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Abstract: The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as
failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets.
A very important issue is the identification of substandard tablets that do not contain the nominal
amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine
products and products without any active ingredient or with a false active ingredient. This work
presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and
quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet
in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet®

and self-made model tablets, which were used as examples of counterfeits and substandard. Partial
least-squares regression modeling and density functional theory calculations were carried out for
quantification of lumefantrine and artemether and for spectral band assignment. The most prominent
differentiating vibrational signatures of the APIs were presented.

Keywords: Raman spectroscopy; hyperspectral imaging; analytical spectroscopy; counterfeit and
substandard pharmaceuticals; DFT calculations; chemometrics; PLSR; API; lumefantrine; artemether;
antimalarial tablets

1. Introduction

Confidential reports to the World Health Organization (WHO) in the last few years from
20 countries relating to counterfeit drugs revealed that the three highest incidences of fake products
were those without active pharmaceutical ingredients (about 30%), followed by incorrect quantities
of active ingredients and products with wrong ingredients (about 20% each) [1]. It is estimated that
every 10th pharmaceutical product in low- and middle-income countries is substandard or falsified
(SF). Antimalarials are the most frequently falsified medicines, representing about 20% of the overall
SF products reported in 2017 [2]. Out of the 12 major antimalarial drugs used in the world today, 8 are
regularly counterfeited, and more than a third of antimalarial drugs available in sub-Saharan Africa
and southeast Asia are reported to be counterfeit or substandard [3].

A report from 2014 [4] showed that among the over 9000 antimalarials sampled, nearly every
third failed chemical or packaging quality tests, from which about 40% were classified as counterfeit or
substandard and up to 20 wrong active ingredients were found in falsified antimalarials [4].

In 2012 and 2013, one of the most commonly used first-line antimalarials, Riamet®, with active
pharmaceutical ingredients (APIs) lumefantrine and artemether (also commercialized as Coartem®),
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has been involved in one of the greatest counterfeit scandals of our time. The producing company,
Novartis, also officially informed customers of the potential counterfeit “dummy tablets”—without
active ingredients—saying “counterfeiting medicines is a serious crime against patients who rely on
safe and quality-assured medicines to prevent and cure disease, alleviate pain and save lives” and
“reports of adverse reactions [ . . . ] could materially affect patient confidence in the authentic product,
and harm the business of companies such as ours” [5].

Since developing countries are especially concerned of falsified antimalarials, there is an urgent
need for low-cost, low-maintenance, easy-to-use, and rapid analytical methods to combat the counterfeit
and substandard problem [2]. The Food and Drug Administration (FDA) developed a handheld
device named CD-3 [6], which compares scanned images with a stored image of the original product,
picking up minute differences in the packaging, pill color, or shape. Although this method is quick and
helps to recognize fake packing, it is not chemically selective and does not detect false APIs or false
concentrations. Standard techniques, such as high-performance liquid chromatography (HPLC) and
mass spectrometry, are highly accurate and reliable, but these methods are strictly lab-based, expensive,
time-consuming, and require trained personal. For a quick check, the pH and crystal morphology of
the products can be analyzed [3], or a colorimetric test using sulfuric and acetic acid can be applied [7].
This method is based on a color-coded reaction for qualification coupled with color intensity analysis
to determine the concentrations of the APIs [7] but chemical selectivity is not ensured.

Raman spectroscopic methods are based on intrinsic molecular vibrations [8–14] and provide
an extremely high chemical selectivity [15–22]. The technique is direct and non-invasive [23–25],
can be miniaturized, and is also available for on-site applications [26–28]. Hence, Raman
spectroscopy has already paved its way in counterfeit detection [29–33]. Handheld Raman devices
are commercially available from Rigaku Raman Technologies [29], Ahura Scientific, Inc. [30], and
B&W Tek, Inc. [32], and all use 785-nm lasers for excitation. These systems are applicable for solid
dosage forms. Still, they are not fully reliable for substandard medicine detection and are used as
semi-quantitative methods [32]. Another approach for solid pharmaceutical analysis is spatial offset
Raman spectroscopy (SORS), where an excitation wavelength also in the near-infrared (NIR) range is
applied (824 nm), focusing on the suppression of signals from colored tablets and capsules’ coating [31].
Recently, a line-scanning Raman imaging technique with an excitation wavelength of 785 nm was also
reported for API quantification [33].

In this work, we present a proof-of-principle study using fiber-array based Raman spectroscopy [34]
with an excitation wavelength in the visible range (532 nm) for multicomponent concentration analysis
and counterfeit testing of the antimalarial tablet Riamet®.

Our method allows us to reliably qualify and quantify the active ingredients lumefantrine and
artemether in tablets without dissolving them, as it is done for the standard HPLC analysis. By using an
8 × 8 fiber array, 64 spectra can be collected simultaneously, thus analyzing a larger area of the tablets
is possible with only one measurement in a time-efficient way. This advantage is of great importance,
as pharmaceutical samples are often heterogeneous. By illuminating the sample surface with a bigger
field-of-view (FOV) instead of a mere spot, variations of the spatial concentration distribution can be
visualized. The fiber array imaging setup presented here operates with an excitation wavelength of λ
= 532 nm, thus the Raman scattering intensity is enhanced in comparison to excitation wavelengths in
the NIR according to Equation (1), where N is the number of scatterers, I0 is the laser intensity, ν0 is the
frequency of the excitation laser, and α is the polarizability of the molecule. This offers the chance to
quantify substandard drugs with lower amounts of API.

ISTOKES ∝ N·I0·(ν0 − νr)
4
·|α|2. (1)

2. Results and Discussion

This work reports the simultaneous qualification and quantification of two APIs in a pharmaceutical
tablet by means of fiber array-based hyperspectral Raman imaging for the first time. First, the Raman
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spectra of the pure tablet ingredients, lumefantrine, artemether, and hypromellose, were acquired
(Figure 1). The vibrational band assignments of the active ingredients were performed based on density
functional theory (DFT) calculations and are summarized in Table 1. A comparison of the calculated
Raman spectra with the experimentally acquired FT-Raman spectra confirmed a very good agreement
(Figure S1). The characteristic Raman bands of lumefantrine were assigned to the vibrational modes
from the benzene ring stretching (L3), C=C stretching (L4), and CH deformational vibrations (L1, L2).
The dominant Raman bands of artemether were mostly assigned to different CH vibrations (A1—CH3

wagging, A2—asymmetric stretching of CH2 combined with slight CH-stretching, A3—asymmetric
CH2 stretching). The latter ones overlap with the Raman modes of the excipient hypromellose.
The quantification of artemether in the presence of hypromellose is therefore challenging. To qualify
and quantify the APIs lumefantrine and artemether based on the Raman spectra of the tablets in a
reliable way, it is necessary to apply multivariate data analysis approaches. A very robust quantitative
chemometric method is partial least squares regression (PLSR).
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Figure 1. Raman spectra of the active pharmaceutical ingredients lumefantrine (A) and artemether (B),
as well as the excipient hypromellose (C), with an excitation wavelength of λ = 532 nm. The spectra of
artemether and hypromellose were scaled with a factor of five for better visibility. The band assignment
of the prominent Raman bands A1–A3 and L1–L4 and their spectral positions are listed in Table 1.
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Table 1. Band assignment of the prominent Raman peaks of lumefantrine and artemether.

Lumefantrine Artemether

Peak Position/cm−1 Peak Position/cm−1

Identification Measured
532 nm

Measured
FT-Raman Calculated * Band Assignment Identification Measured

532 nm
Measured
FT-Raman Calculated * Band Assignment

L1 865 876 875 δCH +ωCH A1 1442 1454 1455 δsCH3
L2 1180 1172 1170 δCH A2 2872 2873 2874 νasCH2 (+ νCH)
L3 1580 1589 1587 νb + δCH A3 2940 2937 2937 νasCH2
L4 1623 1635 1640 νC=C + δCH

νs: symmetric stretching vibration; νas: asymmetric stretching vibration; δ: scissoring; δas asymmetric bending vibration (twisting); δs: symmetric bending vibration (wagging); ω:
bending vibration; νb (benzene ring stretching); * For the band position assignments based on the DFT calculations different scaling factors were applied: 0.98 for the spectral regions below
2000 cm−1 and 0.95 for the region above 2000 cm−1.
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2.1. Development of Partial Least-Squares Regression Model for Ingredient Quantification

Spectral preprocessing is an essential part of modeling to increase the accuracy of the predictions by
reducing influences that account to noise-related signal contributions. First, a fiber intensity correction
was applied on the hyperspectral image data of the pure substances lumefantrine, artemether,
and the model tablets Lu100Ar100, Lu50Ar100, Lu100Ar0, and Lu0Ar100. Afterwards, unit vector
normalization was used to correct for Raman intensity variations due to technical effects like different
optical path lengths or sample density variations, etc. [35] followed by Savitzky–Golay smoothing.
Multiplicative scatter correction (MSC) was section-wise applied for an expanded baseline correction
to reduce Raman intensity variations due to different particle sizes [36].

PLSR combines a factorial analysis and a regression method. First, a PLSR calibration model
was built, considering simultaneously the responses from the analytes, such that the concentrations
exactly summed up to 100% (PLS2 approach). Afterwards, the PLSR calibration model was applied
to the hyperspectral images of the model tablets. For validation of the model, external validation
is preferred [37]. In case of hyperspectral images, it was possible to use one half of the image for
calibration and the other half for validation [38]. However, this approach was not beneficial in the
case of the tablets, as they are heterogeneous, and thus the spatial variations of concentrations did
not match the input reference values for the model development. Influences caused by outliers and
heterogeneities can be reduced by summarizing a single hyperspectral image as a median spectrum.
To build up a representative data set for calibration and validation, the Kennard–Stone algorithm was
applied in combination with a prior cross validation to remove outliers that would otherwise be taken
as extreme samples [39,40]. A good correlation between the predicted and reference data for both
the calibration (R2 = 0.9829 for lumefantrine and R2 = 0.9989 for artemether) and for the validation
PLSR-model (R2 = 0.9827 for lumefantrine and R2 = 0.9982 for artemether) was achieved. The predictive
error for the validation (RMSE) were 5.00 wt% for lumefantrine and 1.59 wt% for artemether.

2.2. Active Ingredient Concentration Prediction and Interpretation of the Spectral Information of the Model

The prediction model was applied to 30 hyperspectral images of each model tablet and for the
Riamet® tablet, respectively. The predicted concentrations and the corresponding error ranges are
listed in Table 2. The occurrence of outliers was reduced by using median-averaged images.

Table 2. Predictions of the lumefantrine and artemether concentrations in the model tablets and the
genuine tablet as follows: Lu100Ar100 (100% nominal lumefantrine and 100% artemether content,
corresponding to 60% lumefantrine and 10% artemether in the tablet), Lu50Ar100 (50% nominal
lumefantrine and 100% artemether content, corresponding to 30% lumefantrine and 10% artemether
in the tablet), Lu100Ar0 (100% nominal lumefantrine and 0% artemether content), and Lu0Ar100
(0% nominal lumefantrine and 100% artemether content) based on the partial least squares regression
(PLSR) model.

Tablet Lumefantrine Concentration/wt% Artemether Concentration/wt%

Expected Predicted ydev Expected Predicted ydev

Lu100Ar100 60.0 57.8 4.5 10.0 9.5 1.4
Lu50Ar100 30.0 44.1 6.1 10.0 9.1 1.9
Lu100Ar0 60.0 59.8 7.7 0.0 1.0 2.4
Lu0Ar100 0.0 1.2 6.3 10.0 11.4 2.0
Riamet® 50.0 44.1 14.6 8.3 5.6 4.7

ydev describes the deviation of the concentration prediction.

The predicted mean concentrations for lumefantrine were found around the expected 60 wt%,
(4.5–7.7 wt% deviation) (Table 2). For the substandard tablet Lu50Ar100 (containing 50% of the nominal
lumefantrine and 100% of the artemether content), the predicted mean concentration was above the
expected one, whereas for Riamet® it was 5 wt% below the expected value (Table 2). For artemether,
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the predicted concentrations fitted very well to the expected ones, deviating only 0.5 to 1.5 wt% in
the content of the model tablets and 2.7 wt% in the case of Riamet® (1.4–4.7 wt% deviation) (Table 2).
The United States Pharmacopoea requires at least 30 samples for the content uniformity test and allows
a maximum range of 25% for deviation from the reference value of a single dosage unit tested [41].
Thus, our observed deviations are well covered in this range. The observed deviations from the
expected values are partly caused by the inhomogeneous scattering effects of the surface, combined
with limited signal-to-noise ratios, and partly with the uncertainty of the regression model (RMSE of
prediction are 5.00 wt% for lumefantrine and 1.59 wt% for artemether). It should also be noted that
for the model, the target wt% values in the training group were defined based on the nominal added
amounts of the ingredients. This can also lead to some minor errors in the prediction. Lumefantrine
is a strong Raman scatterer, and the absolute Raman signal variations of the different concentrations
of lumefantrine are much higher than those of artemether. Hence, their simultaneous quantification
requires a compromise in the accuracy of the predictions.

For better prediction accuracy for the genuine tablet Riamet®, it would be beneficial to include
more excipients in the calibration and validation model. Only hypromellose was used as an excipient,
but microcrystalline cellulose, croscarmellose sodium, magnesium stearate, polysorbat 80, and highly
dispersed SiO2 were not considered in the calibration model. As the producing company does not
share such detailed information on the exact composition of the tablets, this aspect remains challenging.
However, the comparison between the Raman spectrum of the model tablet Lu100Ar100, containing
the full content of the APIs lumefantrine and artemether, with the spectrum of the genuine Riamet®

tablet show a high similarity (Figure 2) and justifies this approximation.
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Figure 2. Comparison of the Raman spectra of (A) the genuine Riamet® tablet and (B) the model tablet
Lu100Ar100 with the nominal 100% content of the active ingredients.

The most-representative Raman bands of the active ingredients correlate well to the large
regression coefficients (Figure 3A), which account for a high influence of the respective Raman signal
in the prediction. The prominent Raman bands of both lumefantrine and artemether correlate with
high positive coefficients of their own prediction factors (especially L3 and L4 and A2 and A3).
This underlines that the model differentiated correctly between the active ingredients based on the
respective spectral information.
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Figure 3. (A): Regression coefficients for the prediction of lumefantrine (green, lower part), artemether
(red, middle part), and hypromellose (blue, upper part). The coefficients from the first two factors
for each analyte correlate perfectly to the characteristic Raman bands of lumefantrine and artemether.
Strong contribution for the differentiation is attributed to the peaks L4, L3, A3, and A2. (B): Vibrational
assignment of the peaks that contribute most to the PLSR model: L3: benzene ring stretching + CH
scissoring, L4: C=C stretching vibration + CH scissoring, A2: asymmetric stretching vibration + slight
contribution from CH stretching, A4: asymmetric CH2 stretching vibration.

Hypromellose and artemether have their strongest Raman bands in the same spectral regions
between 2800 and 3000 cm−1 and some spectral overlap occurs. Nevertheless, the developed model
enabled the quantification of artemether in the presence of hypromellose. This is demonstrated by the
high negative coefficients for the prediction of hypromellose at the positions of A2 and A3 (Figure 3A).
For better visualization of the molecular information underneath the Raman bands, the vibrational
assignments of Raman bands L4, L3, A3, and A2 are depicted (Figure 3B). L3 is a combination of a
benzene ring stretching and CH scissoring of lumefantrine. L4 is a C=C stretching vibration combined
with a less-intensive CH scissoring of lumefantrine. A2 is an asymmetric CH2 stretching vibration with
a slight contribution from CH stretching of artemether, whereas A3 is an asymmetric CH2 stretching
vibration of artemether.

The predicted concentration values and the corresponding uncertainty ranges of Riamet® were
presented for 64 random regions from 30 hyperspectral images (Figure 4). Differences of the API
concentrations in different parts of the tablets were revealed. For lumefantrine, the local concentrations
varied between 21.8 and 54.5 wt% and for artemether between 4.1 and 15.2 wt%, most probably
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due to an inhomogeneous API distribution. The active ingredients in the model tablets were more
homogenously distributed (Figure 5). It is easily obvious that the model tablet with 50% of the nominal
lumefantrine and 100% of the artemether content (Figure 5A) has a lower lumefantrine content than
the one with a full nominal content (Lu100Ar100) (Figure 5B), as it was expected. This demonstrates
the suitability of the presented method to gain information about substandard tablets directly and
non-invasively (without dissolution). The concentrations varied on the spot level between 16.1 and
49.6 wt% in the substandard model Lu50Ar100, which corroborates the necessity of acquiring data over
numerous areas of pharmaceutical tablets. This can be done in a very time-efficient manner with the
presented fiber array-based Raman imaging technique, which allows the simultaneous measurement
of 64 sample spots with one measurement. Furthermore, local concentration variations can also be
easily visualized (Figure 5), which will be an extremely helpful ability in non-invasive quality control
of tablets.
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Figure 4. Predicted concentrations for 64 random spots from 30 regions (30 hyperspectral images) of
the three constituents in Riamet®: lumefantrine (green line, lower graph), artemether (red line, middle
part), and hypromellose (blue line, upper graph). The respective prediction error ranges are shown.
Local differences in the distribution of the concentrations of active ingredients in the tablet are revealed.
Each region of interest (ROI) indicates the imaged area from a single fiber in the fiber array.
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Figure 5. Predicted concentrations of lumefantrine (green, lower line) and artemether (red, upper line)
in different spots on the model tablets. Each region of interest (ROI) indicates the imaged area from
a single fiber in the fiber array. (A) Lu50Ar100: 50% of the nominal lumefantrine and 100% of the
nominal artemether content, corresponding to 30 wt% lumefantrine and 10 wt% artemether in the
tablet. (B) Lu100Ar100: 100% the nominal content of lumefantrine and artemether, corresponding to
60 wt% lumefantrine and 10 wt% artemether in the tablet).

2.3. Potential of Fiber Array-Based Technique for Counterfeit and Substandard Tablet Testing

The fiber array-based Raman hyperspectral imaging technique provides the following advantages,
which can be exploited for counterfeit and substandard testing of pharmaceutical tablets: The presented
method is non-invasive and non-destructive, without using any aggressive or toxic solvents.
Thus, this method is environment-friendly and cost-effective.

Combining Raman measurements with chemometric modeling, both qualitative and quantitative
information of several analytes are captured in one single measurement procedure, granting high
potential for the efficient investigations of pharmaceutical samples to detect low-quality issues. Using a
high magnification objective with a high NA additionally allows visualization of the API distribution in
a highly resolved way (e.g., lumefantrine in Figure S2A). Another strong advantage is the time-efficient
measurement procedure, as 64 Raman spectra can be acquired simultaneously (Figure S2B). The setup
presented in this proof-of-principle study is flexible and can adapt to different experimental settings,
as the amount of collected spectra in one shot can be further extended using different fiber array
configurations and the dimensions of the FOV at the sample can easily be changed.

3. Materials and Methods

3.1. Chemicals and Tablets

Lumefantrine (Lu), artemether (Ar), and hypromellose were purchased from Sigma Aldrich
(Taufkirchen, Germany). Model fake tablets were manufactured, containing the APIs lumefantrine and
artemether in different concentration ratios by direct compression. The total weight for each model
tablet was 200 mg and the pharmaceutical excipient hypromellose was used to fill up the formulation.
The composition of the analyzed tablets is visualized in Figure 6. Riamet® tablets (Novartis) were
purchased from a local pharmacy (Jena, Germany) and investigated. The coating of this tablet was
removed for better conformity with the model tablets.
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Figure 6. Composition of the anti-malarial model tablets. 100% refers to the nominal content in the
original Riamet® tablet, which are 120 mg lumefantrine and 20 mg artemether, corresponding to 60 wt%
lumefantrine, 10 wt% artemether, and 30 wt% filling excipient hypromellose in the tablet. The total
mass of each tablet is 200 mg. (A) Lu100Ar100: Content of nominal 100% lumefantrine and nominal
100% artemether (60 wt% lumefantrine, 10 wt% artemether and 30 wt% filling excipient hypromellose
in the tablet). (B) Lu50Ar100: Content of nominal 50% lumefantrine and nominal 100% artemether
(30 wt% lumefantrine, 10 wt% artemether, and 60 wt% filling excipient hypromellose in the tablet).
(C) Lu100Ar0: Content of nominal 100% lumefantrine and nominal 0% artemether content (40 wt%
lumefantrine and 60 wt% filling excipient hypromellose in the tablet). (D) Lu0Ar100: Content of
nominal 0% lumefantrine and nominal 100% artemether content (10 wt% artemether and 90 wt% filling
excipient hypromellose in the tablet).

3.2. FT-Raman Spectroscopy

The FT-Raman spectra of the active ingredients lumefantrine and artmether were recorded using
a Bruker FT-Raman spectrometer (Ram II) (Bruker Optik GmbH, Germany) with an Nd:YAG laser
operating at 1064 nm. The spectral resolution was set to 4 cm−1.

3.3. Density Functional Theory Calculation

To better assign and interpret the Raman bands of the active ingredients, the vibrational modes
and Raman scattering activities were calculated with the help of density functional theory (DFT)
using Gaussian 16 [42]. The hybrid exchange correlation functional with Becke’s three-parameter
exchange functional (B3) [43] slightly modified by Stephens et al. [44] coupled with the correlation part
of the functional from Lee, Yang, and Parr (B3LYP) [45] and Dunning’s triple (cc-pVTZ) correlation
consistent basis sets of contracted Gaussian functions with polarized and diffuse functions [46] at
standard conditions were applied. Separate scaling factors for the lower (<2000 cm−1) and for the
higher (>2000 cm−1) wavenumber regions and an intensity correction were estimated [13,47].
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3.4. Fiber-Array Based Hyperspectral Imaging

The spectroscopic measurements of the samples (the powder form APIs lumefantrine and
artemether, the excipient hypromellose, the model tablets, and Riamet®) were carried out with a
hyperspectral imaging setup. The sample area was illuminated with an FOV of 10 × 10 µm2 (Figure 7).
The laser power in the sample plane was 600 mW and an exposure time of 10 s was used with three
accumulations. A specially designed fiber-array bundle was applied for signal collection (Figure 7).
The sample surface was imaged onto the entrance face of the fiber array and the shape of the bundle
was transformed from an 8 × 8 square to a linear array of 64 fibers. The line of fibers was then placed
in the plane of the spectrometer slit (IsoPlane, Princeton Instruments) and enabled the simultaneous
acquisition of 64 spectra (Figure 7). After the acquisition of the spectra, pre-processing tools, such
as baseline correction (rolling-ball algorithm) and spike correction, were applied using LabVIEW.
To provide a representative spectrum of the tablets Riamet® and the model tablet Lu100Ar100
(Figure 2), 10 hyperspectral images per tablet were acquired and for each image the median spectrum
was calculated. From the 10 median spectra, an average spectrum was calculated, and a second
baseline correction was carried out with the SNIP algorithm (2nd order). Each spectrum was assigned
to a specific spot in the sample area and hyperspectral images were built based on the desired
chemical information.
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Figure 7. The experimental setup for fiber array-based Raman hyperspectral imaging is divided into
an illumination and an imaging part, separated by a beam splitter (BS). The illumination part consists
of a laser for excitation (LASER), two lenses (L1 and L2), a step index multimode fiber (MF), a cleanup
filter (LF), and an objective lens (OL). Light is scattered back from the sample, collected by the same
objective lens (OL), and imaged with the help of a tube lens (TL) onto the entrance face of a fiber array
(FA). A suitable sample region can be chosen by directing the light onto a camera (C) with the help of a
flip mirror (M). A notch filter (NF) removes the laser excitation wavelength and elastically scattered
light. The scattered light is collected by the 8 × 8 array and is transformed with the help of a specially
designed fiber bundle (FB) into a linear fiber array at the distal end and positioned in the slit plane of
the spectrometer (S).

3.5. Partial Least-Squares Regression Model for the Ingredients’ Quantification

For the spectral analysis and modeling, the chemometrics software ‘The Unscrambler® X 10.3’
(Camo Software AS., Oslo, Norway) was used.
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4. Conclusions

In this work a proof-of-principle study using a novel method to qualify and quantify substances in
pharmaceutical tablets that are potentially counterfeit or substandard was presented. Based on a fiber
array-based Raman hyperspectral imaging technique combined with PLSR modeling, the concentrations
of the APIs lumefantrine and artemether were simultaneously determined in model tablets and in the
tablet Riamet®. The analysis was carried out in a non-destructive way, without dissolution, which is
an advantage in comparison to conventional methods. In addition, the concentration distribution of
active ingredients could also be assessed. Being able to identify and quantify counterfeits (Lu100Ar0,
Lu0Ar100) and even substandard (Lu50Ar100) antimalarial tablets fast and directly on the tablet gives
us a new tool for the fight against falsification of pharmaceuticals. The analyzed tablet Riamet® is of
high importance, since antimalarial tablets are the most frequent targets of counterfeiting in the world,
as highlighted by the WHO and the FDA.

In future work, we intend to test “real fake” samples, thus complementing our training model.
It would be highly beneficial to apply the presented easily applicable and flexible technique as a first
test to detect peculiarities or abnormalities before analyzing the tablets with destructive and more
expensive analytical techniques.

In summary, fiber array-based Raman hyperspectral imaging in combination with PLSR analysis
enables a fast and chemically selective, noninvasive, and spatially resolved determination of
multicomponent API concentrations in pharmaceutical tablets, showing high potential as a future
“anti-fake and substandard tool”.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/18/3229/s1,
Figure S1: Comparison of the calculated Raman spectra (DFT) with the experimentally acquired FT-Raman
spectra of the active ingredients lumefantrine and artemether. Figure S2: Exemplary visualization of the spatial
distribution of the lumefantrine concentration along one hyperspectral image in the model tablet Lu100Ar100.
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