Dyes Adsorption Behavior of Fe₃O₄ Nanoparticles Functionalized Polyoxometalate Hybrid

Jie Li, Chen Si, Haiyan Zhao, Qingxi Meng, Bowen Chang, Mingxue Li* and Hongling Liu*

Henan Key Laboratory of Polyoxometalates Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China

* Correspondence: limingxue@henu.edu.cn (M.X.L.), hlliu@henu.edu.cn (H.L.L.)

Content:

Section 1: Crystallographic data for 1. Section 2: The related equations. Section 3: Thermogravimetric analyses of 1, Fe₃O₄@1 and Fe₃O₄. Section 4: Adsorption activity comparison of 1, Fe₃O₄@1 and Fe₃O₄.

	1
Formula	$C_{28}H_{42}Mo_5N_{20}Ni_2O_{25}P_2S_4$
F _w	1846.05
Crystal system	Monoclinic
space group	C2/c
<i>a/</i> [Å]	30.575(7)
<i>b/</i> [Å]	13.276(3)
c/[Å]	17.009(4)
β [°]	113.837(5)
Z	4
Volume/[Å ³]	6315(3)
Calculated bulk density/[g cm ⁻³]	1.940
Absorption coefficient/[mm ⁻¹]	1.814
F(000)	3632
Limiting index	-20≤h≤36, -15≤k≤15, -20≤l≤19
Theta range of data collection	1.70 to 25.00°
Limiting index	-20≤h≤36, -15≤k≤15, -20≤l≤19
Reflections collected/unique	15775/5569 [R(int) = 0.0686]
Data/restraints/parameters	5569/0/385
Goodness-of-fit on F ²	1.054
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1755, wR_2 = 0.3979$
<i>R</i> indices (all data)	$R_1 = 0.2297, wR_2 = 0.4257$
Largest diff. peak and hole/[$e \cdot A^{-3}$]	4.763, -4.493

Section 1: Crystallographic data for 1

Section 2. The related equations.

Removal efficiency (%) = $\frac{A_0 - A_t}{A_0}$ (1)

$$q_{\rm e} = \frac{(C_0 - C_e) \times V}{W} \tag{2}$$

where C_0 and C_t are the dyes concentration (mg/L) at initiation and the time t. A_0 and A_t are the dye absorbance at initiation and the time t. *w* and *V* is the dosage of the adsorbent (mg) and the amount of dye (mL), respectively.

$$\log(q_e - q_t) = \log q_e - k_1 t$$
(3)
$$\frac{t}{q_t} = \frac{1}{k_2 (q_e)^2} + \frac{t}{q_e}$$
(4)

where q_t is the adsorption capacity of MB at time t. k_1 is the rate constant of pseudo-first-order, k_2 is the rate constant of pseudo-second-order.

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{K_L q_m} \tag{5}$$

$$lgq_e = lgK_f + \left(\frac{1}{n}\right)lgC_e \tag{6}$$

where q_m and C_e are the maximum adsorption capacity and equilibrium concentration of MB in the solution, respectively. K_L is the Langmuir constant. K_F is the Freundlich constant. n is the adsorption strength.

Section 3: Thermogravimetric analyses of 1, Fe₃O₄@1 and Fe₃O₄.

Thermogravimetric analyses of **1**, Fe₃O₄@**1** and Fe₃O₄ were performed under a nitrogen flow (Figure. S1). It turns out that the weight ratio of **1** in Fe₃O₄@**1** is 89.57%. It should be noted that the loss of Fe₃O₄ might be attributed to its surfactant attached during the synthesis process.

Figure S1. Thermogravimetric analyses of 1, Fe₃O₄@1 and Fe₃O₄.

Section 4: Adsorption activity comparison of 1, Fe₃O₄@1 and Fe₃O₄.

Figure S2. Adsorption activity comparison of **1**, Fe₃O₄@**1** and Fe₃O₄. (MB: 15 mg/L, 10 mL; room temperature)