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Abstract: Over the past few decades, transition metal catalysis has witnessed a rapid and extensive
development. The discovery and development of cross-coupling reactions is considered to be one
of the most important advancements in the field of organic synthesis. The design and synthesis of
well-defined and bench-stable transition metal pre-catalysts provide a significant improvement over
the current catalytic systems in cross-coupling reactions, avoiding excess use of expensive ligands and
harsh conditions for the synthesis of pharmaceuticals, agrochemicals and materials. Among various
well-defined pre-catalysts, the use of Pd(II)-NHC, particularly, provided new avenues to expand
the scope of cross-coupling reactions incorporating unreactive electrophiles, such as amides and
esters. The strong σ-donation and tunable steric bulk of NHC ligands in Pd-NHC complexes
facilitate oxidative addition and reductive elimination steps enabling the cross-coupling of broad
range of amides and esters using facile conditions contrary to the arduous conditions employed
under traditional catalytic conditions. Owing to the favorable catalytic activity of Pd-NHC catalysts,
a tremendous progress was made in their utilization for cross-coupling reactions via selective acyl
C–X (X=N, O) bond cleavage. This review highlights the recent advances made in the utilization of
well-defined pre-catalysts for C–C and C–N bond forming reactions via selective amide and ester
bond cleavage.

Keywords: pre-catalysts; palladium catalysis; amide bond activation; ester bond activation;
cross-coupling

1. Introduction

Transition metal-catalyzed cross-coupling reactions to form C–C and C–N bonds are a mainstay
of organic synthesis for a wide range of academic and industrial applications [1–6]. Due to their
wide applicability, these reactions have become a critical arsenal for synthetic chemists and have
clearly changed retrosynthetic analysis of complex targets. Since their discovery in the late 1960s,
palladium catalyzed cross-coupling reactions has been considerable and continues to be a focus of
organometallic research [7–14]. The most active Pd catalysts for cross-coupling reactions involve the
use of strong donor ligands to reach a high degree of efficiency. In fact, one of the major advancement
in cross-coupling reactions is the synthesis and utilization of specialized electron-rich phosphines and
N-heterocyclic carbenes (NHC) for the development of active catalytic systems expanding the substrate
scope with lower catalyst loadings and milder conditions [15,16]. However, the monetary costs of
these specialized ligands are often comparable to the Pd precursor. Therefore, the traditional route of
addition of excess ligand for generating the active Pd(0) becomes unattractive [15,17]. Furthermore,
in many cross-coupling reactions, the optimal Pd to ligand ratio is 1:1, with the active species
proposed to be a monoligated Pd(0). Therefore, the use of well-defined Pd(II) pre-catalysts to facilitate
cross-coupling reactions is highly desirable, as they can generate mono ligated active Pd(0) catalysts in
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solution. Since Herrmann reported that Pd-NHC complexes efficiently catalyzed Heck reaction [18],
these complexes found a widespread use for various cross-coupling reactions incorporating previously
unreactive coupling partners (Figure 1) [19].
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Although various electrophiles are employed in cross-coupling reactions for the construction of
C–C and C–N bonds, there is immense interest in increasing the substrate scope to include a wide range
of cross-coupling partners [1,4,20]. In recent years, tremendous progress was made to incorporate
stable, unreactive, carboxylic acid derivatives, such as amides and esters, in cross-coupling reactions to
form ketones or amides [20,21]. The resonance, due to nN (or) O →π*C=O conjugation, makes them a
complicated reacting partner in cross-coupling reactions, requiring a high activation energy for the N
or O–C(O) bond scission. Destabilization strategies increasing the steric bulk on the amide nitrogen
independently developed by the laboratories of Garg [22], Szostak [23], and Zou [24] provide a basis for
the development of acyl cross-coupling of amides. Various Pd and Ni catalyst systems with phosphine
and NHC ancillary ligands are shown to be effective in utilizing amides and esters as coupling partners
in Suzuki-Miyaura coupling and Buchwald-Hartwig amination reactions. However, in this review,
we will focus only on describing the recent advances made in the cross-coupling of amides and esters
using well-defined pre-catalysts. The individual sections in this review are organized according to the
pre-catalysts employed [Pd(allyl)(NHC)Cl, and Pd-PEPPSI] for cross-coupling of amides and esters.

2. Pd(allyl)(NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Amides and Esters

With a wide functional group tolerance and less sensitivity toward air and moisture, palladium is
by far the most commonly used metal for catalysis of cross-coupling reactions. Among the various
pre-catalysts developed in the past decade, there is considerable interest and improvement in
pre-catalysts based on η3-allyl ligands. Aside from the inherent advantages associated with NHC
ligands (i.e., strong σ-donation, tunability, sterics), Nolan demonstrated that η3-allyl and η3-cinnamyl
pre-catalysts with bulky NHC ligands also exhibit high stability toward air and moisture allowing for
easy storage and handling [15,25,26]. Furthermore, the commercial availability and ease of synthesis
made them an important class of catalysts for reaction screening. The strong σ-donating nature of NHC
facilitates the activation of stable and unreactive bonds. Specifically, the [Pd(cinnamyl)(L)Cl] scaffold
(L = IPr* or IPr*OMe) was incorporated into several highly active catalysts for difficult cross-coupling
reactions, such as the synthesis of tetra-ortho-substituted biaryls using Suzuki-Miyaura coupling [27],
Buchwald-Hartwig reactions with secondary amines [28], as well as the use of amides and esters as
electrophiles in Suzuki-Miyaura coupling and Buchwald-Hartwi aminations. Figure 2 lists selected and
active Pd(allyl)NHC pre-catalysts that were employed for the cross-coupling of amides and esters [19].
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2.1. Pd(allyl)(NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Amides

Given the key role of the amide bond in nature, development of new methods to functionalize
amides via C–N bond activation became an active area of research. Mechanistically, activation of the
C–N amide bond proceeds through ground-state destabilization (twisting) of the amide bond by steric
and/or electronic factors, allowing a facile insertion of a metal into the C–N bond, furnishing the
acyl–metal intermediate facilitating coupling reactions [29–31]. Scheme 1 lists various substituents on
amide nitrogen employed for the destabilization.
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Scheme 1. Selected N-substituents employed for amide C–N bond destabilization.

In 2015, the utilization of amide bond for the Suzuki-Miyaura cross-coupling was reported by Zou
and coworkers employing N-phenyl-N-tosyl substituted amides [24]. The report showcased the effect
of substituent electronics on the destabilization of amide resonance facilitating the metal insertion in to
the amide C–N bond. Although the methodology showed good functional group tolerance, it suffered
from high catalyst loadings and stringent reaction conditions (Scheme 2).
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In the same year, Szostak and coworkers employed a rather different approach of sterically
controlled amide bond destabilization using a variety of N-substituted amides and found the best
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results to be N-glutarimide [23]. The methodology provided inherent steric advantages for amide
bond distortion, thereby providing a milder reaction conditions and high functional group tolerance
(Scheme 3). But the utilization of large excess of expensive ligand (1:4 ratio of Pd(OAc)2 to PCy3HBF4),
and applicability to only highly twisted N-glutarimide amides restricted the practical applications of
the methodology.
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It was not until recently that a more general method incorporating all classes of amides under
milder conditions was developed. In 2017, Szostak and coworkers reported the versatility of
[Pd(IPr)(cinnamyl)Cl], a well-defined pre-catalyst in the Suzuki-Miyaura cross-coupling of amides
under operationally simple conditions (Scheme 4) [23]. The methodology is highly significant,
as it promoted the C–N amide bond activation of various amides, including N-glutarimide,
N-Boc-carbamate, and N-toluenesulfonamide, under the same reaction conditions with similar yields
of the ketone product. The method also showed high functional group tolerance for both reacting
partners. The use of easily prepare and common protecting groups (N-Boc and N-Ts amides) for
cross-coupling is appealing, as it brings the amide bond cross-coupling closer to general practical use.
As stated previously, it was proposed that strong σ donation of the NHC facilitates oxidative addition,
while flexible steric bulk around Pd promotes reductive elimination, triggering high reactivity even
with less activated amide precursors.
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While nonplanar amides were found to be very effective and well-documented for cross-coupling
reactions by steric distortion, the resonance destabilization of corresponding planar amides was
not well developed. To incorporate planar amides for cross-coupling reactions, Szostak and
coworkers utilized N-acylpyrroles and N-acylpyrazoles in Suzuki-Miyaura cross-coupling reactions
(Scheme 5) [32]. They found delocalization of Nlp into the π-electron system of the pyrrole/pyrazole
ring to be sufficient to selectively insert palladium into the amide C–N bond in the absence
of steric distortion. The extensive optimization emphasized the importance of well-defined
[Pd(cinnamyl)(IPr)Cl] producing ketone in good yields compared to traces of product formation
with the traditional catalyst/ancillary ligand system.
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Scheme 5. Cross-coupling of planar amides catalyzed by well-defined Pd(cinnamyl)(IPr)Cl.

Compared to both traditional Pd/phosphine catalyst systems or Pd/ancillary NHC catalytic
systems, well-defined [Pd(cinnamyl)(IPr)Cl] offers both practical advantages and high activity in
cross-coupling reactions of amides. In fact, the high catalytic activity of [Pd(cinnamyl)(IPr)Cl] can be
evident by its ability to convert N-alkyl-N-aryl amides to corresponding ketones. In 2017, Szostak and
coworkers introduced N-methylaminopyrimidyl amides (MAPA) as highly reactive, electronically
activated amides for C–N bond cleavage (Scheme 6) [33,34].
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Scheme 6. Pd(cinnamyl)(IPr)Cl catalyzed Suzuki-Miyaura cross-coupling of N-alkyl-N-aryl amides.

Interestingly, Suzuki-Miyaura cross-coupling of both the sterically distorted and/or electronically
distorted amides were found to be reactive under similar reaction conditions, further demonstrating
how the well-defined nature of a catalyst can enhance the overall catalytic activity and reactivity
compared to traditional usage of excess ancillary ligand. This is highly beneficial, as it allows chemists
to screen minimal conditions to optimize methodology for new classes of amides with similar distortion
angles or resonance energies. In fact, Zeng and coworkers, on their quest to incorporate commercially
available and inexpensive N-acylhydantoins as amide electrophiles, have also used similar conditions
for the formation of ketones indicating the versatility of Pd(allyl)(NHC)Cl pre-catalysts with different
substituted amides (Scheme 7) [35].
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Although the reported methods to incorporate amide bonds in cross-coupling reactions is quite
promising, the synthetic modifications to activate amide bond can impede overall synthetic utility.
On the other hand, use of N,N-di-Boc-activated amides would be highly beneficial, allowing direct
engagement of most ubiquitous primary amides. Szostak and coworkers developed a new catalytic
system based on [Pd(IPr)(cinnamyl)Cl]/KF for the selective insertion of metal into acyl amide bond
(cf. N-carbamate bond) [36]. The addition of 5.0 equiv of water was found to be critical for the
cross-coupling of di-boc amides, as is evident from decreased yields or no reaction in the absence of
water (Scheme 8).
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Scheme 8. Direct cross-coupling of N,N-di-Boc-amides under Pd(IPr)(cinnamyl)Cl catalysis.

The high catalytic activity of Pd(IPr)(cinnamyl)Cl allowed for the cross-coupling to be conducted
at ambient temperature with even lower catalyst loadings. The robust nature of Pd(IPr)(cinnamyl)Cl
also allowed them for the gram scale conversion of primary amides to ketones with just 0.5 mol % of
catalyst with a TON of 1220, further increasing the practicality of amide cross-coupling (Scheme 9) [36].
In fact, the high catalytic activity of Pd-IPr complexes also allowed Szostak and coworkers to use
easily accessible N-acyl amides for the cross-coupling reaction with the highest reported TON (3500),
compared to the corresponding traditional Pd-phosphine catalytic systems [37].
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Scheme 9. Scale-up study in direct cross-coupling of N,N-di-Boc-amides under
Pd(IPr)(cinnamyl)Cl catalysis.

Recently, employing standard reaction conditions of amide Suzuki-Miyaura cross-coupling under
well-defined Pd-NHC catalysis (i.e., Pd(IPr)(cinnamyl)Cl/K2CO3/THF), Szostak and coworkers also
realized challenging C(sp2)-C(sp3) couplings using N,N-di-Boc-amides and B-sp3 alkyl reagents
(Scheme 10) [38]. Various substituents on the amide bonds, such as N-glutarimide, N-Ph-N-Boc,
and N-Ph-N-Ms were also found to be reactive under identical conditions albeit at a higher temperature.
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Scheme 10. Pd(IPr)(cinnamyl)Cl catalyzed alkylation of amides by C–N bond cleavage.

2.2. Pd(η3-1-t-Bu-indenyl) (NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Amides

The high reactivity of [Pd(allyl)(NHC)Cl] pre-catalysts stems from maintaining the optimal
1:1 Pd to ligand ratio and the fast reduction of Pd(II) to active Pd(0) [15]. It is now widely
accepted that base mediated activation of [Pd(allyl)(NHC)Cl] pre-catalysts forms the active ligated
Pd(0) catalyst in solution [34]. However, elegant studies by Hazari and coworkers observed a
deleterious comproportionation pathway under catalytic conditions to form Pd(I) µ-allyl dimers
(Scheme 11) [39,40]. Based on extensive mechanistic investigation, they proposed two strategies to
develop even more active catalysts: (1) Increase the barrier to comproportionation between Pd (0) and
Pd (II), and (2) develop systems that undergo faster activation so that all of Pd(II) is converted to Pd(0)
before comproportionation.
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Scheme 11. Activation/deactivation pathway during Pd(allyl)(NHC)Cl pre-catalyst activation.

The mechanistic insights on the deactivation pathway led the Hazari group to discover
Pd(η3-1-t-Bu-indenyl)(NHC)Cl (Hazari catalyst), a highly efficient pre-catalyst for cross-coupling
reactions [41]. As a major advance in Pd-NHC precatalysts, the inability of (η3-1-t-Bu-indenyl)
(NHC)Cl to generate unreactive Pd(I) dimers significantly improved its activity for cross-coupling
reactions. In 2017, Szostak and coworkers utilized [Pd(indenyl)(IPr)Cl] for the development of
Suzuki-Miyaura cross-coupling of N-Ph-N-Boc amides under otherwise standard conditions of amide
cross-coupling reaction (K2CO3/THF, Scheme 12) [42]. The unprecedented reactivity of Hazari catalyst
by suppressing the deactivation pathway led the amide cross-coupling reaction to occur at room
temperature under glovebox-free conditions, increasing the operational simplicity and practicality
of the reaction. This reaction is notable as the first example of Suzuki-Miyaura cross-coupling of
an amide at room temperature with excellent yield of ketone product. The robust nature of the
pre-catalyst allowed the Szostak group to develop the first direct one-pot activation/cross-coupling of
secondary amides.
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Scheme 12. Pd(IPr)(indenyl)Cl catalyzed Suzuki-Miyaura coupling of amides at room temperature.

2.3. Pd(allyl)(NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Esters

The ubiquitous nature of ester bonds attracted the interest of chemists for their synthetic
manipulation into useful products. In recent years, the direct use of aromatic esters in cross-coupling
reactions to form biaryls or ketones has been demonstrated as a promising area of research [20].
The selective cleavage of ester bonds offers significant advantages in multistep synthesis as they
are robust to a range of reaction conditions and can only be activated under specific conditions.
Although activation of aryl C–O bonds to form biaryls via decarbonylation is well-documented [43,44]
the corresponding synthesis of ketones is still in its infancy. In 2017, Newman, Houk and coworkers
reported the first-time utilization of aryl esters as acyl equivalents for the formation of ketones
(Scheme 13) [45]. The exceptional bulkiness of NHC ligand on the catalyst hindered the decarbonylation
step facilitating ketone formation over the well-known biaryl formation.
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Scheme 13. Pd(IPr)(cinnamyl)Cl catalyzed Suzuki-Miyaura cross-coupling of aryl esters.

Optimization studies demonstrated the importance of well-defined pre-catalysts for successful
ketone formation (Table 1). When Pd catalysts in combination with excess ancillary ligand were
used, very low yield of the product was obtained (Table 1, entry 1–4). On the contrary, when the
metal to ligand ratio was decreased to the optimal 1:1 ratio, a substantial increase in the product
formation was observed (Table 1, entry 5). Further improvement was reported when a preformed
well-defined Pd(IPr)(cinnamyl)Cl was used as the catalyst, forming the cross-coupled product in
95% yield, highlighting the importance of well-defined pre-catalysts as compared to traditional
catalyst/ligand system (Table 1, entry 6).

Table 1. Optimization study for the Suzuki-Miyaura cross-coupling of aryl esters.
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alkylmetal species are prone to β-hydride elimination. However, the strong σ-donation and bulky 
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2.4. Pd(η3-1-t-Bu-indenyl) (NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Esters 

Entry Pd Source (mol %) Ligand (mol %) Yield (%)

1 Pd(OAc)2 (5) IPr·HCl (10) 11
2 Pd(dba)3 (5) IPr·HCl (10) 16
3 [Pd(allyl)Cl]2 (5) IPr·HCl (10) 19
4 [Pd(cinnamyl)Cl]2 (5) IPr·HCl (10) 21
5 [Pd(cinnamyl)Cl]2 (5) IPr·HCl (5) 59
6 Pd(IPr)(cinnamyl)Cl (5) none 95

Very recently, as an improvement from their work on C(sp2)-C(sp2) cross-coupling of esters, the
Newman group reported a C(sp2)-C(sp3) cross-coupling of aryl esters with alkyl-BBN to form aryl-alkyl
ketones [46]. This reaction is particularly challenging, as alkyl boron reagents, in general, are reluctant
to undergo transmetallation relative to their aryl counterparts and the intermediacy of alkylmetal
species are prone to β-hydride elimination. However, the strong σ-donation and bulky nature of NHC
in precatalysts, enabled the reaction to proceed to form ketones. On the contrary, when they employed
Pd-ancillary phosphine catalyst conditions, biaryls were formed via decarbonylation and reductive
elimination (Scheme 14).
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2.4. Pd(η3-1-t-Bu-indenyl) (NHC)Cl Pre-Catalysts in Suzuki-Miyaura Cross-Coupling of Esters

The Hazari catalyst, a highly active catalyst for amide bond cross-coupling, was also found to
be very effective in Suzuki-Miyaura cross-coupling of aryl esters. In 2017, Szostak and coworkers
reported the first room temperature Suzuki-Miyaura cross-coupling of esters by selective C–O bond
activation to give biaryl ketones (Scheme 15) [42]. Interestingly, only a small variation in the amount of
base from the conditions employed for amide cross-coupling enabled the cross-coupling of esters.
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Scheme 15. Suzuki-Miyaura cross-coupling of aryl esters catalyzed by Pd(indenyl)(IPr)Cl.

An advancement in the cross-coupling of aryl esters catalyzed by Pd(indenyl)(IPr)Cl was reported
by Hazari and coworkers (Scheme 16) [47]. The use of potassium hydroxide base allowed them to
develop even milder reaction conditions with lower catalyst loadings (1.0 mol %), and shorter reaction
times (6 h to 16 h).
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Scheme 16. Hazari protocol for the Suzuki-Miyaura cross-coupling of aryl esters catalyzed by
Pd(indenyl)(IPr)Cl using hydroxide bases.

3. Pd(allyl)(NHC)Cl Pre-Catalysts in Buchwald-Hartwig Amination of Amides and Esters

3.1. Pd(cinnamyl)(IPr)Cl Pre-Catalyst for the Transamidation of Amides

The excellent reactivity of Pd(cinnamyl)(IPr)Cl pre-catalysts in amide C–N activation to form
acyl-metal species is highly significant, as it can potentially undergo cross-coupling reactions with any
nucleophile. In 2017, Szostak and coworkers realized the acyl-metal reaction with other nucleophiles
when they reported the first general method for Buchwald-Hartwig amination of acyl-metal species
with amines under Pd-NHC catalysis (Scheme 17) [48]. The protocol offered advantages in efficient
cross-coupling of both alkyl, aryl, and sterically hindered anilines. The method also showed a broad
scope with respect to both the amine and amide components.
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3.2. Pd(allyl)(IPr)Cl Pre-Catalyst for the Transamidation of Esters

Newman and coworkers reported the first example of Pd-NHC catalyzed amide bond formation
directly from aryl esters and anilines. Similar to their observation in Suzuki coupling of aryl esters,
a well-defined preassembled NHC-ligated catalyst was essential, as separated components resulted
in reduced yields [45]. They found the use of a mild carbonate base and the presence of water
was essential for higher conversion, forming the transamidated product in good yields (Scheme 18).
The mildness of the protocol was showcased by the reaction of proline ester with anilines and the
aminated product was formed with minimal loss of enantiopurity.

Molecules 2019, 24, x 11 of 25 

 

 

 
Scheme 18. Pd(allyl)(IPr)Cl catalyzed amidation of proline esters. 

3.3. Pd(indenyl)(SIPr)Cl Pre-Catalyst for the Transamidation of Esters 

Given the exceptional catalytic activity of Pd(indenyl)(IPr)(Cl) for Suzuki-Miyaura reactions 
involving aryl esters, Hazari and coworkers also explored Buchwald-Hartwig amination of aryl 
esters. Using 1 mol % of Pd(indenyl)(SIPr)(Cl) (SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-
ylidene) as the pre-catalyst, they were able to couple phenyl benzoate and aniline in essentially 
quantitative yield at 40 °C, using a 4:1 H2O/THF solvent mixture (Scheme 19) [47]. They also found 
that the coupling was highly sensitive to the ligand used, with SIPr affording the best yields, whereas 
other NHC or phosphine ligands were ineffective. 
  

Scheme 18. Pd(allyl)(IPr)Cl catalyzed amidation of proline esters.

3.3. Pd(indenyl)(SIPr)Cl Pre-Catalyst for the Transamidation of Esters

Given the exceptional catalytic activity of Pd(indenyl)(IPr)(Cl) for Suzuki-Miyaura reactions
involving aryl esters, Hazari and coworkers also explored Buchwald-Hartwig amination of aryl esters.
Using 1 mol % of Pd(indenyl)(SIPr)(Cl) (SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene)
as the pre-catalyst, they were able to couple phenyl benzoate and aniline in essentially quantitative
yield at 40 ◦C, using a 4:1 H2O/THF solvent mixture (Scheme 19) [47]. They also found that the
coupling was highly sensitive to the ligand used, with SIPr affording the best yields, whereas other
NHC or phosphine ligands were ineffective.
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4. Pd-PEPPSI Pre-Catalysts in the Suzuki-Miyaura Cross-Coupling of Amides and Esters

The last two decades saw tremendous growth in the development of highly active,
generally applicable, and functional group-tolerant catalytic systems employing NHC ligands.
One highly active well-defined pre-catalyst system is Pd-PEPPSI (pyridine-enhanced pre-catalyst
preparation, stabilization and initiation), developed by the Organ group [49]. As Figure 1 illustrates,
Pd-PEPPSI catalysts found their use in various cross-coupling reactions, such as Suzuki-Miyaura,
Negishi, Kumada-Tamao-Corriu, and Buchwald-Hartwig aminations [50]. As with all the Pd-NHC
precatalysts, Pd-PEPPSI has two major components: The bulky NHC ligand, which contains strong
σ-donor properties which help promote the oxidative addition, and the sterics aid reductive elimination.
The second component, the pyridine, often referred as a “throw away ligand,” aids not only in the
synthesis of pre-catalyst, but also increases the stability of the isolated complexes (Figure 3). The easy
synthesis, high stability toward air and moisture and the exceptional reactivity of Pd-PEPPSI complexes
led synthetic chemists to utilize these pre-catalysts in the cross-coupling of difficult and unreactive
electrophiles, such as amides and esters (vide infra).
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4.1. Pd-PEPPSI Pre-Catalysts in the Suzuki-Miyaura Cross-Coupling of Amides

Szostak and coworkers were the first to report the use of Pd-PEPPSI pre-catalysts in
Suzuki-Miyaura cross-coupling of amides [51]. In agreement with high catalytic activity of in situ
generated Pd-NHC complexes, identical reaction conditions could be employed for the cross-coupling
of various destabilized amides (Scheme 20).
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Scheme 20. Pd-PEPPSI catalyzed Suzuki-Miyaura cross-coupling of amides.

In accordance with the amide C–N bond destabilization, kinetic studies with N-glutarimide,
N-Ph-N-Ts, and N-Ph-N-Boc amides showed similar reactivity to their cross-coupling reactivity scale
with N-glutarimide being the fastest and N-Ph-N-Ts being the slowest [52]. The kinetic data between
Pd-PEPPSI and Pd(IPr)(cinnamyl)Cl precatalysts under identical conditions suggested tha while the
reaction rates of N-glutarimide and N-Ph-N-Boc amides were higher with Pd-PEPPSI, N-Ph-N-Ts
amides are shown to have faster reaction rates under Pd(IPr)(cinnamyl)Cl catalysis (Figure 4) [19].
The data is highly beneficial, as it provides a general idea for chemists to choose from both the catalyst
systems for different type of amides employed in cross-coupling reactions.
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Figure 4. Kinetic study displaying the conversion percentage over time of Pd-PEPPSI (left),
and Pd(IPr)(Cinnamyl)Cl (right) pre-catalysts. Activated amides used were N-Glutarimide (1a),
N-Ph-N-Ts (1b), and N-Ph-N-Boc (1c). Reprinted with permission from J. Org. Chem. 2017, 82,
6638−6646. Copyright 2017 American Chemical Society.

Very recently, Zou and coworkers reported the Suzuki-Miyaura cross-coupling of less reactive
N-alkyl-N-Ts amides with diarylborinic acids under Pd-PEPPSI catalysis (Scheme 21) [53]. The use of
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stable diarylborinic acids was advantageous, as it extended nucleophile counterparts in cross-coupling
reactions. Under otherwise standard reaction conditions of amide cross-coupling reactions, they were
successful in cross-coupling less reactive N-Me-N-Ts amides to form ketone products. Notably,
no reaction ensued under Pd/phosphine catalysis and only low Pd-PEPPSI catalyst loadings (1.0 mol %)
were needed, highlighting the high activity of Pd-NHC pre-catalysts. The protocol also offered a broad
functional group tolerance, with both electron donating and electron withdrawing groups on both
coupling partners.
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Scheme 21. Pd-PEPPSI catalyzed Suzuki-Miyaura cross-coupling of amides with diarylborinic acids.

Zou and coworkers further advanced the Suzuki-Miyaura coupling of amides to form
alkyl ketones using trialkylboranes as coupling partners under Pd-PEPPSI catalysis [54].
Although Pd/phosphine catalysis proved ineffective, 5 mol % of Pd-PEPPSI was very effective in
transforming N-Me-N-Ts amides to form alkyl ketones (Scheme 22). Unlike the high-order arylboron
compounds, in which all the aryl groups react effectively, only one of the three primary alkyl groups in
alkylboranes could be used as alkyl source for the acyl alkylation.
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Scheme 22. Pd-PEPPSI catalyzed alkylation of N-Me-N-Ts amide.

Wang, Liu, and coworkers recently reported a new series of Pd-NHC pre-catalysts using
various N-heterocycles [55] as “throwaway ligands” with benzothiazole being the most effective
for the Suzuki-Miyaura cross coupling of N-succinimide amides (Scheme 23) [56]. Change in the
“throw-away ligand” was found to have a profound effect on the overall yield of the reaction,
with benzothiazole ligand outperforming traditional 3-chloro pyridine ligand.
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4.2. Pd-PEPPSI Pre-Catalysts in the Suzuki-Miyaura Cross-Coupling of Esters

Pd-PEPPSI pre-catalysts were also found to be effective in catalyzing the cross-coupling of esters.
In most cases, the reactivity was comparable to that of [Pd(IPr)(cinnamyl)Cl]. Szostak and coworkers
reported a direct Suzuki-Miyaura cross-coupling of aryl esters under Pd-PEPPSI catalysis and found
that the rates were similar to those reported for the cross-coupling of N-Ph/Boc, and N-Ph/Ts amides
under identical reaction conditions (Scheme 24) [57].
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Scheme 24. Pd-PEPPSI catalyzed Suzuki-Miyaura cross-coupling of aryl esters.

To further advance cross-coupling of esters, and to find a more general method, Szostak and
coworkers reported a water assisted Suzuki-Miyaura cross-coupling of aryl esters at room temperature
(Scheme 25) [58]. They demonstrated that the addition of water (5.0 equiv) was able to facilitate
the reaction under very mild reaction conditions with only 1 mol % catalyst loading and at
room temperature.
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Scheme 25. Water assisted, Pd-PEPPSI catalyzed Suzuki-Miyaura coupling of esters.

To elucidate the role of water additive, they subjected the Pd-PEPPSI pre-catalyst under optimized
reaction conditions without the coupling partners to observe the formation of hydroxide dimer,
[Pd(µ-OH)Cl(IPr)]2 in appreciable 32% yield (Scheme 26).
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Scheme 26. Synthesis of Pd(II) hydroxide dimer formation from Pd-PEPPSI.

They also performed kinetic studies to probe the catalytic activity of preformed dimer and
observed faster reaction rates compared to the Pd-PEPPSI conditions. Notably, negligible product
formation in the absence of water additive indicated the importance of Pd-hydroxide dimer formation
prior to the reduction of Pd(II) to active Pd(0) species (Figure 5). This protocol has also allowed the
first achievement of a TON > 1000 in the Suzuki-Miyaura cross-coupling of aryl esters.
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Figure 5. Kinetic profile of aryl ester cross-coupling under Pd-PEPPSI catalysis Reprinted with
permission from Adv. Synth. Catal. 2018, 360, 1538–1543. Copyright © 2018 John Wiley and Sons.

Very recently, while preparing this manuscript, Szostak and coworkers reported Suzuki-Miyaura
cross-coupling of esters using pentafluorophenyl substituents. Although the reported method was
primarily focused on the utilization of traditional Pd-ancillary phosphine catalysis, the high catalytic
activity of Pd-PEPPSI catalysts allowed them to use even milder conditions with better yields [59].

5. Pd−PEPPSI Pre-Catalysts in Buchwald–Hartwig Amidation of Esters and Amides

Szostak and Shi also reported the first Pd-PEPPSI catalyzed Buchwald-Hartwig amination
of phenyl esters and activated amides. In their work, they reported the chemo-selective acyl
C–O/C–N amination with anilines using the Pd-PEPPSI pre-catalyst [60]. Phenyl esters, N-Ph-N-Boc,
and N-Ph-N-Ts amides were successfully converted to amides with excellent yield. However,
conditions reported were harsher than conditions reported for ketone synthesis (Scheme 27).
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6. Palladium(II)/N-Heterocyclic Carbene-Catalyzed Direct C–H Acylation of Heteroarenes with
N-Acylsaccharins

Following up on the work from the Szostak group, Gandhi and coworkers reported the use of
pyrene based Pd-PEPPSI catalysts (Figure 6) with wingtip substituents, such as Ar/alkyl and alkyl
groups for the cross-coupling of N-acylsaccharin amides with azoles and azole derivatives [61].

Molecules 2019, 24, x 24 of 25 

 

 

 
Figure 6. Pyrene based Pd-PEPPSI catalysts employed in the cross-coupling reactions. 

N-acyl saccharin, a commonly used twisted amide, was used to accomplish the difficult cross 
coupling reactions incorporating amide bond cleavage and C-H activation reactions. The work 
focused on the cross-coupling of N-functionalized saccharins with benzoxazole and its derivatives 
through a C-H activation process (Scheme 28). Not surprisingly, other activated amides such as N-
aryl-N-Ts were found ineffective, resulting in no product. 
  

Figure 6. Pyrene based Pd-PEPPSI catalysts employed in the cross-coupling reactions.

N-acyl saccharin, a commonly used twisted amide, was used to accomplish the difficult cross
coupling reactions incorporating amide bond cleavage and C-H activation reactions. The work focused
on the cross-coupling of N-functionalized saccharins with benzoxazole and its derivatives through
a C-H activation process (Scheme 28). Not surprisingly, other activated amides such as N-aryl-N-Ts
were found ineffective, resulting in no product.
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7. Conclusions  
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Scheme 28. Pd-PEPPSI-pyrene pre-catalysts in the C-H acylation of benzoxazole.

7. Conclusions

In summary, the use of well-defined Pd(II)-NHC pre-catalysts offers significant advantages
over the traditional approach of adding extra ligand to standard Pd catalysts. In the past few
years, these catalysts were found to be exceptional in enabling the cross-coupling reactions of
amides and esters via C–N(O) bond activation to form ketones and amides. The easy preparation,
commercial availability, and stability toward air and moisture of the pre-catalysts facilitate the
development of operationally simple and practical cross-coupling methods. The strong σ-bond
donating nature of NHC ligands increases the reactivity of Pd center toward oxidative addition
of difficult electrophiles, such as amides and esters, increasing the scope and generality of the
cross-coupling reactions. Further exciting developments are expected in this relatively new area
of employing amides and esters as acyl electrophiles, with recent breakthroughs enabled by
Pd(II)-NHC catalysis.
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