# Surface persistence of trace level deposits of highly energetic materials

Leonardo C. Pacheco-Londoño<sup>1,2\*</sup>, José L. Ruiz-Caballero<sup>1,3,4</sup>, Michael L. Ramírez-Cedeño<sup>1</sup>, Ricardo Infante-Castillo<sup>4</sup>, Nataly J Gálan-Freyle<sup>1,2</sup>, and Samuel P. Hernández-Rivera<sup>1</sup>

**1.** Micro images of the morphology of HEM residues on SS substrates surfaces.



SM Fig. 1. 10x magnification micro image of morphology of residues of TATP on a SS substrate surface.



SM Fig. 2. 50x magnification micro image morphology TATP residues on a SS substrate surface.



SM Fig. 3. 10x magnification micro image of morphology of DNT residues on a SS substrate surface.



SM Fig. 4. 100x magnification micro image of morphology of DNT residues on a SS substrate surface.



SM Fig. 5. 10x magnification micro image of morphology of TNT residues on a SS substrate surface.



SM Fig. 6. 50x magnification micro image of morphology of TNT residues on a SS substrate surface.



SM Fig. 7. 10x magnification micro image of morphology of RDX residues on a SS substrate surface.

| SM TABLE I. Sublimation constants for explosive from GAP measurements |                         |           |                     |           |                         |           |                         |  |
|-----------------------------------------------------------------------|-------------------------|-----------|---------------------|-----------|-------------------------|-----------|-------------------------|--|
| ТАТР                                                                  |                         | 2,4-DNT   |                     |           | TNT                     | RDX       |                         |  |
| Т<br>(°С)                                                             | k<br>(s <sup>-1</sup> ) | т<br>(°С) | k<br>(s⁻¹)          | т<br>(°С) | k<br>(s <sup>-1</sup> ) | Т<br>(°С) | k<br>(s <sup>-1</sup> ) |  |
| 14                                                                    | $0.002 \pm 0.001$       | 23        | 0.0007 ± 0.0003     | 22        | (1.35 ± 0.01)E-5        | 22        | (2.0 ± 0.2)E-8          |  |
| 15                                                                    | $0.002 \pm 0.002$       | 26        | $0.0010 \pm 0.0001$ | 30        | (8.09 ± 0.02)E-5        | 44        | $(2.0 \pm 0.1)$ E-6     |  |
| 16                                                                    | $0.004 \pm 0.002$       | 28        | $0.0014 \pm 0.0008$ | 40        | (1.50 ± 0.04)E-4        | 65        | (1.7 ± 0.7)E-4          |  |
| 17                                                                    | 0.005 ± 0.003           | 32        | 0.0028 ± 0.0006     | 50        | (7.77 ± 0.04)E-4        | 70        | (3.7 ± 0.4)E-4          |  |
| 18                                                                    | 0.006 ± 0.002           | 33        | 0.003 ± 0.002       | 55        | (1.70 ± 0.06)E-3        | 80        | (1.26 ± 0.08)E-3        |  |
| 19                                                                    | 0.0070 ± 0.0005         | 34        | $0.004 \pm 0.001$   | 70        | (7.15 ± 0.03)E-3        |           |                         |  |
| 20                                                                    | $0.010 \pm 0.006$       | 35        | 0.006 ± 0.003       |           |                         |           |                         |  |
| 21                                                                    | $0.012 \pm 0.006$       | 40        | $0.007 \pm 0.001$   |           |                         |           |                         |  |
| 23                                                                    | $0.016 \pm 0.006$       | 50        | $0.014 \pm 0.006$   |           |                         |           |                         |  |
| 24                                                                    | $0.016 \pm 0.006$       | 60        | 0.056 ± 0.009       |           |                         |           |                         |  |
| 25                                                                    | $0.022 \pm 0.006$       |           |                     |           |                         |           |                         |  |
| 26                                                                    | $0.025 \pm 0.004$       |           |                     |           |                         |           |                         |  |
| 27                                                                    | $0.031 \pm 0.004$       |           |                     |           |                         |           |                         |  |
| 28                                                                    | $0.03 \pm 0.01$         |           |                     |           |                         |           |                         |  |
| 29                                                                    | $0.042 \pm 0.01$        |           |                     |           |                         |           |                         |  |
| 30                                                                    | $0.044 \pm 0.01$        |           |                     |           |                         |           |                         |  |
| 31                                                                    | $0.042 \pm 0.01$        |           |                     |           |                         |           |                         |  |
| 32                                                                    | $0.043 \pm 0.01$        |           |                     |           |                         |           |                         |  |
| 33                                                                    | 0.045 ± 0.007           |           |                     |           |                         |           |                         |  |

# 2. Sublimation constants for explosive from GAP measurements.

| SM TABLE II. Sublimation rate constants calculated from TGA measurements |               |           |               |           |                            |           |               |  |  |
|--------------------------------------------------------------------------|---------------|-----------|---------------|-----------|----------------------------|-----------|---------------|--|--|
| T/                                                                       | ATP_1         | 2,4       | 2,4-DNT       |           | TNT                        | RDX       |               |  |  |
| т<br>(°С)                                                                | k<br>(Kg*s⁻¹) | Т<br>(°С) | k<br>(Kg*s⁻¹) | Т<br>(°С) | k<br>(Kg*s <sup>-1</sup> ) | т<br>(°С) | k<br>(Kg*s⁻¹) |  |  |
| 20                                                                       | 2.95E-11      | 25        | 5.06E-13      | 30        | 6.85E-14                   | 55        | 9.43E-15      |  |  |
| 22                                                                       | 3.74E-11      | 27        | 6.42E-13      | 35        | 7.10E-14                   | 60        | 1.21E-14      |  |  |
| 24                                                                       | 5.19E-11      | 29        | 1.00E-12      | 40        | 2.20E-13                   | 65        | 2.43E-14      |  |  |
| 25                                                                       | 5.96E-11      | 30        | 1.30E-12      | 45        | 3.60E-13                   | 75        | 6.00E-14      |  |  |
| 26                                                                       | 6.84E-11      | 35        | 1.70E-12      | 50        | 6.50E-13                   | 80        | 1.40E-13      |  |  |
| 28                                                                       | 9.01E-11      | 40        | 3.30E-12      | 55        | 1.20E-12                   | 85        | 2.90E-13      |  |  |
| 30                                                                       | 1.15E-10      | 45        | 6.10E-12      | 60        | 2.20E-12                   | 90        | 3.20E-13      |  |  |
| 35                                                                       | 1.93E-10      | 50        | 1.10E-11      | 65        | 4.30E-12                   | 95        | 5.00E-13      |  |  |
| 40                                                                       | 3.09E-10      | 55        | 1.90E-11      | 70        | 6.61E-12                   | 100       | 6.90E-13      |  |  |
| 45                                                                       | 5.00E-10      | 60        | 3.20E-11      | 75        | 9.30E-12                   | 105       | 1.42E-12      |  |  |
| 50                                                                       | 7.87E-10      | 65        | 5.10E-11      | 80        | 1.04E-11                   | 110       | 1.54E-12      |  |  |
| 55                                                                       | 1.16E-09      | 70        | 8.27E-11      | 85        | 1.55E-11                   | 115       | 2.31E-12      |  |  |
| 60                                                                       | 1.56E-09      | 75        | 1.05E-10      | 90        | 2.28E-11                   | 120       | 2.79E-12      |  |  |
| 65                                                                       | 1.99E-09      |           |               |           |                            | 125       | 4.20E-12      |  |  |

## 3. Sublimation rate constants calculated from TGA measurements.

| TA     | TP_2                       | TA     | ATP_2         | TA     | ATP_3         | 3 TATP_3 TATP_ |               | TP_3   |               |
|--------|----------------------------|--------|---------------|--------|---------------|----------------|---------------|--------|---------------|
| T (°C) | k<br>(Kg*s <sup>-1</sup> ) | т (°С) | k<br>(Kg*s⁻¹) | T (°C) | k<br>(Kg*s⁻¹) | T (°C)         | k<br>(Kg*s⁻¹) | т (°С) | k<br>(Kg*s⁻¹) |
| 22     | 3.90E-11                   | 54     | 1.21E-09      | 21.5   | 9.40E-11      | 35.0           | 5.62E-10      | 50.0   | 2.33E-09      |
| 23     | 4.23E-11                   | 55     | 1.30E-09      | 22.0   | 1.01E-10      | 35.5           | 5.92E-10      | 50.5   | 2.44E-09      |
| 24     | 5.04E-11                   | 56     | 1.40E-09      | 22.5   | 1.11E-10      | 36.0           | 6.23E-10      | 51.0   | 2.55E-09      |
| 25     | 5.98E-11                   | 57     | 1.51E-09      | 23.0   | 1.21E-10      | 36.5           | 6.55E-10      | 51.5   | 2.66E-09      |
| 26     | 6.99E-11                   | 58     | 1.61E-09      | 23.5   | 1.33E-10      | 37.0           | 6.92E-10      | 52.0   | 2.77E-09      |
| 27     | 8.12E-11                   | 59     | 1.72E-09      | 23.0   | 1.19E-10      | 37.5           | 7.26E-10      | 52.5   | 2.89E-09      |
| 28     | 9.28E-11                   | 60     | 1.82E-09      | 23.5   | 1.30E-10      | 38.0           | 7.61E-10      | 53.0   | 3.01E-09      |
| 29     | 1.05E-10                   | 61     | 1.92E-09      | 24.0   | 1.41E-10      | 38.5           | 8.01E-10      | 53.5   | 3.12E-09      |
| 30     | 1.19E-10                   | 62     | 2.01E-09      | 24.5   | 1.53E-10      | 39.0           | 8.40E-10      | 54.0   | 3.24E-09      |
| 31     | 1.35E-10                   | 63     | 2.09E-09      | 25.0   | 1.64E-10      | 39.5           | 8.83E-10      | 54.5   | 3.37E-09      |
| 32     | 1.53E-10                   | 64     | 2.14E-09      | 25.0   | 1.67E-10      | 40.0           | 9.26E-10      | 55.0   | 3.49E-09      |
| 33     | 1.73E-10                   |        |               | 25.5   | 1.80E-10      | 40.0           | 9.85E-10      | 55.5   | 3.62E-09      |
| 34     | 1.94E-10                   |        |               | 26.0   | 1.90E-10      | 40.5           | 1.02E-09      | 56.0   | 3.75E-09      |
| 35     | 2.16E-10                   |        |               | 26.5   | 2.04E-10      | 41.0           | 1.06E-09      | 56.5   | 3.88E-09      |
| 36     | 2.42E-10                   |        |               | 27.0   | 2.17E-10      | 41.5           | 1.11E-09      | 57.0   | 4.02E-09      |
| 37     | 2.70E-10                   |        |               | 27.5   | 2.33E-10      | 42.0           | 1.15E-09      | 57.5   | 4.15E-09      |
| 38     | 3.00E-10                   |        |               | 28.0   | 2.50E-10      | 42.5           | 1.20E-09      | 58.0   | 4.28E-09      |
| 39     | 3.31E-10                   |        |               | 28.0   | 2.48E-10      | 43.0           | 1.25E-09      | 58.5   | 4.42E-09      |
| 40     | 3.65E-10                   |        |               | 28.5   | 2.64E-10      | 43.5           | 1.31E-09      | 59.0   | 4.55E-09      |
| 41     | 4.22E-10                   |        |               | 29.0   | 2.83E-10      | 44.0           | 1.37E-09      | 59.5   | 4.68E-09      |
| 42     | 4.65E-10                   |        |               | 29.5   | 3.04E-10      | 44.5           | 1.43E-09      | 60.0   | 4.80E-09      |
| 43     | 5.09E-10                   |        |               | 30.0   | 3.23E-10      | 45.0           | 1.49E-09      | 60.5   | 4.92E-09      |
| 44     | 5.46E-10                   |        |               | 30.5   | 3.43E-10      | 45.5           | 1.56E-09      | 61.0   | 5.01E-09      |
| 45     | 5.87E-10                   |        |               | 31.0   | 3.64E-10      | 46.0           | 1.63E-09      | 61.5   | 5.08E-09      |
| 46     | 6.40E-10                   |        |               | 31.5   | 3.84E-10      | 46.5           | 1.71E-09      | 62.0   | 5.19E-09      |
| 47     | 6.98E-10                   |        |               | 32.0   | 4.06E-10      | 47.0           | 1.79E-09      | 62.5   | 5.29E-09      |
| 48     | 7.58E-10                   |        |               | 32.5   | 4.29E-10      | 47.5           | 1.87E-09      | 63.0   | 5.38E-09      |
| 49     | 8.21E-10                   |        |               | 33.0   | 4.54E-10      | 48.0           | 1.95E-09      | 63.5   | 5.43E-09      |
| 50     | 8.89E-10                   |        |               | 33.5   | 4.80E-10      | 48.5           | 2.04E-09      | 64.0   | 5.49E-09      |
| 51     | 9.58E-10                   |        |               | 34.0   | 5.06E-10      | 49.0           | 2.13E-09      | 64.5   | 5.52E-09      |
| 52     | 1.04E-09                   |        |               | 34.5   | 5.35E-10      | 49.5           | 2.23E-09      | 65.0   | 5.51E-09      |

SM TABLE III. Sublimation rate constants calculated from TGA measurements

#### 4. Verification of the surface concentration of RDX by HPLC.

The total mass deposited onto the substrates was rinsed with acetonitrile, and the concentration was calculated from a High-Performance Liquid Chromatography (HPLC) calibration curve. The analysis was carried out using an Agilent C18 column (150 mm; 4.6 mm; 5 mm) and UV-Vis detector with wavelength set at 254 nm. A methanol/water (50/50 v/v) solvent mix was used as the mobile phase. The separation was run in the isocratic mode at 40 °C with a 1.0 mL/min flow rate and an injected volume of 10 mL.



SM Fig. 8. Calibration curve for RDX by HPLC.

## 5. Kinetic and thermodynamic parameters for the various HEM studied.

SM TABLE IV. Kinetics parameters and thermodynamic functions calculated from GAP, TGA, and TPM

| ТАТР  |                          |                         |                               |                        |                                       |                |  |  |
|-------|--------------------------|-------------------------|-------------------------------|------------------------|---------------------------------------|----------------|--|--|
|       | Temp. Range /            | а                       | b                             | С                      |                                       |                |  |  |
| Ехр   | T <sub>mean</sub> (°C)   | J/mol                   | J/mol∙K                       | J/mol·K                | kJ/mol                                | R <sup>2</sup> |  |  |
| GAP   | 14-33 / 20.9             | 27±2x10 <sup>5</sup>    | 8643±857                      | 58±6x10 <sup>3</sup>   | $\Delta_{sub}$ U<br>140±14            | 0.997          |  |  |
| TGA_1 | 20-65 / 37.5             | 46±3x10 <sup>4</sup>    | -1211±88                      | -82±6x10 <sup>2</sup>  | <b>∆<sub>sub</sub>H</b><br>83±5       | 0.999          |  |  |
| TGA_2 | 22-64 / 44.0             | 45±1x10 <sup>4</sup>    | -1500±36                      | -102±2x10 <sup>2</sup> | Δ <sub>sub</sub> Η<br>87±3            | 1.000          |  |  |
| TGA_3 | 21-63 / 37.8             | 47±1x10 <sup>4</sup>    | -1243±30                      | -85±2x10 <sup>2</sup>  | <mark>∆<sub>sub</sub>H</mark><br>86±2 | 1.000          |  |  |
|       |                          |                         | 2,4-DN1                       | г                      |                                       |                |  |  |
|       | Temp. Range /            | Slope                   | I                             | ntercept               |                                       |                |  |  |
| Ехр   | T <sub>mean</sub> (°C)   | J/mol                   |                               | J/mol·K                | kJ/mol                                | R <sup>2</sup> |  |  |
| GAP   | 23-35 / 36.0             | (91±5)x10 <sup>3</sup>  | 3                             | -249±17                | <b>∆<sub>sub</sub>U</b><br>91±5       | 0.986          |  |  |
| TGA   | 25-75 / 46.6             | (94±2)x10 <sup>3</sup>  | (94±2)x10 <sup>3</sup> -114±4 |                        |                                       | 0.998          |  |  |
|       | TNT                      |                         |                               |                        |                                       |                |  |  |
|       | Temp.                    |                         |                               |                        |                                       |                |  |  |
|       | Range/T <sub>mean</sub>  | Slope                   | I                             | ntercept               | _                                     | 2              |  |  |
| Ехр   | (°C)                     | J/mol                   |                               | J/mol·K                | kJ/mol                                | R <sup>2</sup> |  |  |
| GAP   | 40-70 / 55.0             | (108±6)x10              | ) <sup>3</sup>                | -274±21                | Δ <sub>sub</sub> U<br>108±6           | 0.998          |  |  |
| TGA   | 40-65 / 52.5             | (95±3)x10 <sup>3</sup>  | 3                             | -92±10                 | <b>∆<sub>sub</sub>Н</b><br>95±3       | 0.997          |  |  |
|       |                          |                         | RDX                           |                        |                                       |                |  |  |
|       | Temp.                    |                         |                               |                        |                                       |                |  |  |
|       | Range/T <sub>mean</sub>  | Slope                   | I                             | ntercept               |                                       | 2              |  |  |
| Ехр   | (°C)                     | J/mol                   |                               | J/mol·K                | kJ/mol                                | R <sup>2</sup> |  |  |
| GAP   | 22-80 / 56.2             | (169±5)×10              | ) <sup>3</sup>                | -427±14                | <b>ΔU</b><br>169±5                    | 0.998          |  |  |
| TGA   | 55-125 / 90.0            | (101±3)x10              | ) <sup>3</sup>                | -65±7                  | 99±3                                  | 0.987          |  |  |
| ТРМ   | β <sub>h</sub><br>°C/min | T <sub>Max</sub><br>°C  |                               |                        | ∆ <sub>int</sub> U<br>kJ/mol          |                |  |  |
|       | 5<br>10<br>20            | 117±2<br>142±3<br>200±3 | $\Delta_{int}$                | <b>U</b> 19            | 9±1                                   |                |  |  |

#### 6. GAP vs. GAO reflectance measurements for RDX.



SM Fig. 9. (a) Plot of absorbance vs. wavenumber for RDX in KBr from macro-FTIR; (b) plot of  $\Delta$ R/R vs. wavenumber of layers of RDX from GAP at 80 °C; (c) plot of  $\Delta$ R/R vs. wavenumber of layers of RDX from GAP to 25°C; (d) plot of  $\Delta$ R/R vs. wavenumber of layer of RDX from GAO to 25 °C; (e) Plot of  $\Delta$ R/R vs. wavenumber of SS substrate by GAO.

Figs. 9b and 9c show the differences between the observed GAP spectra of RDX at 85 °C (GAP\_85°C) and at 25 °C (GAP\_25°C). The band at 1218 cm<sup>-1</sup> (N-N stretching and ring stretching) has a higher intensity in the GAP\_25°C and GAO\_25°C than that of GAP\_85°C (see Fig. 9d). A signal assigned to the substrate was observed at 1690 cm<sup>-1,</sup> and it is persistent in the GAP and GAO spectra at ambient temperature. This interfering signal can be due to a vibrational IR signal of the substrate. Significant differences between GAP and GAO spectra were not found on the range 1000 to 1600 cm<sup>-1</sup>.

| S    | SM TABLE V. Signal to noise for GAP and GAO |     |         |     |  |  |  |  |  |  |
|------|---------------------------------------------|-----|---------|-----|--|--|--|--|--|--|
|      | GAP GAO                                     |     |         |     |  |  |  |  |  |  |
| Scan | noise                                       | SNR | noise   | SNR |  |  |  |  |  |  |
| 1    | 0.00069                                     | 24  | 0.00160 | 4   |  |  |  |  |  |  |
| 5    | 0.00025                                     | 28  | 0.00130 | 5   |  |  |  |  |  |  |
| 10   | 0.00020                                     | 35  | 0.00120 | 7   |  |  |  |  |  |  |
| 20   | 0.00019                                     | 36  | 0.00035 | 20  |  |  |  |  |  |  |
| 50   | 0.00019                                     | 37  | 0.00035 | 23  |  |  |  |  |  |  |
| 120  | 0.00019                                     | 38  | 0.00030 | 23  |  |  |  |  |  |  |

# 7. Comparison of signal-to-noise ratios for GAP and GAO measurements.

| ТАТР                            |                         |             |              |                 |                              |                                          |                             |                             |
|---------------------------------|-------------------------|-------------|--------------|-----------------|------------------------------|------------------------------------------|-----------------------------|-----------------------------|
|                                 | T <sub>mean</sub><br>°C | Range<br>°C | N of<br>T/°C | ∆Cp<br>kJ/mol∙K | ∆ <sub>sub</sub> H<br>kJ/mol | Prediction with mod<br>T <sub>mean</sub> |                             | odels to                    |
|                                 |                         |             |              |                 |                              | ∆ <sub>sub</sub> H<br>TGA_1              | ∆ <sub>sub</sub> H<br>TGA_2 | ∆ <sub>sub</sub> H<br>TGA_3 |
|                                 | 25.0                    |             |              |                 |                              | 99 ± 6                                   | 107 ± 2                     | 102 ± 2                     |
| GAP                             | 20.9                    | 14-33       | 19           | -8.6 ± 0.9      | 144 ± 14                     | -                                        | -                           | -                           |
| TGA_1                           | 37.5                    | 20- 65      | 14           | -1.21 ± 0.09    | 83 ± 5                       | -                                        | -                           | -                           |
| TGA_2                           | 44.0                    | 22- 64      | 42           | -1.50 ± 0.04    | 87 ± 2                       | -                                        | -                           | -                           |
| TGA_3                           | 37.8                    | 21-63       | 88           | -1.24 ± 0.03    | 85 ± 2                       | -                                        | -                           | -                           |
| Damour et al 2010               | 14.3                    | -3- 34      | 27           | $0.3 \pm 0.1$   | 86.2 ± 1                     | 111 ±<br>8*                              | 122 ± 3*                    | 114 ± 3*                    |
| Ramirez et al 2006              | 50                      | 25-75       | 7            | -0.75 ± 0.08    | 85.8                         | 72 ± 5                                   | 74 ± 2                      | 74 ± 2                      |
| Felix et al. 2011               | 50                      | 25-75       | 8            | -               | 72.1                         | 72 ± 5                                   | 74 ± 2                      | 74 ± 2                      |
| Oxley et al. 2005               | 40.0                    | 12- 58      | 6            | 1.5 ± 0.9       | 109                          | 80 ± 5                                   | 84 ± 1                      | 83 ± 2                      |
| Oxley et al. 2009               | 32.2                    | 15- 50      | 7            | 0.5 ± 0.6       | 73                           | 90 ± 6                                   | 96 ± 2                      | 93 ± 2                      |
| Dunayevskiy et al. 2007         | 0.0                     | -30- 30     | -            | -               | 81.3                         | 129 ±<br>10*                             | 144 ± 4*                    | 133 ± 4*                    |
| Espinosa-Fuentes et al.<br>2015 | 46                      | 22-70       | 32           | 1.5             | 103.8 ±<br>0.2               | 75 ± 5                                   | 78 ± 2                      | 78 ± 2                      |

# 8. Comparison of calculated $\Delta_{\text{sub}}\text{H}$ with literature values for TATP.

SM TABLE VI. Comparison of calculated Enthalpy of sublimation with literature values for

\* found by extrapolation

# 9. Equations

$$k = k^{0} \exp\left(-\frac{\Delta E}{R_{g}}\frac{1}{T}\right)$$

$$lnk = lnk^{0} - \frac{\Delta E}{R_{g}}\frac{1}{T}$$

$$\frac{\partial Lnk}{\partial\left(\frac{1}{T}\right)} = -\frac{\Delta E}{R_{g}}$$

$$dH = dU + d(pV) = dU + pdV + Vdp \approx \Delta H = \Delta U + p\Delta V$$

$$\Delta V = V_{gas} - V_{solid} \approx V_{gas}$$

$$\Delta H = \Delta U + pV_{gas} = \Delta U + R_{g}T$$

$$\Delta H = -R_{g}\left(\frac{\partial Lnk}{\partial\left(\frac{1}{T}\right)} + T\right)$$

#### 10. Calculation of Uncertainties of the enthalpy in the media temperature

Uncertainties ( $\sigma$ ) in  $\Delta H$  were calculated,

$$\sigma_y^2 = \sigma_{yI}^2 + \sigma_{yD}^2$$
  
$$\sigma_y^2 = (\delta_T b)^2 + [(T - T_{mean})s_b]^2 + \left(\frac{s_r}{-R_g ln(\zeta)}\Delta H\right)^2 = \sigma_{\Delta H}^2$$

where  $\sigma_{yD}$  is a direct contribution from the model and  $\sigma_{yl}$  is an indirect contribution calculated from the propagation of uncertainties. $\delta_T$  is of the order of 0.001 K/T for TGA and 0.1 K/T for GAP, S<sub>b</sub> is the standard deviation of b,  $\sigma_{yD}$  is  $\Delta H_{mean}$  plus the standard error of the model divided by  $-R_g ln(\zeta)$ , where  $\zeta$  is k or v<sub>s</sub>.  $\sigma$  at media temperatures ( $\sigma\Delta H_{mean}$ ) can be obtained using:

$$\sigma_{\Delta H}^{2} = (\delta_{T}b)^{2} + \left(\frac{s_{r}}{-R_{g}ln(\zeta_{mean})}\Delta H_{mean}\right)^{2}$$

## 11.Size of droplets of metastable phase for TNT and 2,4 DNT

![](_page_14_Figure_1.jpeg)

SM Fig. 10. The plot of droplet size vs. surface concentration for TNT. The figure shows the standard deviation, (black line), first and third quartile (orange), and quadratic fit (dotted line).

![](_page_15_Figure_0.jpeg)

SM Fig. 11. The plot of droplet size vs. surface concentration for 2,4 DNT. The figure shows the standard deviation, (black), first and third quartile (orange) and quadratic fit (dotted line).

![](_page_16_Figure_0.jpeg)

## 12. Sublimation experiment for benzoic acid by TGA instrument

SM Fig. 12. Arrhenius plots of TGA data used to obtain the sublimation rates for Benzoic acid.