while the solvents gelled
are clustered in the region with the highest 645 and lowest &, in the HSPs space (Figure 2d). This result
suggests that the hydroxyl groups in 5 do not interact with solvents but they are preferably involved
in inter-gelator interactions. Only few examples on the fact that gelling solvents for polyhydroxylated
compounds are clustered in a region of lower 6, and &y, but high 54 have been described in the
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literature [17]. These observations were fully supported by the results of computational calculations
and CD (see below).

2.4. Scanning Electron Microscopy

SEM experiments were carried out to investigate the morphology of some of the gels produced
at the mgc for each compound. The micrographs were taken from the corresponding xerogels and
selected examples are shown in Figure 3.

a) b) <) d)

Figure 3. SEM images of xerogels at the mgc of: (a,b) cis-2 from methanol; (¢,d) trans-2 from methanol;
(e,f) 4 from acetone; (g,h) 4 from pentane, at two magnifications each (200 and 50 pm).

SEM images show that compounds cis- and trans-2 present different morphologies despite having
a similar gelling behavior in methanol. Compound cis-2 forms fibers of different lengths, some of which
are very long (around 200 um) (Figure 3a,b). Its diastereoisomer, trans-2, also forms big aggregates
but in this case in the shape of fibrous platelets (Figure 3c,d). Therefore, this confirms that in this case,
as well as for diastereomers cis/trans-1, [24] the cis/trans stereochemistry plays a role on the pattern
of aggregation.

Compound 4 was studied in two different solvents, acetone (Figure 3e,f) and pentane (Figure 3g,h).
The appearance of the micrographs is quite different; in acetone the aggregates form disorganized
shapes while in pentane the compound forms clear platelets. Therefore, the presence of the free
hydroxyl groups also influences the morphology of aggregates in different solvents, which agrees with
the results from consideration of the Hansen solubility parameters as discussed above.

2.5. Computational Calculations and Circular Dichroism

In earlier studies of other LMWOGs, we used IR and 'H-NMR spectroscopies to gain information
about the aggregation process [21-23]. Nevertheless, in the present case in which different groups can
contribute to the gel formation, we thought that the combined results from computational calculations
and CD spectroscopy would be better to provide an overall view and a more reliable interpretation.
Indeed, CD allowed us to obtain information about the hierarchical organization of the molecules in the
aggregates and to corroborate the predictions from calculations that, in turn, led us to better understand
the structure of the gels and their formation mode. Computational calculations of compounds 2-5
were carried out using the M06-2X/6-31G(d) level of theory for the optimization of the geometry of
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the monomer and the tetramer and using minimizations of the energy with molecular mechanics for
the structure of the hexamer and the octamer (see Supplementary Materials for details).

By means of calculations we found that monomers can aggregate according to two types of
interactions. The first one, which is the only observed for 2 and 3, occurs through the formation of
—-NH---OC- hydrogen bonds in one dimension (1-D) involving the amide groups (x-type aggregates).
In turn, monomers with free hydroxyl groups can interact by additional -OH:--OH-hydrogen bonding
to give B-type aggregates. These aggregates formed by two kinds of directional bonding interactions
would be dimers of o-ones (Figure 4) and have been predicted for gelators 4 and 5.

Ll

a-type aggregate -type aggregate

Figure 4. Cartoon representing the spatial disposition of monomers in - and 3-aggregates.

Predicted structures of the octamers from compounds cis- and trans-2, and 3 are shown in Figure 5.
As it can be observed, due to the presence of the TBDMS group and the relative cis configuration of
the two amide groups, compound cis-2 shows a significantly curved vertical aggregate. Otherwise,
compounds trans-2 and 3 form a right-handed helical aggregate where the chains are placed in such
a way that maximizes the Van der Waals interactions.

Figure 5. Front views of central 6 molecules in octameric 1-D aggregates (amide hydrogen-bonds)
of cis- and trans-2, and 3. Non-polar hydrogen atoms have been omitted for clarity. Atoms in amide
groups have been represented with red (oxygen), blue (nitrogen) and grey (carbon) spheres.

CD spectra for cis- and trans-2 were recorded both in methanol solution and as xerogels (dry gels)
from methanol (Figure 6). In this way, more insight could be obtained on the transfer of chirality from
a single molecule to the aggregates.
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cis2 ~ ~ ~ (MeOH solution)
cis-2 —— (MeOH xerogel)
trans-2 -~~~ (MeOH solution)
trans-2 —— (MeOH xerogel)
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-1.0 1

— T ; T T 1
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Figure 6. Normalized CD spectra of cis-and trans-2, respectively, in methanol solution (2.4 mM for cis-2
and 2.7 mM for trans-2) and xerogel at the mgc in methanol in KBr (20 mM) at 25 °C.

In solution, cis- and trans-2 show a band in the CD spectrum. cis-2 Presents a negative band with
a maximum at 222 nm and trans-2 shows a positive band with a maximum at 221 nm and a small
negative lobule at 211 nm. The CD spectra of these organogelators in methanol solution were also
computed giving predictions in very good agreement with the experimental spectra (see Figure S1 in
Supplementary Materials).

For the xerogels from methanol, the shape of the CD spectra is visibly different. For cis-2 as
a xerogel from methanol, a bisignate Cotton effect was observed with a positive band at 215 and
a negative one at 223 nm with zero crossing at 218 nm. The band of compound trans-2 presents
a hypsochromic shift and it has a maximum at 207 nm. This shift is associated to the formation
of H-type aggregates in which two or more monomers are arranged on the top of each other, i.e.,
the stacking due to amide m—7* interactions is oriented in a direction that is roughly perpendicular to
the molecular plane; the band is moved to lower wavelengths because the absorption is more energetic
than that of the monomer suggesting a strong interaction between the monomers [32,33].

In view of the CD spectra of the xerogels (Figure 6) and their predicted structures (Figure 5),
it is important to remark that the bisignate spectrum of cis-2 is in agreement with a curved vertical
aggregate whereas the monosignate band for trans-2 suggests a helical structure for its aggregates.
This relationship is consistent with previous observations for compounds cis- and trans-1, [24] and also
applies for the other xerogels considered in this work.

Compound 3 also differs in the shape of the CD spectra in solution and in the xerogel (Figure 7a).
It is bisignate in solution while it shows a band for the xerogel, which is in agreement with the predicted
structure of its aggregates that suggests a helical torsion as shown in Figure 5.
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Figure 7. (a) Normalized CD spectra of methanol solution (2.47 mM) and xerogel at the mgc from
toluene in KBr (20 mM) of 3 at 25 °C; (b) Normalized CD spectra of methanol solution (2.56 mM) and
xerogels at the mgc in acetone and pentane, respectively, in KBr (20 mM) of 4 at 25 °C; (c) Normalized
CD spectra of 5 in methanol solution (2.17 mM) and xerogel at the mgc from toluene in KBr (20 mM) at
25°C.
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Compounds 4 and 5 were also computed. As was hypothesized when the HSPs were analyzed
(see above), these compounds could present two different aggregation patterns depending on the
predominant interactions in apolar or polar solvents. In a-type aggregates from 4, the molecules are
placed in a zig-zag disposition because of the intermolecular interactions between amide groups (see
Figure S3). This type of interactions would be favored in polar solvents and, indeed, the CD spectrum
of the xerogel from acetone (prepared at the mgc) is bisignate (Figure 7b).

On the other hand, the predicted p-type structure (Figure S3) shows that compound 4 can
self-assemble through hydrogen bonding interactions of the unprotected hydroxyl groups, and then
forms an aggregate which shows a torsion that will produce some helicity (right-handed helix).
This type of interaction is expected to be predominant in apolar solvents as confirmed by the
monosignate CD spectrum of 4 as a xerogel from pentane (Figure 7b).

Therefore, the results from the consideration of HSPs for organogelator 4 are consistent with the
CD spectra of the xerogels from polar or apolar solvents and can be explained by the predictions from
computational calculations.

In a similar manner, compound 5 can aggregate in two different ways. Figure 8 shows the x-type
and the 3-type structure, where two x-aggregates are interacting with each other through hydrogen
bond interactions between the unprotected hydroxyl groups. In this way, the free hydroxyl groups of
the molecule would be used to form aggregates avoiding interactions with the solvent. This could
explain the insolubility of 5 in alcohols. Moreover, if the polar head of this organogelator was strongly
interacting with another polar head, the parts of the molecule available for aggregation would only be
the amide groups and the long alkyl chains, which would explain why 5 behaves in a very similar
manner to the non-substituted cyclohexane-based compounds cis- and trans-1[24] (see Table 1).

— | —

Figure 8. (a) side view of central 6 molecules in octameric 1-D aggregate (amide hydrogen-bonds) 5-cx.
(b) side views of octameric 2-D aggregates (amide and hydroxyl hydrogen-bonds) 5-. Non-polar
hydrogen atoms have been omitted for clarity. Atoms in amide groups have been represented with red
(oxygen), blue (nitrogen) and grey (carbon) spheres.

Although compound 5 is rather insoluble in methanol, the low concentration required for CD
spectroscopy, 2.17 mM in this case, allowed the spectrum to be recorded in this solvent. Thus,
the normalized CD spectra (Figure 7c) show that while compound 5 presents a band in methanol
solution, the spectrum for the xerogel is bisignate with zero crossing at 205 nm, which is consistent
with the formation of a curved vertical aggregate. However, both predicted - and (3-type structures
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for compound 5 would be compatible with these results and the CD data does not provide enough
evidence to distinguish between them.

These structural features were also supported by the aggregation energy of the formation of the
dimeric to the octameric aggregates, which was calculated for compounds 2-5 (AEagg). The aggregation
energy per molecule (AE,gg/n) was also considered (see Figure S2). Figure 9 shows the computed
values and suggests that the aggregation of all compounds is favorable because the aggregation energy
becomes more negative as the number of monomers increases.

50 —m—  Cis-2
; —w— trans-2
0 —— 3
. —— 4-q
= .50 4-B
<} A
£ ] 5-at
g 100 * s
g | :
8-150- \
LIJ -
-200- 3
-250-
-300 T T T T
2 4 6 8

Number of monomers

Figure 9. Aggregation energies of compounds 2-5.

Moreover, for compounds that have two different aggregation patterns (4 and 5) these data
provide more information. Although the formation of a dimer with -type structure is in both
cases not favorable because the aggregation energy of the formation is positive, the formation of
the tetrameric, the hexameric and the octameric aggregates becomes favorable. This fact probably
means that, first of all, the monomer self-assembles by hydrogen bonding through the amide groups
and then, in a second step, the formation of the 3 —aggregate is favorable. In addition, it is shown
that the aggregation energy to form the octamer with the predicted B-type structures for 4 and 5 is
more favorable than the formation of the octamers with the predicted «-type structures, allowing the
possibility of the coexistence of both of them. For the case of organogelator 5, the network formed
by inter- and intramolecular hydrogen bonding between the unprotected hydroxyl groups seems
to be much stronger than the predicted p-type structure of compound 4. The B-type aggregate
predominantly formed in polar media would explain the insolubility of 5, because the free hydroxyl
groups are not able to interact with the solvent.

3. Materials and Methods

3.1. General Procedures

Melting points were determined using a Kofler Thermogerate apparatus (Reichert, Wien, Austria)
and are uncorrected. Specific rotations were recorded on a DIP-370 optical polarimeter (JASCO, Tokio,
Japan). Infrared spectra were recorded on a UATR Spectrum two (Perkin Elmer, Waltham, MA, USA,
films on NaCl). Nuclear magnetic resonance spectra were recorded on a Mercury 300 apparatus
(Varian, Palo Alto, CA, USA). Mass spectra were obtained on a MS 50 TC mass spectrometer (Kratos,
Manchester, UK). Thin layer chromatography (tlc) was performed using GF-254 type 60 silica gel
(Merck, Kenilworth, NJ, USA) and EtOAc/hexane mixtures as eluents; the tlc spots were visualized
with a Hanessian stain (dipping into a solution of 12.5 g of (NH4)4Mo070,4-4H,0, 5 g of Ce(SO4),-4H,O
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and 50 mL of H,SO4 in 450 mL of H,O, and warming). Column chromatography was carried out
using Merck type 9385 silica gel.

3.2. Experimental Section

Synthesis of (3aS,4R,75,85,8aR)-2,2-dimethyl-6-oxohexahydro-4,7-methano[ 1,3 ]dioxolo[4—cloxepine-8-carboxylic
acid (7): Sodium nitrite (0.48 g, 7.00 mmol) and acetic acid (1.33 mL, 23.3 mmol) were added over
a solution of lactone 6, prepared according to reference 31, (0.6 g, 2.33 mmol) in DMSO (7.0 mL), under
argon. The resulting mixture was stirred at 35 °C for 72 h, 25 mL of HCI aqueous 3 M solution were
then added and the reaction allowed to stir at rt for 15 min. H,O (50 mL) were added over the reaction,
the resulting mixture extracted with Et,O (3 x 25 mL), the organic layers dried with anhydrous
sodium sulfate, filtered, and evaporated to dryness to give an oil that, purified by flash column
chromatography (CH,Cl, /MeOH 95:5), gave compound 7 (0.43 g, 76% yield) as a yellow oil. Rf = 0.2
(CH,Cl, /MeOH 95:5); [oc]zDO —5.8 (c = 2.1 in CHCl3); 'H-NMR (300 MHz, CDCl3) § = 1.39 (s, 3H, CH3);
1.56 (s, 3H, CH3); 2.18-2.44 (m, 2H, CH;); 3.32 (dd, 1H, | = 2.0 Hz, ] = 4.3 Hz, H7); 3.40-3.49 (m, 1H,
HS8); 4.43 (dd, 1H, ] =4.0 Hz, ] = 7.6 Hz, H3a); 4.53 (dd, 1H, ] =4.2 Hz, ] = 8.0 Hz, H8a); 4.78 (td, 1H,
] =15Hz,] =17 Hz, ] = 4.0 Hz, H4); 5.13 (bs, 1H, CO,H) ppm; 3C-NMR (75 MHz, CDCl3) § = 23.4
(CHy); 24.5 (CH3); 26.0 (CHs); 34.0 (CH); 44.6 (CH); 72.8 (CH); 76.9 (CH); 114.4 (C); 173.2 (C); 176.4 (C)
ppm; IR: v = 3452, 1766, 1701, 1210, 1078 cm~1; HRMS (ESIY) caled m/z for C11H14NaOg [M + Na]*:
265.0688, found: 265.0684.

Synthesis of (3aS,4R,7S,85,8aR)-N-hexadecyl-2,2-dimethyl-6-oxohexahydro-4,7-methano[1,3]-dioxolo[4—c]
oxepin-8-carboxamide (8): PyBOP (0.78 g, 0.15 mmol) and DIEA (0.11 mL, 0.63 mmol) were added over
a solution of acid 7 (40 mg, 0.10 mmol), in anhydrous CH,Cl, (1.4 mL) and the resulting mixture was
stirred for 15 min at rt, under argon. Hexadecylamine (0.124 g, 0.52 mmol) in anhydrous CH,Cl,
(1.4 mL) and anhydrous DMF (0.5 mL) was then added and the reaction stirred for 2 h at rt. The mixture
was then evaporated to dryness, the resulting residue dissolved in CH,Cl, (10 mL), extracted with
saturated aqueous solution of citric acid (3 x 5 mL), saturated aqueous solution of NaHCO;3 (3 x 5 mL)
and HO (10 mL). The organic solution was dried with anhydrous sodium sulfate and evaporated to
give a solid, which was purified by flash column chromatography (CH,Cl, /MeOH 95:5) to afford
compound 8 (50 mg, 98% yield) as a yellow solid. Rf = 0.3 (CH,Cl,/MeOH 95:5); m.p. 209-211 °C
(MeOH); [cx]zDO +15.2 (c = 1.0 in CHCl); 'H-NMR (300 MHz, CDCl3) é = 0.86 (t, 3H, | = 6.6 Hz, CH3);
1.22-1.29 (m, 26H, 13 x CHy), 1.37 (s, 3H, CHj3); 1.44-1.49 (m, 2H, CH,); 1.54 (s, 3H, CH3); 2.21-2.27
(m, 2H, CH;); 3.03 (dd, 1H, ] =4.1 Hz, ] = 1.9 Hz, H8); 3.10 (ddd, 1H, | =99 Hz, | =6.6 Hz, ] = 2.0 Hz,
H7);3.22 (q,2H, ] = 6.7 Hz, -CH,CO); 4.41 (dd, 1H, ] =8.1 Hz, ] = 4.2 Hz, H8a); 4.48 (dd, 1H, ] = 8.0 Hz,
] =4.1 Hz, H3a); 4.75 (td, 1H, ] = 3.9 Hz, ] = 1.9 Hz, H4); 5.69 (t, 1H, ] = 5.7 Hz, NH) ppm; 3C-NMR
(75 MHz, CDCl3) ¢ = 14.2 (CH3); 22.8 (CHy); 23.0 (CHy); 24.4 (CH3); 25.8 (CH3); 27.0 (CHy); 29.4 (CHy);
29.5 (CHy); 29.6 (CHy); 29.7 (CHy); 29.8 (CHy); 29.8 (CHy); 32.0 (CHy); 34.5 (CH); 40.1 (CHy); 43.9 (CH);
71.8 (CH); 71.9 (CH); 75.0 (CH); 113.3 (C); 171.0 (C); 172.3 (C) ppm; IR: v = 1766, 1645, 1209, 1077 cm™~};
HRMS (ESI*) caled m/z for Co7HygN»Os [M + H]*: 466.3527, found: 466.3537.

Synthesis of (3aR,4S,5S,7R,7aS)-N,N'-dihexadecyl-7-hydroxy-2,2-dimethylhexahydrobenzo[d][1,3]dioxole-4,
5-dicarboxamide (3): 2-Hydroxypyridine (5.8 mg, 0.06 mmol) and hexadecylamine (0.27 g, 1.11 mmol)
were added over a solution of carboxamide 8 (47.2 mg, 0.10 mmol) in dry THF (1 mL), under argon.
The resulting solution was stirred for 2 h at rt, evaporated to dryness and the amorphous solid obtained
purified by flash column chromatography (CH,Cl, /MeOH, 97:3), to give compound 3 (21.2 mg, 30%
yield) as a crystalline white solid. Rf = 0.3 (CH,Cl, /MeOH 97:3); m.p. 150-151 °C; (MeOH); [cx]% +51.3
(c = 1.0 in CHClz); H-NMR (300 MHz, CDCl;) 6 = 0.85-0.89 (m, 6H, 2 x CHs); 1.24-1.31 (m, 52H,
26 x CHp); 1.38-1.51 (m, 10H, 2 x CH;z + 2 x CHy); 1.96 (dt, 1H, | =15.1 Hz, | = 5.4 Hz, H6); 2.12 (dt,
1H, ] =15.1 Hz, ] = 2.6 Hz, H6'); 2.59 (dd, 1H, ] = 10.1 Hz, | = 4.3 Hz, H5); 3.03-3.37 (m, 5H, H4 + 2 x
CH,); 4.08-4.13 (m, 1H); 4.32-4.41 (m, 2H); 6.44 (d, 1H, ] = 10.4 Hz, OH); 6.96 (t, 1H, ] = 5.7 Hz, NH);
7.33 (t, 1H, ] = 5.6 Hz, NH) ppm; 13C-NMR (75 MHz, CDCl3) § = 14.3 (CH3); 22.8 (CH,); 26.2 (CH3);
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27.0 (CHy); 27.1 (CHy); 28.6 (CH3); 29.4 (CH,); 29.5 (CHy); 29.6 (CHy); 29.7 (CHy); 29.8 (CH,); 29.8
(CH,); 30.9 (CHy); 32.1 (CH,); 39.7 (CH>); 39.9 (CH,); 40.5 (CH); 46.5 (CH); 66.1 (CH); 72.6 (CH); 80.4
(CH); 108.5 (C); 172.4 (C); 174.7 (C) ppm; IR: v = 3327, 1652, 1550, 1468, 1221, 1068 cm~!; HRMS (ESI*)
caled m/z for C43HgzN>Os [M + H]*: 707.6302, found: 707.6291.

Synthesis of (3aR,4S,5S,7R,7aR)-7-((tert-butyldimethylsilyl)oxy)-N,N-dihexadecyl-2,2-dimethyl-hexahydrobenzo
[d][1,3]dioxole-4,5-dicarboxamide (cis-2): Imidazole (0.13 g, 1.88 mmol) and TBDMSCI (0.15 g, 0.96 mmol)

were added over a stirred solution of amide 3 (0.3 g, 0.42 mmol) in dry DMF (17 mL), under

argon. The resulting mixture was stirred for 16 h at rt, quenched with brine (20 mL) and then

extracted with EtOAc (32 x 20 mL). The organic layers were dried with anhydrous sodium

sulfate, filtered and evaporated. The crude product obtained was purified by flash column

chromatography (EtOAc/hexane 1:3) to give compound cis-2 (0.26 g, 74% yield) as a white solid.
Rf =0.3 (EtOAc/hexane 1:3); m.p. 82-83 °C (EtOAc); [cx]lz)o —16.1 (c = 2.2 in CHCl3); 'H-NMR

(300 MHz, CDCl3) ¢ = 0.05 (s, 3H, CH3), 0.09 (s, 3H, CHj3), 0.85-0.90 (m, 15H, (CH3); + 2 x CHj),
1.25 (bs, 52H, 26 x CHy), 1.34 (s, 3H, CHj), 1.39-1.48 (m, 7H, CH3 + 2 x CHy), 1.37-1.94 (m, 2H, Hé6

+He6'),2.92 (t, 1H, ] = 5.8 Hz, H4), 3.04 (td, 1H, ] = 7.2 Hz, | = 49 Hz, H5), 3.17 (ddt, 4H, ] = 10.5 Hz,
J=75Hz, =48 Hz, 22 x NCH,), 3.73 (dt, 1H, ] =10.3 Hz, | = 6.8 Hz), 4.19 (t, 1H, ] = 6.9 Hz), 4.52

(t, 1H,] = 6.4 Hz), 5.94 (t, 1H, ] = 5.4 Hz, NH), 6.58 (t, 1H, ] = 5.7 Hz, NH) ppm; 13C-NMR (75 MHz,
CDCl3) 6 = —4.7 (CH3), —4.2 (CHj), 14.3 (CH3), 18.2 (C), 22.8 (CHy), 25.8 (CH3), 26.0 (CHj), 27.1

(CHy), 28.0 (CH3), 29.5 (CHy), 29.6 (CH,), 29.7 (CHy3), 29.8 (CHy), 30.9 (CHy), 32.1 (CHy), 39.6 (CH,),
39.8 (CH), 39.9 (CH,), 45.4 (CH), 72.2 (CH), 74.3 (CH), 80.4 (CH), 108.4 (C), 171.4 (C), 173.4 (C) ppm;
IR: v = 3287, 1652, 1560, 1112, 837 cm ™~ !; HRMS (ESI*) caled m/z for C49HgyN,OsSi [M + H]*: 821.7161,
found: 821.7129.

Synthesis of (15,25,3R,4S,5R)-N,N-dihexadecyl-3,4,5-trihydroxycyclohexane-1,2-dicarboxamide (5): Hp,O
(9.0 mL) and TFA (18.0 mL) were added over a stirred solution of diamide 3 (0.3 g, 0.42 mmol) in
MeOH (10 mL) and the obtained mixture was stirred for 12 h at rt. The solvent was removed under
vacuum, the residue coevaporated with toluene (3 x 10 mL) and the crude obtained purified by flash
column chromatography (CH,Cl, /MeOH 93:7) to give dicarboxamide 5 (0.13 g, 42% yield) as a white
solid. Rf = 0.3 (CH,Cl,/MeOH 93:7); m.p. 166.0-166.6 °C (MeOH); [oc]zDO —27.3 (c = 2.0 in CHCl3);
H-NMR (300 MHz, THF-d8) 6 = 0.88 (t, 6H, | = 6.6 Hz, 2 x CHj3), 1.25-1.51 (m, 56H, 28 x CH,),
1.79-1.96 (m, 2H, H6 + H6'), 2.83-3.17 (m, 6H, 2 x NCH, + H1 + H2), 3.34-4.39 (m, 6H, H3 + H4 + H5
+3 x OH), 7.33 (bs, 1H, NH), 7.69 (t, 1H, ] = 5.6 Hz, NH) ppm; 3C-NMR (75 MHz, THF-d8, main
rotamer) J = 14.6 (CHj3), 23.7 (CH>), 28.1 (CHy), 28.2 (CH,), 30.3 (CH3), 30.5 (CH>), 30.6 (CH>), 30.7
(CHy), 30.8 (CHy), 30.8 (CHy), 33.0 (CH;), 40.1 (CH,), 40.5 (CH,), 42.8 (CH), 46.4 (CH), 69.4 (CH), 70.9
(CH), 75.3 (CH), 172.7 (C), 175.8 (C) ppm; IR: v = 3328, 1649, 1542, 1068 cm~!; HRMS (ESI*) caled m/z
for C40H79N,0s5 [M + H]*: 667.5984, found: 667.5976.

Synthesis of (3aR,4S,5R,7R,7aR)-7-((tert-butyldimethylsilyl)oxy)-5-(methoxycarbonyl)-2,2-dimethyl-hexa-
hydrobenzo[d][1,3]dioxole-4-carboxylic acid (10): Sodium nitrite (26 mg, 0.37 mmol) and acetic acid (71 pL,
1.24 mmol) were added over a solution of nitroester 9 [20] (50 mg, 0.12 mmol) in DMSO (0.6 mL), under
argon. The resulting mixture was stirred at 35 °C for 72 h, 15 mL of H,O and deactivated Dowex-50
resin were then added until pH = 3 and the reaction allowed to stir for 15 min at rt. H,O (20 mL) were
added over the reaction, the resulting mixture extracted with Et,O (3 x 10 mL), the organic layers
dried with anhydrous sodium sulfate, filtered, and evaporated to dryness to give an oil that, purified
by flash column chromatography (CH,Cl, /MeOH 95:5), gave compound 10 (30 mg, 55% yield) as
a clear oil. Rf = 0.3 (CH,Cl,/MeOH 95:5); [oc]zDO +4.1 (c = 1.2 in CHCl3): '"H-NMR (300 MHz, CDCl3)
4 =0.08 (bs, 6H, 2 x CH3); 0.88 (bs, 9H, (CH3)3); 1.35 (s, 3H, CH3); 1.52 (s, 3H, CH3); 1.85-1.89 (m, 2H,
CHy); 2.86 (dd, 1H, | = 10.7 Hz, ] = 8.2 Hz), 2.94-3.13 (m, 1H, H5), 3.68 (s, 3H, OCHj3); 3.99 (dd, 1H,
J=5.0Hz, ] =29 Hz), 4.21 (q, 1H, | = 3.2 Hz), 4.40 (dd, 1H, ] = 5.0 Hz, | = 8.3 Hz); 9.32 (bs, 1H, OH)
ppm; 3C-NMR (75 MHz, CDCl3) § = —4.9 (CH3); —4.8 (CH3); 18.1 (C); 25.8 (CH3); 26.2 (CHj); 28.2
(CH3); 30.9 (CH,); 37.0 (CH); 47.4 (CH); 52.3 (CH3); 67.1 (CH); 74.6 (CH); 76.9 (CH); 109.7 (C); 174.6 (C);
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178.9 (C) ppm; IR: v = 3375, 1735, 1258, 1100, 810 cm~1; HRMS (ESI*) caled m/z for C1gH3,NaO7Si
(M + Na)*: 411.1815, found: 411.1809.

Synthesis of Methyl (3aR,4S,5R,7R,7aR)-7-((tert-butyldimethylsilyl)oxy)-4-(hexadecyl-carbamoyl)-2,2-
dimethylhexahydrobenzo[d][1,3]dioxole-5-carboxylate (11): A mixture containing a solution of acid 10
(50 mg, 0.13 mmol), PyBOP (0.10 g, 0.19 mmol) and DIEA (0.14 mL, 0.80 mmol) in anhydrous CH,Cl,
(1.8 mL) was stirred for 15 min at rt, under argon. Hexadecylamine (0.15 g, 0.52 mmol) in anhydrous
CH,Cl; (1.8 mL) and anhydrous DMF (0.5 mL) were then added. The reaction was stirred for 2 h at rt,
evaporated to dryness, the resulting residue dissolved in CH,Cl, (10 mL), extracted with saturated
aqueous solution of citric acid (3 x 5 mL), saturated aqueous solution of NaHCO3 (3 x 5 mL) and
water (10 mL). The organic layer was then dried with anhydrous sodium sulfate and evaporated to
give a yellow solid, which on purification by flash column chromatography (CH,Cl, /MeOH 99:1)
afforded compound 11 (60 mg, 74% yield) as a clear oil. Rf = 0.3 (CH,Cl,/MeOH 99:1); [oc}lz)o +48.3
(c = 1.0 in CHCl3); '"H-NMR (300 MHz, CDCl3) § = 0.07 (s, 3H, CH3); 0.08 (s, 3H, CHj); 0.84-0.89
(m, 12H, -(CH3)3 + CH3); 1.24-1.29 (m, 26H, 13 x CH>); 1.36 (s, 3H, CH3); 1.42-1.52 (m, 2H, CHy); 1.56
(s, 3H, CH3); 1.77-1.83 (m, 2H, H6 + H6'); 2.58 (dd, 1H, ] = 11.9 Hz, | = 9.8 Hz, H4); 3.00 (ddd, 1H,
J=124Hz, ] =89 Hz, ] =6.7 Hz, H5); 3.21 (q, 2H, ] = 6.8 Hz, N-CH,); 3.68 (s, 3H, OCH3); 3.98 (dd, 1H,
] =4.9 Hz, | = 2.6 Hz); 4.20-4.25 (m, 2H); 6.19 (t, 1H, ] = 5.8 Hz, NH) ppm; 3C-NMR (75 MHz, CDCl3)
0 =—4.9 (CHs); —4.7 (CH3); 14.2 (CH3); 18.1 (C); 22.8 (CHy); 25.8 (CH3); 26.5 (CH3); 27.0 (CHy); 28.7
(CH3); 29.4 (CHy); 29.5 (CHy); 29.7 (CHy); 29.8 (CHy); 29.8 (CHy); 32.1 (CHy); 32.3 (CHy); 36.3 (CH);
39.6 (CHy); 48.3 (CH); 52.0 (CH3); 67.3 (CH); 75.1 (CH); 77.3 (CH); 109.4 (C); 172.5 (C); 176.0 (C) ppm;
IR: v = 3322, 1740, 1652, 1249, 1070, 837 cm~!; HRMS (ESI*) caled m/z for C34HggNOgSi (M + H)*:
612.4659, Found: 612.4654.

Synthesis of (3aR,4S,5R,7R,7aR)-7-((tert-butyldimethylsilyl)oxy)-N,N-dihexadecyl-2,2-dimethyl-hexahydro-
benzoldI[1,3]dioxole-4,5-dicarboxamide (trans-2): 2-Hydroxipyridine (78 mg, 0.49 mmol) and
hexadecylamine (2.17 g, 8.99 mmol) were added over a solution of amide 11 (0.5 g, 0.82 mmol),
in dry THF (10.2 mL), under argon. The reaction mixture was refluxed for 12 h, the solvent removed
under vacuum and the obtained residue extracted with CH,Cl, (3 x 50 mL). The organic layers were
dried with anhydrous sodium sulfate, filtered and evaporated in vacuo to give a residue, which on
purification by flash column chromathography (CH>Cl, /MeOH 99:1) gave compound trans-2 (0.2
g, 30% yield) as a white solid. Rf = 0.4 (CH,Cl,/MeOH 99:1); m.p. 63-64 °C (MeOH); [oc]zDO +31.0
(c = 1.0 in CHCl3); 'H-NMR (300 MHz, CDCl3) ¢ = 0.07 (s, 3H, CH3), 0.08 (s, 3H, (CH3)3) 0.84-0.89 (m,
15H, (CH3z)3 + 2 x CH3), 1.24 (bs, 52H, 26 x CHj), 1.34 (s, 3H, CH3), 1.41-1.47 (m, 4H, 2 x CHy), 1.53
(s,3H, CHs), 1.63 (dt, 1H, ] = 14.0 Hz, ] = 3.8 Hz, H6), 2.00 (ddd, 1H, ] = 14.1 Hz, ] = 11.3 Hz, ] =2.7 Hz,
He¢'), 2.45 (dd, 1H, ] = 11.7 Hz, | = 9.3 Hz, H4), 2.70 (td, 1H, ] = 11.5 Hz, | = 3.5 Hz, H5), 3.15-3.19
(m, 4H, 2 x N-CHy), 3.98 (dd, 1H, ] =5.2 Hz, ] =2.9 Hz, H7), 4.25 (q, 1H, ] = 3.0 Hz, H3a), 4.32 (dd, 1H,
] =9.3Hz, ] = 5.1 Hz, H7a), 5.76 (t, 1H, | = 5.8 Hz, NH), 5.93 (t, 1H, ] = 5.7 Hz, NH) ppm; 3C-NMR
(75 MHz, CDCl3) 6 = —4.8 (CH3), —4.7 (CH3), 14.2 (CH3), 18.2 (C), 22.8 (CHy), 25.9 (CH3), 26.3 (CHs),
27.0 (CH,), 28.6 (CH3), 29.5 (CHy), 29.5 (CH,), 29.6 (CH,), 29.7 (CHy), 29.8 (CH,), 29.8 (CH,), 32.1
(CHy), 38.8 (CH), 39.7 (CHy), 39.8 (CH), 50.1 (CH3), 67.6 (CH), 75.6 (CH), 77.3 (CH), 109.2 (C), 172.7 (C),
174.1 (C) ppm; IR: v = 1653, 1117, 1065, 838 cm ™~ !; HRMS (ESI*) caled m/z for C49HgyN,O5Si (M + H)*:
821.7167, found: 821.7169.

Synthesis of (1R,25,3R,4R,5R)-5-((tert-butyldimethylsilyl)oxy)-N,N-dihexadecyl-3,4-dihydroxy-cyclohexane-1,
2-dicarboxamide (4): Trifluoroacetic acid (7.4 mL) was added over a solution of diamide trans-2 (0.8 g,
0.09 mmol) in a mixture of MeOH (3.7 mL) and H,O (3.7 mL) and the resulting mixture was stirred
for 12 h at rt. Solvent was removed under vacuum, coevaporated with toluene (3 x 5 mL) and the
crude obtained purified by flash column chromatography (CH,Cl, /MeOH 9:1) to give compound 4
(0.35 g, 47% yield) as a yellow solid. Rf = 0.4 (CH,Cl,/MeOH 90:10); m.p. 96-97 °C (MeOH); [oc]lzjo
+7.0 (c = 1.7 in CHCl3); 'H-NMR (300 MHz, CDCl3) J = 0.04 (s, 3H, CH3), 0.05 (s, 3H, CH3), 0.85-0.89
(m, 15H, (CHs); + 2 x CHj), 1.17-1.52 (m, 56H, 28 x CH,), 2.14 (t, 1H, ] = 13.1 Hz, H6), 2.71-2.81
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(m, 1H, H6'), 2.89-3.26 (m, 6H, H4 + H5 + 2 x N-CH,), 3.87 (t, 1H, ] = 3.3 Hz), 4.08 (q, 1H, ] = 2.8 Hz),
420 (dd, 1H, ] = 10.5 Hz, ] = 2.8 Hz), 5.00 (bs, 2H, 2 x OH), 6.11 (t, 1H, ] = 5.3 Hz, NH), 7.18 (t, 1H,
] = 5.2 Hz, NH) ppm; 3C-NMR (75 MHz, CDCl5) § = —4.8 (CH3), 14.3 (CHz), 18.1 (C), 22.8 (CHy), 25.9
(CHa), 27.1 (CH,), 27.2 (CH,), 29.5 (CHy), 29.6 (CHy), 29.7 (CH,), 29.8 (CH,), 29.9 (CHy,), 30.6 (CHy),
32.1 (CH,), 39.9 (CHy), 41.8 (CH), 48.2 (CH), 69.5 (CH), 70.3 (CH), 72.5 (CH), 173.1 (C), 174.5 (C) ppm;
IR: v = 3297, 1645, 1119, 1076, 837 cm~1; HRMS (ESI*) caled m/z for C46Ho3N,O5Si (M + H)*: 781.6854,
found: 781.6855.

Procedure for gel preparation: A small amount (5.0 £ 0.1 mg) of bisamide is weighted in a 2 mL
transparent-glass vial with septum screw-on cap. When the 5 mg amount of bisamide is soluble
in a specific solvent, a new vial containing 10 £ 0.1 mg is prepared and the solubility-gelation
checked again. In a second step, a certain volume of solvent to be tested is added and the vial closed.
The minimum volume added is 0.05 mL. Then the mixture is heated under the boiling point of the
solvent using a balloon system in order to avoid solvent pressure and, once a solution is obtained
the mixture is sonicated for 1 to 5 min. For high concentrations and also in some solvents, previous
sonication is needed for a good solubilization during heating and sonication time is usually shorter
than for diluted gels. Then, the mixture is left to stabilize and to reach room temperature. To state
that the mixture is a gel the tube inversion test is done just by turning the vial upside down. If the
sample is a gel it does not drop and if it drops a little it can be classified as gel-like mixture. We can
also state the mixtures as solutions or insoluble systems. In order to determine the mgc, a new volume
of solvent is added to the gel and the process is repeated until no gel is formed: the last volume added
determines the mgc. Gels were stable at room temperature and, moreover, they were reversible at the
body temperature. Thus, the gel became a solution by heating with a hand. Once the solution was left
to cool down at room temperature, the gel was formed again.

SEM measurements: SEM images were acquired with Quanta ESEM FEG apparatus equipped with
a field emission gun. Wet gels were disposed on a carbon-film-coated copper grid and dried by
standing for 30 min on the grid. The resulting xerogels (dry gels) were then introduced into the
microscope working at 10 kV and under a pressure of 50 Pa, in most cases (Figure 3a-h), and 29 Pa
(Figure 3f).

Computational details: A conformational search of each system was carried out using a mixed low
mode/torsional sampling [34] with the OPLS-2005 [35] force field implemented in the MacroModel [36]
program in order to find and select an approximation of the most stable conformers. The geometries
of the lowest energy conformers of each system were optimized using DFT calculations with the
Gaussian09 [37] program with the M06-2X [38] functional with the 6-31G(d) basis set. This is a hybrid
meta-GGA functional that includes a 54% of exact e x CHange and that was shown to describe
correctly non covalent interactions [39]. For all the studied molecules, once the geometry in gas phase
is obtained, the dimer is built up and the procedure is repeated. And then, the procedure is repeated
again with the tetramer. Once the optimized DFT structure of the tetramer is obtained, the internal
dimer of the aggregate is selected to be the model of aggregation to build up the hexamer and the
octamer. A minimization of the energy of the hexamer and the octamer is carried out in toluene. Finally,
a single point energy calculation in gas phase is carried out to get the energy of each system. Circular
dichroism spectra were calculated by taking the optimized structure of the monomer in methanol
solution and calculating different excited states with Gaussian09. Representation of the predicted
circular dichroism spectra were done using GaussSum software [40].

4. Conclusions

Chiral pentasubstituted cyclohexane derivatives 2-5 show different gelling behavior depending
on the degree of protection of the hydroxyl groups and, to some extent, depending on the relative
cis /trans stereochemistry. Compounds cis- and trans-2 differ only in the relative configuration of the
two amide groups and both compounds are good gelators for methanol and ethanol but they are very
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soluble in most of the other solvents tested. Nevertheless, their SEM images reveal the formation of
fibers in the case of cis-2 and of platelets in the case of trans-2. Computational calculations predict the
formation of a curved aggregate without a helicity trend for cis-2, whereas for trans-2 a right handed
helical aggregate is predicted. These results are confirmed by the CD spectra that show of a bisignate
spectrum for cis-2 and a monosignate positive band for trans-2, both as xerogels from methanol.

Regarding LMWOGs 3-5, compound 3, which is polar but with low hydrogen bonding ability, is
a bad organogelator for apolar solvents and it is soluble in polar ones; the CD spectrum of its toluene
xerogel is in agreement with the computed structure that suggests the formation of a right handed
helical aggregate. LMWOG 4, bearing two hydroxyl groups, presents ambivalent ability since two
types of aggregation are predicted by calculations depending on the polarity of solvents: x-type, which
is described as a vertical aggregation promoted by intermolecular amide hydrogen bonding, in polar
solvents; and 3-type, where two molecules are facing head-to-head and then piled vertically, in apolar
ones. This solvent-mediated ambivalence is corroborate by the different morphologies shown by SEM
images of xerogels form acetone and pentane, respectively, and supported by Hansen parameters
and CD. Finally, LMWOG 5 with three hydroxyl groups does not interact with very polar solvents
due to the formation of intra and intermolecular hydrogen bonds and, consequently, it is insoluble in
alcohols and water; nevertheless, it is able to gelate low polarity solvents by means of non-hydrogen
bonding interactions.

Supplementary Materials: The following are available online: 'H-NMR and '*C-NMR spectra for compounds
7,8, 3, cis-2, 5, 10, 11, trans-2 and 4; Figure S1. Predicted CD spectra of compounds cis- and trans-2; Figure
S2. Calculated aggregation energies per monomer of compounds 2-5; Figure S3. Predicted structures for
aggregates 4-« and 4-3; Total energies of aggregates of compounds 2-5; Cartesian coordinates of aggregates of
compounds 2-5.
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