Supplementary Materials

Alkaloid enantiomers from the roots of Isatis indigotica

Dongdong Zhang ¹⁰, Yanhong Shi², Rui Xu¹, Kang Du¹, Fujiang Guo¹, Kaixian Chen^{1, 3},

Yiming Li^{1,*©} and Rui Wang^{1,*©}

Affiliation

¹ School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

² Institute of TCM International Standardization of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China

³ Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China

Corresponding Author

^{*} E-mail: wr@shutcm.edu.cn (Rui Wang), Tel: 86 21 51322181, Fax: 86 21 51322193.

E-mail: ymlius@163.com (Yiming Li), Tel: 86 21 51322191, Fax: 86 21 51322193.

ORCID[®]: Dongdong Zhang: 0000-0003-0956-1261; Yiming Li: 0000-0003-3416-1331; Rui Wang: 0000-0002-6204- 5015

General experimental procedures

Optical rotation was measured using a Rudolph Autopol VI polarimeter (Rudolph, USA); ECD spectra were obtained on a Applied photophysics brighttime chirascan (AppliedPhotophysics, UK); IR spectra were recorded on a Nicolet iS10 instrument (Thermo Fisher Scientific, USA); 1D and 2D NMR spectra were recorded on a Bruker-Avance 600 instrument (Bruker, Germany); The HR-ESI-MS was performed using a Q-TOF-Ultima mass spectrometer (Milford, MA, USA); The crystallographic data were obtained on a Bruker Apex II CCD diffractometer (Bruker, Germany) using Cu-K α radiation (λ = 1.54178 Å); Semipreparative HPLC was performed on an Agilent infinity II system equipped with a DAD detector (Agilent, USA) and a Capcell Pak C₁₈ column (10 mm × 250 mm, 5µm particles, Shiseido, Japan) or a Chiralpak AD-H column (4.6 mm × 250 mm, 5µm particles, Daicel (China) Investment Co., Ltd.) or ; Sephadex LH-20 (GE Healthcare Bio-Sciences AB); Reversed-phase C₁₈ silica gel 5µm, YMC Co., Ltd. Japan); MCI gel (CHP-20 P, Mitsubishi Chemical Industries Co., Ltd. Japan); Silica gel (100–200 mesh and 200–300 mesh; Qingdao Haiyang Chemical, China); All solvents used in CC were of analytical grade (Sinopharm Chemical Reagent Co., Ltd. China).

Extraction and isolation

The air-dried and pulverized root of *I. indigotica* (45 kg) was extracted with 80% EtOH under reflux three times. After removing the solvent under reduced pressure, the concentrated residue was successively partitioned with petroleum ether (PE), dichloromethane (CH₂Cl₂) and *n*-BuOH. The CH₂Cl₂ extract (170 g) was subjected to column chromatography (CC) on silica gel, eluting with a gradient solvent system (CH₂Cl₂-MeOH, 100:0 – 100:20) to give eleven fractions (F1 – F11);

F3 (16g) was subjected to CC on silica gel, eluting with (CH₂Cl₂-MeOH, 100:1 – 100:5) to give six subfractions (F3-1 – F3-6). F3-3 (0.9g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH₂Cl₂-MeOH, 1:1) and then purified by HPLC with MeCN-H₂O (32:68) to afford 5 (200 mg; $t_R = 5.8$ min). 5 was purified by HPLC with a Chiral pak CD-Ph column, MeCN-H₂O (80:20) to afford **5a** (118 mg, $t_{\rm R} = 17.2$ min) and **5b** (45 mg, $t_{\rm R} = 18.8$ min); F-4 (14 g) was subjected to CC on silica gel, eluting with (CH₂Cl₂-MeOH, 100:1 ~ 100:5) to give five subfractions (F4-1 – F4-5). F4-3 (1.9g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH₂Cl₂-MeOH, 1:1) and then purified by HPLC with MeCN-H₂O (25:75) to afford 4 (7.9 mg, $t_{\rm R}$ = 25.5 min), 4 was further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol (18:82) to afford 4a (2.6 mg, $t_{\rm R} = 16.9$ min) and 4b (2.7 mg, $t_{\rm R} = 15.5$ min); F4-4 (0.8g) was subjected to CC on Sephadex LH-20 gel, eluting with (CH₂Cl₂-MeOH, 1:1) and then purified by HPLC with MeCN-H₂O (22:78) to afford 2 (8.5 mg; $t_{\rm R}$ = 22.6 min), and further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol (80:20) to afford 2a (3.3 mg, $t_R = 27.2$ min) and 2b (3.0 mg, $t_R = 24.3$ min); F8 (4g) was subjected to CC on RP-C₁₈ eluting with MeCN-H₂O (10%, 30%, 60%) to give three subfractions (F8-1 – F8-3). F8-2 (0.2g) was purified by HPLC with MeCN-H₂O (32:68) to afford **3** (10.2 mg, $t_{\rm R}$ = 13.3 min) further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol (15:85) to afford **3a** (3.8 mg, $t_R = 25.1$ min) and **3b** (4.1 mg, $t_R = 23.9$ min); F8-2 (0.4g) was purified by HPLC with MeCN-H₂O (35:65) to afford **1** (6.3 mg, $t_{\rm R}$ = 14.2 min) further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol (20:80) to afford **1a** (3.8 mg, $t_R = 13.0$ min) and **1b** (4.1 mg, t_R = 16.1 min).

List of Content

No.	Content	page
1	Figure S1. The IR spectrum of 1a/1b (in KBr)	S6
2	Figure S2. The HR-ESI-MS spectrum of 1a/1b (in MeOH)	S7
3	Figure S3. The ¹ H NMR spectrum of 1a/1b (in DMSO- d_6)	S8
4	Figure S4. The ¹³ C NMR spectrum of $1a/1b$ (in DMSO- d_6)	S9
5	Figure S5. The DEPT 135° spectrum of 1a/1b (in DMSO- d_6)	S10
6	Figure S6. The HSQC spectrum of 1a/1b (in DMSO- <i>d</i> ₆)	S11
7	Figure S7. The HMBC spectrum of 1a/1b (in DMSO- <i>d</i> ₆)	S12
8	Figure S8. The ¹ H- ¹ H COSY spectrum of 1a/1b (in DMSO- <i>d</i> ₆)	S13
9	Figure S9. The IR spectrum of 2a/2b (in KBr)	S14
10	Figure S10. The HR-ESI-MS spectrum of 2a/2b (in MeOH)	S15
11	Figure S11. The ¹ H NMR spectrum of $2a/2b$ (in DMSO- d_6)	S16
12	Figure S12. The ¹³ C NMR spectrum of 2a/2b (in DMSO- d_6)	S17
13	Figure S13. The DEPT 135° spectrum of $2a/2b$ (in DMSO- d_6)	S18
14	Figure S14. The HSQC spectrum of 2a/2b (in DMSO- <i>d</i> ₆)	S19
15	Figure S15. The HMBC spectrum of $2a/2b$ (in DMSO- d_6)	S20
16	Figure S16. The ¹ H- ¹ H COSY spectrum of $2a/2b$ (in DMSO- d_6)	S21
17	Figure S17. The IR spectrum of 3a/3b (in KBr)	S22
18	Figure S18. The HR-ESI-MS spectrum of 3a/3b (in MeOH)	S23
19	Figure S19. The ¹ H NMR spectrum of 3a/3b (in DMSO- d_6)	S24
20	Figure S20. The ¹³ C NMR spectrum of 3a/3b (in DMSO- d_6)	S25
21	Figure S21. The DEPT 135° spectrum of 3a/3b (in DMSO- d_6)	S26
22	Figure S22. The HSQC spectrum of 3a/3b (in DMSO- <i>d</i> ₆)	S27

23	Figure S23. The HMBC spectrum of 3a/3b (in DMSO- <i>d</i> ₆)	S28
24	Figure S24. The ¹ H- ¹ H COSY spectrum of 3a/3b (in DMSO- <i>d</i> ₆)	S29
25	Figure S25. The ROESY spectrum of 3a/3b (in DMSO- <i>d</i> ₆)	S30
26	Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for (3'S,2" <i>R</i>)-1 and (3'S,2" <i>S</i>)-1	S31
	and their equilibrium populations	
27	Figure S27. Experimental and calculated ECD spectrum of 1	S32
28	Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for (2' <i>R</i>)-2 and their	S33
	equilibrium populations	
29	Figure S29. Experimental and calculated ECD spectrum of 1	S34
30	Figure S30. b3lyp/6-31g(d) optimized lowest energy conformers for (4 <i>S</i> ,2' <i>R</i> ,3' <i>R</i>)- 3 and	S35
	(4 <i>S</i> ,2' <i>S</i> ,3' <i>R</i>)- 3 and their equilibrium populations	
31	Figure S31. $b3lyp/6-31g(d)$ optimized lowest energy conformers for $(4R,2'R,3'R)$ -3 and	S36
	(4 <i>R</i> ,2' <i>S</i> ,3' <i>R</i>)- 3 and their equilibrium populations	
32	Figure S32. Experimental and calculated ECD spectrum of 3	S37
33	Figure S33. Experimental and calculated ECD spectrum of 3	S38
34	Figure S34. Chiral separation chromatography of 1	S39
35	Figure S35. Chiral separation chromatography of 2	S40
36	Figure S36. Chiral separation chromatography of 3	S41
37	Figure S37. Crystallographic data of 2b	S42
38	Figure S38. The ¹ H NMR spectrum of $4a/4b$ (in DMSO- d_6)	S43
39	Figure S39. The ¹³ C NMR spectrum of $4a/4b$ (in DMSO- d_6)	S44
40	Figure S40. Chiral separation chromatography of 4	S45
41	Figure S41. The ¹ H NMR spectrum of $1a/1b$ (in D_2O)	S46
42	Figure S42. The ¹³ C NMR spectrum of 1a/1b (in D ₂ O)	S47
43	Figure S43. Chiral separation chromatography of 5	S48

Qualitative Analysis Report

Data Filename Sample Type Instrument Name Acquired Time DA Method

User Spectra

Formula Calculator Results

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
356.1398	356.1394	-0.4	-1.12	C22 H18 N3 O2	(M+H)+

---- End Of Report ----

Agilent Technologies

Page 1 of 1

Printed at: 14:23 on: 10/25/2018

Figure S2. The HR-ESI-MS spectrum of 1a/1b (in MeOH)

Figure S3. The ¹H NMR spectrum of 1a/1b (in DMSO- d_6)

Figure S4. The ¹³C NMR spectrum of 1a/1b (in DMSO- d_6)

Figure S5. The DEPT 135° spectrum of 1a/1b (in DMSO-*d*₆)

Figure S6. The HSQC spectrum of 1a/1b (in DMSO-*d*₆)

Figure S7. The HMBC spectrum of 1a/1b (in DMSO-*d*₆)

Figure S8. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of **1a/1b** (in DMSO- d_{6})

Qualitative Analysis Report

Data Filename	ESIH_20180917_ZWL_ZYT_43.d	Sample Name	ZYT-002-22	
Sample Type	Sample	Position	P1-E4	
Instrument Name	Agilent G6520 Q-TOF	Acq Method	20160324_MS_ESIH_NEG_1min.m	
Acquired Time	9/17/2018 16:00:45	IRM Calibration Status	Success	
DA Method	small molecular data analysis method.m	Comment	ESIH BY ZZY	

User Spectra

Formula Calculator Results

m/z	Calc m/z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
231.0771	231.0775	0.4	1.74	C12 H11 N2 O3	(M-H)-

---- End Of Report ----

🔆 Agilent Technologies

Page 1 of 1

Printed at: 16:37 on: 9/17/2018

Figure S10. The HR-ESI-MS spectrum of 2a/2b (in MeOH)

Figure S11. The ¹H NMR spectrum of 2a/2b (in DMSO- d_6)

Figure S12. The ¹³C NMR spectrum of 2a/2b (in DMSO-*d*₆)

Figure S13. The DEPT 135° spectrum of **2a/2b** (in DMSO- d_6)

Figure S14. The HSQC spectrum of 2a/2b (in DMSO-*d*₆)

Figure S15. The HMBC spectrum of **2a/2b** (in DMSO-*d*₆)

Figure S16. The ¹H-¹H COSY spectrum of 2a/2b (in DMSO- d_6)

Figure S19. The ¹H NMR spectrum of **3a/3b** (in DMSO- d_6)

Figure S20. The ¹³C NMR spectrum of 3a/3b (in DMSO- d_6)

Figure S21. The DEPT 135° spectrum of **3a/3b** (in DMSO- d_6)

Figure S22. The HSQC spectrum of 3a/3b (in DMSO-*d*₆)

Figure S23. The HMBC spectrum of 3a/3b (in DMSO-*d*₆)

Figure S24. The ¹H-¹H COSY spectrum of **3a/3b** (in DMSO-*d*₆)

Figure S25. The ROESY spectrum of 3a/3b (in DMSO-*d*₆)

Figure S26. b3lyp/6-31g(d) optimized lowest energy conformers for (3'S,2"R)-1 and (3'S,2"S)-1 and their equilibrium populations

The experimental ECD spectrum of **1a** (red line) and **1b** (blue line) and the calculated ECD spectrum of (3'S,2"R)-1 (red short dash), (3'R,2"S)-1 (blue short dash), (3'S,2"S)-1 (green short dash) and (3'R,2"R)-1 (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.22 eV exponential half-width using the program Specdis 1.62, and the UV shifted was 3 nm.

Figure S27. Experimental and calculated ECD spectrum of 1

Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for (2'*R*)-2 and their equilibrium populations

The experimental ECD spectrum of 2a (red line) and 2b (black line) and the calculated ECD spectrum of (2'R)-2 (red short dash) and (2'S)-2 (black short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.16 eV exponential half-width using the program Specdis 1.62, and the UV shifted was7 nm.

Figure S29. Experimental and calculated ECD spectrum of 2

Figure S30. b3lyp/6-31g(d) optimized lowest energy conformers for (4*S*,2'*R*,3'*R*)-3 and (4*S*,2'*S*,3'*R*)-3 and their equilibrium populations

Figure S31. b3lyp/6-31g(d) optimized lowest energy conformers for (4R,2'R,3'R)-3 and (4R,2'S,3'R)-3 and their equilibrium populations

The experimental ECD spectrum of **3a** (red line) and **3b** (blue line) and the calculated ECD spectrum of (4S,2'R,3'R)-**3** (red short dash), (4R,2'S,3'S)-**3** (blue short dash), (4S,2'S,3'R)-**3** (green short dash) and (4R,2'R,3'S)-**3** (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.28 eV exponential half-width using the program Specdis 1.62, and the UV shifted was 2 nm.

Figure S32. Experimental and calculated ECD spectrum of 3

The experimental ECD spectrum of **3a** (red line) and **3b** (blue line) and the calculated ECD spectrum of (4R,2'R,3'R)-**3** (red short dash), (4S,2'S,3'S)-**3** (blue short dash), (4R,2'S,3'R)-**3** (green short dash) and (4S,2'R,3'S)-**3** (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.28 eV exponential half-width using the program Specdis 1.62, and the UV shifted was 2 nm.

Figure S33. Experimental and calculated ECD spectrum of 3

Figure S34. Chiral separation chromatography of 1

Figure S35. Chiral separation chromatography of 2

Figure S36. Chiral separation chromatography of 3

22019060549S_0m

Table 1 Crystal data and struc	ture refinement for 22019060549S_0m.
Identification code	22019060549S_0m
Empirical formula	C ₂₅ H ₂₇ N ₄ O ₇
Formula weight	495.50
Temperature/K	130.0
Crystal system	orthorhombic
Space group	P212121
a/Å	7.7008(2)
b/Å	13.3435(4)
c/Å	23.1191(7)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2375.62(12)
Z	4
Pcalcg/cm ³	1.385
µ/mm ⁻¹	0.856
F(000)	1044.0
Crystal size/mm ³	0.19 × 0.08 × 0.05
Radiation	CuKα (λ = 1.54178)
2⊖ range for data collection/°	7.648 to 148.48
Index ranges	-9 ≤ h ≤ 8, -15 ≤ k ≤ 16, -28 ≤ l ≤ 28
Reflections collected	31880
Independent reflections	4813 [R _{int} = 0.0526, R _{sigma} = 0.0284]
Data/restraints/parameters	4813/367/347
Goodness-of-fit on F ²	1.045
Final R indexes [I>=2σ (I)]	R ₁ = 0.0537, wR ₂ = 0.1582
Final R indexes [all data]	$R_1 = 0.0572$, $wR_2 = 0.1613$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.37
Flack parameter	0.15(7)

Figure S37. Crystallographic data of 2b

Figure S38. The ¹H NMR spectrum of **4a/4b** (in DMSO-*d*₆)

Figure S39. The ¹³C NMR spectrum of 4a/4b (in DMSO- d_6)

Figure S40. Chiral separation chromatography of 4

Figure S41. The ¹H NMR spectrum of 1a/1b (in D₂O)

Figure S42. The 13 C NMR spectrum of **1a/1b** (in D₂O)

Figure S43. Chiral separation chromatography of 5