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Abstract: A rapid and accurate determination method for total phenolic content is of great importance
for controlling the quality of wine samples. A promising potentiometric detection approach, based
on permanganate ion fluxes across ion-selective electrode membranes, is fabricated for measuring the
total phenolic content of wine. The results show that the presence of phenols, such as gallic acid,
leads to a potential increase for the potentiometric sensor. Additionally, the present sensor exhibits a
linear potential response with the concentration range from 0.05 to 3.0 g/L with a detection limit of
6.6 mg/L calculated using gallic acid. These sensors also exhibit a fast response time, an acceptable
reproducibility and long-term stability. These results indicate that the proposed potentiometric
sensor can be a promising and reliable tool for the rapid determination of total phenolic content in
wine samples.
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1. Introduction

Worldwide, wine consumption decreases the risk of cardiovascular disease and some cancers [1].
There is evidence that the presence of different phenolic substances, specifically those richly present in
wine, might contribute to these biological effects on human health and disease prevention [2,3]. Aside
from the well-recognized activity, phenolic compounds also contribute to sensorial characteristics of
wines and the total phenolic content is also a worldwide standardized indicator to estimate the state of
the quality of wine [4], therefore, rapid and accurate determination of total phenolic content in wine is
of great importance for controlling sensory attributes and market value or quality.

Classical determination methods for total phenolic content in the laboratory rely on the
Folin–Ciocalteu (FC) method, based on spectral detection. While this is a convenient and simple
analytical technique for the total phenolic content in wine, it suffers from the limitations of not having
an environmentally friendly reagent and a long processing time. Currently, a series of analytical
methodologies based on infrared spectroscopy (IR), a chemiluminescence system and nuclear magnetic
resonance (NMR) spectral have been developed for total phenolic content detection in a variety
of samples [5–8]. Obviously, these tests cannot be performed easily worldwide due to their high
cost. Mass spectrometric platforms targeting total phenols represent a burgeoning technology that
facilitate the method development of qualitative and quantitative analysis with higher accuracy and a
lower detection limit [9,10], however, these mass spectrometry-based platforms also have significant
limitations, including a requirement for tedious sample pretreatment and sophisticated instruments,
creating a high cost per sample. To compare, electrochemical sensors have been used as particularly
attractive tools for total phenolic content analysis due to their high sensitivity, low manufacturing cost,
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fast response and ease of operation [11–13]. Electrochemical biosensors, based on the immobilization
of laccase coupled with voltammetry, have been constructed successfully for rapid detection of total
phenols [13,14], for example. Immobilization of enzymes, such as laccase, on electrodes requires
complicated procedures, however, and is still a key challenge for operators. An alternative and highly
successful approach, ion selective electrode-based potentiometry, has shown to be promising for
trace-level measurements in food samples. A potentiometric methodology was fabricated for the
determination of mono-phenols based on molecularly imprinted nanobeads as ionophores [15,16].
Unfortunately, the developed potentiometric strategies were not suitable for the determination of total
phenol content. Recently, a label-free potentiometric biosensor based on solid-contact was fabricated for
the determination of total phenols in honey and propolis, and the transducer-containing two layers was
manufactured using the covalent bond method. Obviously, this platform also has significant limitations,
including a requirement for tedious and complicated procedures and a high manufacturing cost [11].
Additionally, an ion-selective electrode was demonstrated for the assessment of the total content of
polyphenolic antioxidants based on the use of CuII-neocuproin/2,6-dichlorophenolindo-phenolate [17],
however, this method, with high detection limits of 6.3 to 9.2 g/mL, is not suitable for application in
samples with a lower total phenol content.

Recently, a promising potentiometric detection approach based on ion fluxes across ion-selective
electrode membranes has been found useful analytically for measuring some organic analytes which
can decrease the concentrations of the indicator ions released at the membrane boundary via redox,
complexing or enzyme-catalyzed reactions [18–20]. Currently, the potential change of the electrode is
related to the concentration of the measured substance. Potentiometric analytical methods based on
a permanganate release system, for example, have been developed for potentiometric detection of
reductants such as dopamine and ascorbate [21,22]. Nevertheless, intense research efforts still focus
on their new applications and, herein, ions for the evaluation of the total phenolic content in wine is
the emphasis. Analysis conditions such as membrane composition, inner filling solution and pH are
optimized. The results are compared with the data measured by the Folin–Ciocalteu (FC) method.

2. Results

2.1. Principle of Potential Response

Potassium permanganate, KMnO4, was found to be very lipophilic and showed a high anion
response on the membrane electrode, based on the anion exchanger TDMAC. First of all, the potential
response of MnO4

− on the fabricated electrode was investigated. Figure 1 illustrates, the proposed
electrode shows a good Nernstian response of 58.34 mV/dec in the range from 10−5 to 10−1 M KMnO4.
Gallic acid was chosen as a model of phenolic compounds of wine in this platform, since it was
revealed to be one of the most abundant phenolic compounds in wine. Additionally, many methods
developed for the determination of the total phenolic content were expressed as amounts of gallic
acid in wine samples. Permanganate ion was used as the indicator ion for sensitive potentiometric
detection. Illustrated in Scheme 1, inner permanganate ions of the indicator electrode accumulated at
the sample-membrane phase boundary across a polymeric membrane using steady-state zero-current
ion fluxes [18,23,24]. The presence of phenols in the sample solution, such as gallic acid, induced redox
action and depletion of permanganate ions at the boundary of the electrode which led to a substantial
charge change of the membrane-sample boundary and, therefore, a potential increase. The resultant
potential changes were utilized for the determination of total phenolic content in wine.
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Figure 1. Potentiometric response of permanganate ions of selective electrodes (10 mM of NaCl was 
used as the inner filling solution and the electrode was conditioned overnight in 10−4 M KMnO4 before 
measurements). 

 
Scheme 1. Schematic illustrations of potentiometric detection of total phenolic compounds. 

2.2. Optimization of Analysis Conditions 

2.1.1. Membrane Composition 

Lipophilic anion-exchangers such as tridodecylmethylammonium chloride (TDMAC) play a key 
role as added components of anion-membranes. They have been found to be responsible for 
extracting the analyte anions such as heparin polyion from the sample to the membrane [25]. 
Additionally, lipophilic mobile anion-exchanger sites of TDMAC play a key role as added 
components of anion-selective membranes. Their main function is to render the ion-selective 
membrane permselective, to optimize sensing selectivity and to reduce the bulk membrane 
impedance [26]. Membranes doped with different mass percentages of TDMAC were evaluated in 
that regard. Figure 2 shows, after gallic acid was added into the solution, the electrode exhibited 
larger potential changes when increasing the amount of TDMAC, up to 9.0%, which was probably 
due to an increase in the number of permanganate ions at the sample-membrane phase boundary. A 
further increase in the amount of TDMAC, however, would not improve the sensor’s sensitivity 
significantly. Thus, 9.0% was selected as the optimum. 
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Scheme 1. Schematic illustrations of potentiometric detection of total phenolic compounds.

2.2. Optimization of Analysis Conditions

2.2.1. Membrane Composition

Lipophilic anion-exchangers such as tridodecylmethylammonium chloride (TDMAC) play a
key role as added components of anion-membranes. They have been found to be responsible
for extracting the analyte anions such as heparin polyion from the sample to the membrane [25].
Additionally, lipophilic mobile anion-exchanger sites of TDMAC play a key role as added components of
anion-selective membranes. Their main function is to render the ion-selective membrane permselective,
to optimize sensing selectivity and to reduce the bulk membrane impedance [26]. Membranes doped
with different mass percentages of TDMAC were evaluated in that regard. Figure 2 shows, after gallic
acid was added into the solution, the electrode exhibited larger potential changes when increasing the
amount of TDMAC, up to 9.0%, which was probably due to an increase in the number of permanganate
ions at the sample-membrane phase boundary. A further increase in the amount of TDMAC, however,
would not improve the sensor’s sensitivity significantly. Thus, 9.0% was selected as the optimum.
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Figure 2. The effect of the amount of TDMAC on the potentiometric response of permanganate ions
based membrane electrode (the concentration of gallic acid was fixed at 1.7 g/L).

2.2.2. Inner Filling Solution

Recently, it has been realized fully that minor ionic fluxes in certain concentration ranges of
the inner solution have an important role in determining the potentiometric response [27,28]. The
effect of indicator permanganate ions on the detection sensitivity was investigated here and the result
is illustrated in Figure 3. The concentration of inner permanganate ions was varied from 10−3 to
10−1 M, while that of gallic acid was fixed at 1.7 g/L. The electrode with a higher concentration of inner
permanganate ions provided larger potential changes, as expected. Clearly, an electrode with inner
permanganate ions at 10−1 M shows the largest potential changes of ~18 mV. It is well known that
a higher concentration of inner filling solution induces the larger ion fluxes, which can facilitate the
accumulation of permanganate ions at the boundary of the electrode membrane, thus causing higher
potential responses. It might be concluded, therefore, that a concentration of inner permanganate ions
at 10−1 M is sufficient for sensitive determination of the total phenolic content.
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2.2.3. pH

It is well known that the pH of a solution has a significant effect on the oxidation capacity of
the oxidant and reducibility of the reductant, which will certainly induce potential changes of the
electrode, based on redox reaction. Considering this fact, the influence of the pH of the solution on the
potential response after redox reaction between permanganate ions and gallic acid was investigated.
Considering the pH values of wine at the range of 3.0–4.0, the initial pH of the model wine was
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about 2.52 and adjusted to this range by use of 1.0 M NaOH. The results are presented in Figure 4.
It can be seen clearly that the potential changes remained constant in the pH range of 3.0–4.0 when
the concentration of gallic acid was varied from 0.17 to 1.7 g/L. These results indicate that the redox
reaction between permanganate ions and gallic acid was not significantly influenced by pH and varied
at the range of 3–4. A pH value of 3.6 was chosen for consistency of the proposed sensor.
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2.3. Characteristics of the Proposed Potentiometric Sensor

The potential response curve of the proposed potentiometric sensor is shown in Figure 5. These
data were obtained by adding standard solutions of 0.1 mL gallic acid to the test solution of 9.9 mL
model wine solution. Illustrated in Figure 5, the potential response increased gradually with increasing
concentrations of gallic acid, and detailed analysis of the experimental results indicated potential
changes were found to be linear to the concentration of gallic acid in the range of 0.05 g/L to 3.0 g/L.
This is mainly because the potential response is based on permanganate at a lower concentration and
the response changes are proportional to the concentration of gallic acid, which is similar to other
research work [22]. The total phenolic content was calculated by the regression equation y = (9.0748 ±
0.5457)x + (1.5958 ± 0.3225) with correlation coefficients R2 0.9954. The detection limit is given by the
equation CL = 3sbl/S [29], where sbl is the standard deviation of the blank measurements (sbl = 0.02 mV)
and S is the sensitivity of the calibration graph (S = 9.0748 mV/(g/L)). The detect limit of gallic acid was
calculated to be 6.6 mg/L, which was satisfying for application of the proposed sensor to determine the
total phenols in wine samples. Moreover, the proposed potentiometric sensor responded rapidly to the
presence of gallic acid and achieved a steady potential response within less than 100 s.
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A series of five potentiometric sensor measurements of 10 mM gallic acid were utilized for
evaluating the detection precision. This series yielded reproducible potential changes with a relative
standard deviation (RSD) of 6.4%, which confirmed an acceptable reproducibility of the fabrication
sensor for analysis of real samples. The stability of the potentiometric system was also studied when
these sensors were stored in a dry state at room temperature for a few days, and the results indicated
that no significant potential change in sensitivity was observed for 20 days.

2.4. Analytical Application

The applicability of the proposed potentiometric sensor also was evaluated by determining the
total phenolic content in six wine samples selected from the local market. A statistical comparison of
the results from this sensor and the Folin–Ciocalteu method is presented in Figure 6. The concentration
of the total phenolic compounds in the collected wine samples varied from 0.121 g/L~2.294 g/L.
Additionally, the total phenolic content assessed by the proposed potentiometric sensor was higher
compared to the data obtained by the Folin–Ciocalteu method which indicates that the proposed
method overestimates the real phenolic content. This is mainly because the potentiometric sensor
based on permanganate ion as an indicator also determines other reducing nonphenolic substances
(e.g., sugars and ascorbic acid). Satisfactorily, the values of all test wine samples obtained from the
two methods correlated highly and the Pearson correlation coefficient r was 0.8535. These results
indicate that the proposed potentiometric sensor can be a promising and reliable tool for the rapid
determination of total phenolic content in wine samples.
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3. Materials and Methods

3.1. Reagents and Materials

High molecular weight poly(vinyl chloride) (PVC), 2-nitrophenyl octyl ether (o-NPOE),
tridodecylmethylammonium chloride (TDMAC), tetrahydrofuran (THF) and gallic acid (GA) were
purchased from Sigma–Aldrich (St. Louis, MO, USA). Potassium permanganate, tartaric acid, sodium
tartrate, sodium chloride, lithium acetate and ethanol were obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). A stock solution of 0.1 M for gallic acid was prepared with the model wine
solution (12% vol ethanol, 4 g/L tartaric acid, pH 3.6). A 0.1 M Potassium permanganate was prepared
daily and stored in the dark. Other aqueous solutions were prepared by dissolving the appropriate
salts in the freshly de-ionized water (18.2 MΩ cm specific resistance) obtained with a Pall Cascada
laboratory water system.
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3.2. Potentiometric Sensor Preparation

The ionophore-free membrane of ~210 µm thickness was prepared by dissolving 200 mg of 9 wt.%
TDMAC, 31 wt.% PVC and 60 wt.% o-NPOE in 2.0 mL of THF. The membrane cocktail was degassed
by sonication for 10 min before use and then poured into a glass ring (26 mm i.d.) fixed on a glass
plate. Subsequently, these were completely air-dried. Then, 6-mm-diameter membrane disks were cut
from the membrane and glued to a plasticized PVC tube with THF/PVC slurry. 10−1 M KMnO4 was
used as the inner filling solution for each electrode. Prior to measurements, all the electrodes were
conditioned overnight in 10 mM of NaCl.

3.3. Potentiometric Measurements

All electromotive force measurements (EMF) were carried out at 25 ◦C using a CHI 760D
electrochemical workstation (Shanghai, China) in the galvanic cell: SCE/1 M LiOAC/sample solution/ISE
membrane/inner filling solution/Ag, AgCl. The open circuit potential (OCP) of the MnO4

− based
potentiometric sensor recorded the model wine solution used as the baseline, then, 0.1 mL of gallic acid
at different concentrations was added into 9.9 mL of the model wine solution and the potential response
was recorded. The potential change at 100 s was used for quantification of total phenolic contents.

3.4. Application of Proposed Potentiometric Sensor

The wine samples were collected from local markets and their total phenolic contents were
determined by the present potentiometric sensor in the same manner that 0.1 mL of wine was added
into 9.9 mL of the model wine solution. Total phenolic content concentrations were calibrated from the
standard curve between gallic acid concentration and MnO4

− potential response.

4. Conclusions

A simple and robust potentiometric approach for determining the total phenolic content has been
successfully proposed. The quantitative analysis method is based on the potential changes induced by
redox action between permanganate ion fluxes across the polymeric membrane and phenols such as
gallic acid in the sample solution. The proposed electrodes demonstrate to be linear to the concentration
of gallic acid in the range of 0.05 g/L to 3.0 g/L and the detection limit is 6.6 mg/L. Additionally,
these also exhibit a fast response time, an acceptable reproducibility and long-term stability. Note
that, although the total phenolic content assessed by the proposed potentiometric sensor was higher
compared to the data obtained by the Folin–Ciocalteu method, the values from the two methods
correlate highly and the Pearson correlation coefficient r is 0.8535. Therefore, this new approach might
pave the way to detect and quantify total phenolic content in other food analysis applications.
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