Supplementary Materials

Alkaloid enantiomers from the roots of Isatis indigotica

> Dongdong Zhang ${ }^{1 \oplus}$, Yanhong Shi^{2}, Rui Xu 1, Kang Du 1, Fujiang Guo ${ }^{1}$, Kaixian Chen ${ }^{1,3}$,
> Yiming Li ${ }^{1, * \oplus}$ and Rui Wang ${ }^{1, * \oplus}$

Affiliation
${ }^{1}$ School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
${ }^{2}$ Institute of TCM International Standardization of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
${ }^{3}$ Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, China

Corresponding Author

* E-mail: wr@shutcm.edu.cn (Rui Wang), Tel: 8621 51322181, Fax: 862151322193.

E-mail: ymlius@163.com (Yiming Li), Tel: 8621 51322191, Fax: 862151322193.

ORCID : Dongdong Zhang: 0000-0003-0956-1261; Yiming Li: 0000-0003-3416-1331; Rui Wang: 0000-0002-6204-5015

General experimental procedures

Optical rotation was measured using a Rudolph Autopol VI polarimeter (Rudolph, USA); ECD spectra were obtained on a Applied photophysics brighttime chirascan (AppliedPhotophysics, UK); IR spectra were recorded on a Nicolet iS10 instrument (Thermo Fisher Scientific, USA); 1D and 2D NMR spectra were recorded on a Bruker-Avance 600 instrument (Bruker, Germany); The HR-ESI-MS was performed using a Q-TOF-Ultima mass spectrometer (Milford, MA, USA); The crystallographic data were obtained on a Bruker Apex II CCD diffractometer (Bruker, Germany) using Cu-K α radiation ($\lambda=$ 1.54178 Å); Semipreparative HPLC was performed on an Agilent infinity II system equipped with a DAD detector (Agilent, USA) and a Capcell Pak C_{18} column ($10 \mathrm{~mm} \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particles, Shiseido, Japan) or a Chiralpak AD-H column (4.6 $\mathrm{mm} \times 250 \mathrm{~mm}$, $5 \mu \mathrm{~m}$ particles, Daicel (China) Investment Co., Ltd.) or ; Sephadex LH-20 (GE Healthcare Bio-Sciences AB); Reversed-phase C_{18} silica gel $5 \mu \mathrm{~m}$, YMC Co., Ltd. Japan); MCI gel (CHP-20 P, Mitsubishi Chemical Industries Co., Ltd. Japan); Silica gel (100-200 mesh and 200-300 mesh; Qingdao Haiyang Chemical, China); All solvents used in CC were of analytical grade (Sinopharm Chemical Reagent Co., Ltd. China).

Extraction and isolation

The air-dried and pulverized root of I. indigotica (45 kg) was extracted with $80 \% \mathrm{EtOH}$ under reflux three times. After removing the solvent under reduced pressure, the concentrated residue was successively partitioned with petroleum ether (PE), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and n - BuOH . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (170 g) was subjected to column chromatography (CC) on silica gel, eluting with a gradient solvent system $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 100: 0-100: 20\right)$ to give eleven fractions ($\mathrm{F} 1-\mathrm{F} 11$);

F3 (16g) was subjected to CC on silica gel, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 100: 1-100: 5\right)$ to give six subfractions ($\mathrm{F} 3-1-$ F3-6). F3-3 (0.9 g) was subjected to CC on Sephadex LH-20 gel, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 1: 1\right)$ and then purified by HPLC with MeCN- $\mathrm{H}_{2} \mathrm{O}$ (32:68) to afford $5\left(200 \mathrm{mg} ; t_{\mathrm{R}}=5.8 \mathrm{~min}\right) .5$ was purified by HPLC with a Chiral pak CD-Ph column, $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(80: 20)$ to afford $\mathbf{5 a}\left(118 \mathrm{mg}, t_{\mathrm{R}}=17.2 \mathrm{~min}\right)$ and $\mathbf{5 b}\left(45 \mathrm{mg}, t_{\mathrm{R}}=18.8 \mathrm{~min}\right) ; \mathrm{F}-4(14 \mathrm{~g})$ was subjected to CC on silica gel, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 100: 1 \sim 100: 5\right.$) to give five subfractions ($\mathrm{F} 4-1-\mathrm{F} 4-5$). $\mathrm{F} 4-3(1.9 \mathrm{~g})$ was subjected to CC on Sephadex LH-20 gel, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 1: 1\right)$ and then purified by HPLC with MeCN- $\mathrm{H}_{2} \mathrm{O}$ (25:75) to afford $4\left(7.9 \mathrm{mg}, t_{\mathrm{R}}=25.5 \mathrm{~min}\right), 4$ was further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol ($18: 82$) to afford $\mathbf{4 a}\left(2.6 \mathrm{mg}, t_{\mathrm{R}}=16.9 \mathrm{~min}\right)$ and $\mathbf{4 b}\left(2.7 \mathrm{mg}, t_{\mathrm{R}}=15.5 \mathrm{~min}\right)$; $\mathrm{F} 4-4(0.8 \mathrm{~g})$ was subjected to CC on Sephadex LH-20 gel, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 1: 1\right)$ and then purified by HPLC with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ ($22: 78$) to afford $2\left(8.5 \mathrm{mg} ; t_{\mathrm{R}}=22.6 \mathrm{~min}\right.$), and further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol ($80: 20$) to afford 2a ($3.3 \mathrm{mg}, t_{\mathrm{R}}=27.2 \mathrm{~min}$) and $\mathbf{2 b}\left(3.0 \mathrm{mg}, t_{\mathrm{R}}=24.3 \mathrm{~min}\right)$; $\mathrm{F} 8(4 \mathrm{~g})$ was subjected to CC on RP-C ${ }_{18}$ eluting with MeCN- $\mathrm{H}_{2} \mathrm{O}(10 \%, 30 \%, 60 \%)$ to give three subfractions (F8-1 - F8-3). F8-2 (0.2 g) was purified by HPLC with MeCN- $\mathrm{H}_{2} \mathrm{O}(32: 68)$ to afford $\mathbf{3}\left(10.2 \mathrm{mg}, t_{\mathrm{R}}=13.3 \mathrm{~min}\right)$ further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol ($15: 85$) to afford $\mathbf{3 a}$ ($3.8 \mathrm{mg}, t_{\mathrm{R}}=25.1 \mathrm{~min}$) and $\mathbf{3 b}\left(4.1 \mathrm{mg}, t_{\mathrm{R}}=23.9 \mathrm{~min}\right.$); F8-2 $(0.4 \mathrm{~g})$ was purified by HPLC with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(35: 65)$ to afford $\mathbf{1}\left(6.3 \mathrm{mg}, t_{\mathrm{R}}=14.2 \mathrm{~min}\right)$ further purified by HPLC with a Chiral pak AD-H column, normal hexane-isopropanol (20:80) to afford $\mathbf{1 a}\left(3.8 \mathrm{mg}, t_{\mathrm{R}}=13.0 \mathrm{~min}\right)$ and $\mathbf{1 b}\left(4.1 \mathrm{mg}, t_{\mathrm{R}}\right.$ $=16.1 \mathrm{~min}$).

List of Content

No.	Content	page
1	Figure S1. The IR spectrum of 1a/1b (in KBr)	S6
2	Figure S2. The HR-ESI-MS spectrum of 1a/1b (in MeOH)	S7
3	Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1a/1b (in DMSO- d_{6})	S8
4	Figure S4. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1a/1b (in DMSO- d_{6})	S9
5	Figure S5. The DEPT 135° spectrum of 1a/1b (in DMSO- d_{6})	S10
6	Figure S6. The HSQC spectrum of 1a/1b (in DMSO- d_{6})	S11
7	Figure S7. The HMBC spectrum of 1a/1b (in DMSO- d_{6})	S12
8	Figure S8. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 1a/1b (in DMSO- d_{6})	S13
9	Figure S9. The IR spectrum of 2a/2b (in KBr)	S14
10	Figure S10. The HR-ESI-MS spectrum of 2a/2b (in MeOH)	S15
11	Figure S11. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2a/2b (in DMSO- d_{6})	S16
12	Figure S12. The ${ }^{13} \mathrm{C}$ NMR spectrum of 2a/2b (in DMSO- d_{6})	S17
13	Figure S13. The DEPT 135° spectrum of 2a/2b (in DMSO- d_{6})	S18
14	Figure S14. The HSQC spectrum of 2a/2b (in DMSO- d_{6})	S19
15	Figure S15. The HMBC spectrum of 2a/2b (in DMSO- d_{6})	S20
16	Figure S16. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 2a/2b (in DMSO- d_{6})	S21
17	Figure S17. The IR spectrum of $\mathbf{3 a} / \mathbf{3} \mathbf{b}$ (in KBr)	S22
18	Figure S18. The HR-ESI-MS spectrum of 3a/3b (in MeOH)	S23
19	Figure S19. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a} / \mathbf{3} \mathbf{b}$ (in DMSO- d_{6})	S24
20	Figure S20. The ${ }^{13} \mathrm{C}$ NMR spectrum of 3a/3b (in DMSO- d_{6})	S25
21	Figure S21. The DEPT 135° spectrum of 3a/3b (in DMSO- d_{6})	S26
22	Figure S22. The HSQC spectrum of 3a/3b (in DMSO- d_{6})	S27

23	Figure S23. The HMBC spectrum of 3a/3b (in DMSO- d_{6})	S28
24	Figure S24. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})	S29
25	Figure S25. The ROESY spectrum of 3a/3b (in DMSO- d_{6})	S30
26	Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for ($3^{\prime} S, 2^{\prime \prime} R$)-1 and (3'S,2"S)-1 and their equilibrium populations	S31
27	Figure S27. Experimental and calculated ECD spectrum of 1	S32
28	Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for ($\left.2^{\prime} R\right)$-2 and their equilibrium populations	S33
29	Figure S29. Experimental and calculated ECD spectrum of 1	S34
30	Figure S30. b3lyp/6-31g(d) optimized lowest energy conformers for ($4 S, 2^{\prime} R, 3^{\prime} R$)-3 and ($4 S, 2^{\prime} S, 3^{\prime} R$)- $\mathbf{3}$ and their equilibrium populations	S35
31	Figure S31. b3lyp/6-31g(d) optimized lowest energy conformers for ($4 R, 2^{\prime} R, 3^{\prime} R$)-3 and ($4 R, 2^{\prime} S, 3^{\prime} R$)-3 and their equilibrium populations	S36
32	Figure S32. Experimental and calculated ECD spectrum of $\mathbf{3}$	S37
33	Figure S33. Experimental and calculated ECD spectrum of $\mathbf{3}$	S38
34	Figure S34. Chiral separation chromatography of 1	S39
35	Figure S35. Chiral separation chromatography of 2	S40
36	Figure S36. Chiral separation chromatography of 3	S41
37	Figure S37. Crystallographic data of 2b	S42
38	Figure S38. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4a/4b (in DMSO- d_{6})	S43
39	Figure S39. The ${ }^{13} \mathrm{C}$ NMR spectrum of 4a/4b (in DMSO- d_{6})	S44
40	Figure S40. Chiral separation chromatography of 4	S45
41	Figure S41. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in $\mathrm{D}_{2} \mathrm{O}$)	S46
42	Figure S42. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in $\mathrm{D}_{2} \mathrm{O}$)	S47
43	Figure S43. Chiral separation chromatography of 5	S48

Figure S1. The IR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in KBr)

Qualitative Analysis Report

Data Filename	ESIH_20181024_ZWL_ZYT_04.d	Sample Name	ZYT-002-42
Sample Type	Sample	Position	P1-B2
Instrument Name	Agilent G6520 Q-TOF	Acq Method	20160322_MS_ESIH_POS_1min.m
Acquired Time	10/24/2018 19:33:50	IRM Calibration Status	SUccess
DA Method	small molecular data analysis method.m	Comment	ESIH by ZZY
User Spectra			

| User Spectra | |
| :--- | :--- | :--- |
| Fragmentor Voltage \quad Collision Energy | Ionization Mode |

Formula Calculator Results

m / z	Calc m / z	Diff (mDa)	Diff (ppm)	Ion Formula	Ion
356.1398	356.1394	-0.4	-1.12	C22 H18 N3 O2	$(\mathrm{M}+\mathrm{H})+$

--. End Of Report --

Figure S2. The HR-ESI-MS spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in $\mathbf{M e O H}$)

Figure S3. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S4. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S5. The DEPT 135° spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S6. The HSQC spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S7. The HMBC spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S8. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in DMSO- d_{6})

Figure S9. The IR spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in KBr)

Qualitative Analysis Report

-- End Of Report -

Figure S10. The HR-ESI-MS spectrum of $\mathbf{2 a} \mathbf{2} \mathbf{2 b}$ (in $\mathbf{M e O H}$)

Figure S11. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S12. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S13. The DEPT 135° spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S14. The HSQC spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S15. The HMBC spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S16. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2 a} / \mathbf{2 b}$ (in DMSO- d_{6})

Figure S17. The IR spectrum of $\mathbf{3 a} / \mathbf{3} \mathbf{b}$ (in KBr)

Figure S18. The HR-ESI-MS spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in MeOH)

Figure S19. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})

Figure S20. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})

Figure S21. The DEPT 135° spectrum of 3a/3b (in DMSO- d_{6})

Figure S22. The HSQC spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})

Figure S23. The HMBC spectrum of $\mathbf{3} \mathbf{a} / \mathbf{3 b}$ (in DMSO- d_{6})

Figure S24. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})

Figure S25. The ROESY spectrum of $\mathbf{3 a} / \mathbf{3 b}$ (in DMSO- d_{6})

(3'S,1"R)-1-1
90.05\%

(3'S,1"S)-1-1
91.10\%

(3'S,1"R)-1-2
9.95\%

(3'S,1"S)-1-2
8.90%

Figure S26. b3lyp/6-31g(d) optimized lowest energy conformers for ($\left.3^{\prime} S, 2^{\prime \prime} R\right)-\mathbf{1}$ and $\left(3^{\prime} S, 2^{\prime \prime} S\right)$ - $\mathbf{1}$ and their equilibrium populations

The experimental ECD spectrum of $\mathbf{1 a}$ (red line) and $\mathbf{1 b}$ (blue line) and the calculated ECD spectrum of ($3^{\prime} S, 2^{\prime \prime} R$) $\mathbf{- 1}$ (red short dash), ($3^{\prime} R, 2^{\prime \prime} S$)-1 (blue short dash), ($\left.3^{\prime} S, 22^{\prime \prime} S\right)$ - $\mathbf{1}$ (green short dash) and ($3^{\prime} R, 2^{\prime \prime} R$)-1 (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.22 eV exponential half-width using the program Specdis 1.62 , and the UV shifted was 3 nm .

3'S,2"R-1

Figure S27. Experimental and calculated ECD spectrum of $\mathbf{1}$

Figure S28. b3lyp/6-31g(d) optimized lowest energy conformers for ($\left.2^{\prime} R\right)$ - $\mathbf{2}$ and their equilibrium populations

The experimental ECD spectrum of $\mathbf{2 a}$ (red line) and $\mathbf{2 b}$ (black line) and the calculated ECD spectrum of ($2^{\prime} R$) $\mathbf{- 2}$ (red short dash) and ($\left.2^{\prime} S\right)$-2 (black short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.16 eV exponential half-width using the program Specdis 1.62, and the UV shifted was7 nm.

Figure S29. Experimental and calculated ECD spectrum of 2

($4 S, 2^{\prime} R, 3^{\prime} R$)-3-1 62.62\%

(4S,2'S,3'R)-3-1
41.69\%

(4S, $2^{\prime} S, 3^{\prime} R$)-3-2 41.63\%

(4S,2'R,3'R)-3-2
37.38\%

(4S,2'S,3'R)-3-3
16.69\%

Figure S30. b3lyp/6-31g(d) optimized lowest energy conformers for ($\left.4 S, 2^{\prime} R, 3^{\prime} R\right)-\mathbf{3}$ and $\left(4 S, 2^{\prime} S, 3^{\prime} R\right)-\mathbf{3}$ and their equilibrium populations

(4R,2'S,3'R)-3-2 17.71\%

(4R,2'R,3'R)-3-2
4.05\%

(4R,2'S,3'R)-3-3
(4R,2'S,3'R)-3-6

(4R,2'S,3'R)-3-4
15.62%

Figure S31. b3lyp/6-31g(d) optimized lowest energy conformers for $\left(4 R, 2^{\prime} R, 3^{\prime} R\right)-\mathbf{3}$ and $\left(4 R, 2^{\prime} S, 3^{\prime} R\right)-\mathbf{3}$ and their equilibrium populations

The experimental ECD spectrum of $\mathbf{3 a}$ (red line) and $\mathbf{3 b}$ (blue line) and the calculated ECD spectrum of ($4 S, 2^{\prime} R, 3^{\prime} R$) $\mathbf{- 3}$ (red short dash), ($4 R, 2^{\prime} S, 3^{\prime} S$)-3 (blue short dash), ($4 S, 2^{\prime} S, 3^{\prime} R$)-3 (green short dash) and ($4 R, 2^{\prime} R, 3^{\prime} S$)-3 (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.28 eV exponential half-width using the program Specdis 1.62 , and the UV shifted was 2 nm .

$4 S, 2^{\prime} S, 3^{\prime} R-3$

Figure S32. Experimental and calculated ECD spectrum of $\mathbf{3}$

The experimental ECD spectrum of $\mathbf{3 a}$ (red line) and $\mathbf{3 b}$ (blue line) and the calculated ECD spectrum of ($4 R, 2^{\prime} R, 3^{\prime} R$) $\mathbf{3}$ (red short dash), ($4 S, 2^{\prime} S, 3^{\prime} S$)-3 (blue short dash), ($4 R, 2^{\prime} S, 3^{\prime} R$)-3 (green short dash) and ($4 S, 2^{\prime} R, 3^{\prime} S$)-3 (light blue short dash). The calculated ECD (excited states 30) spectrum were plotted as sums of Gaussians 09 with a 0.28 eV exponential half-width using the program Specdis 1.62 , and the UV shifted was 2 nm .

Figure S33. Experimental and calculated ECD spectrum of 3

Figure S34. Chiral separation chromatography of 1

Figure S35. Chiral separation chromatography of 2

Figure S36. Chiral separation chromatography of 3

22019060549S_Om

Table 1 Crystal data and structure refinement for 22019060549S_0m.
Identification code 22019060549S_0m
Empirical formula
$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{7}$
Formula weight
495.50

Temperature/K
130.0

Crystal system
orthorhombic
Space group
$\mathrm{P} 2{ }_{1}{ }^{2}{ }_{1}{ }^{2} 1$
a / \AA
7.7008(2)
b/Å
13.3435(4)
c / \AA
23.1191(7)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ} 90$
$\mathrm{Y} /{ }^{\circ} \quad 90$
Volume/ \AA^{3}
Z 4
$\rho_{\text {calcg } / \mathrm{cm}^{3}} \quad 1.385$
$\mu / \mathrm{mm}^{-1} \quad 0.856$
F(000) 1044.0
Crystal size $/ \mathrm{mm}^{3} \quad 0.19 \times 0.08 \times 0.05$
Radiation \quad CuK $\alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ} \quad 7.648$ to 148.48
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
$-9 \leq h \leq 8,-15 \leq k \leq 16,-28 \leq \mathrm{I} \leq 28$ 31880

Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
$4813\left[R_{\text {int }}=0.0526, R_{\text {sigma }}=0.0284\right]$
4813/367/347
1.045

Largest diff. peak/hole / e \AA^{-3}
$R_{1}=0.0537, w R_{2}=0.1582$
$R_{1}=0.0572, w R_{2}=0.1613$

Flack parameter
0.37/-0.37
$0.15(7)$
Figure S37. Crystallographic data of 2b

Figure S38. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} / \mathbf{4 b}$ (in DMSO- d_{6})

Figure S39. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} / \mathbf{4 b}$ (in DMSO- d_{6})

Figure S40. Chiral separation chromatography of 4

Figure S41. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in $\mathrm{D}_{2} \mathrm{O}$)

Figure S42. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 a} / \mathbf{1 b}$ (in $\mathrm{D}_{2} \mathrm{O}$)

Figure S43. Chiral separation chromatography of 5

