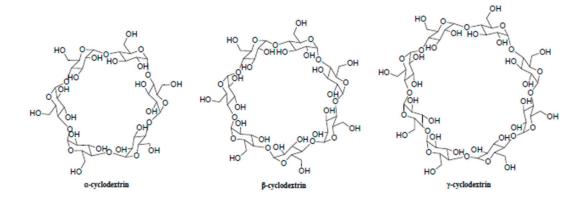
Supplementary Materials


Development and Evaluation of a Novel SPME GC-MS Method for Determining the Retention of Volatile Phenols by Cyclodextrin in Model Wine

Chao Dang 1,2, Kerry L. Wilkinson 1,2,*, Vladimir Jiranek 1,2 and Dennis K. Taylor 1,2

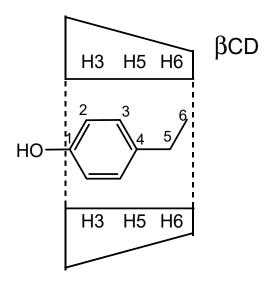

- ¹ The University of Adelaide, School of Agriculture, Food and Wine, PMB 1, Glen Osmond, SA, 5064, Australia; chao.dang@adelaide.edu.au (C.D.), vladimir.jiranek@adelaide.edu.au (V.J.), dennis.taylor@adelaide.edu.au (D.K.T.)
- ² The Australian Research Council Training Centre for Innovative Wine Production, PMB 1, Glen Osmond, SA, 5064, Australia
- * Correspondence: kerry.wilkinson@adelaide.edu.au (K.L.W.); Tel.: +61-8-8313-7360

Table S1. Calibration curve using conventional HS-SPME GC-MS method.

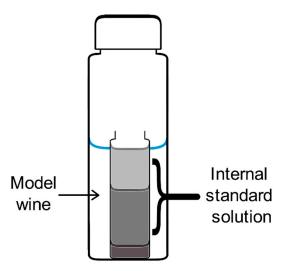

	Guaiacol	4-Methylguaiacol	4-Ethylguaiacol
Slope	0.980	1.014	1.328
Intercept	0.003	0.007	0.006
\mathbb{R}^2	0.9997	0.9996	0.9996

Figure S1. Structures of *α*-CD, *β*-CD and *γ*-CD.

Figure S2. Encapsulation of 4-ethylphenol within β -CD.

Figure S3. Diagram of headspace vial containing model wine sample, with different volumes of internal standard in the glass ampoule (as indicated by shading).