Supplementary data for

New E:B-*friedo*-Hopane Type Triterpenoids from *Euphorbia peplus* with Simiarendiol Possessing Significant Cytostatic Activity against HeLa Cells by Induction of Apoptosis and S/G2 Cell Cycle Arrest

Jin-Hai Yu, Dong-Xiang Wu, Zhi-Pu Yu, Yu-Peng Li, Yin-Yin Wang, Shu-Juan Yu and Hua Zhang*

School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China

* Corresponding author. E-mail: bio_zhangh@ujn.edu.cn

Table of Contents

Table S1. The preliminary cytotoxic screening results for compounds $1-12$ at 30 μ M	1
Table S2. Re-optimized conformers, energies and proportions for 1	2
Table S3. Re-optimized conformers, energies and proportions for 3	3
Table S4. Re-optimized conformers, energies and proportions for 5	4
Figure S1. ¹ H NMR spectrum of 1 in CDCl ₃	5
Figure S2. ¹³ C NMR spectrum of 1 in CDCl ₃	6
Figure S3. ¹ H– ¹ H COSY NMR spectrum of 1 in CDCl ₃	7
Figure S4. HSQC NMR spectrum of 1 in CDCl ₃	8
Figure S5. HMBC NMR spectrum of 1 in CDCl ₃	9
Figure S6. ROESY NMR spectrum of 1 in CDCl ₃	10
Figure S7. (+)-HRESIMS spectrum of 1	11
Figure S8. ¹ H NMR spectrum of 2 in CDCl ₃	12
Figure S9. ¹³ C NMR spectrum of 2 in CDCl ₃	13
Figure S10. ¹ H- ¹ H COSY NMR spectrum of 2 in CDCl ₃	14
Figure S11. HSQC NMR spectrum of 2 in CDCl ₃	15
Figure S12. HMBC NMR spectrum of 2 in CDCl ₃	16
Figure S13. ROESY NMR spectrum of 2 in CDCl ₃	17
Figure S14. (+)-LRESIMS spectrum of 2	18
Figure S15. (+)-HRESIMS spectrum of 2	19
Figure S16. ¹ H NMR spectrum of 3 in CDCl ₃	20
Figure S17. ¹³ C NMR spectrum of 3 in CDCl ₃	21
Figure S18. ¹ H– ¹ H COSY NMR spectrum of 3 in CDCl ₃	22
Figure S19. HSQC NMR spectrum of 3 in CDCl ₃	23
Figure S20. HMBC NMR spectrum of 3 in CDCl ₃	24
Figure S21. ROESY NMR spectrum of 3 in CDCl3	25
Figure S22. (+)-LRESIMS spectrum of 3	26
Figure S23. (+)-HRESIMS spectrum of 3	27
Figure S24. UV spectrum of 3	28
Figure S25. ¹ H NMR spectrum of 4 in CDCl ₃	29
Figure S26. ¹³ C NMR spectrum of 4 in CDCl ₃	30
Figure S27. ¹ H- ¹ H COSY NMR spectrum of 4 in CDCl ₃	31
Figure S28. HSQC NMR spectrum of 4 in CDCl ₃	32
Figure S29. HMBC NMR spectrum of 4 in CDCl3	33
Figure S30. ROESY NMR spectrum of 4 in CDCl ₃	34
Figure S31. (+)-LRESIMS spectrum of 4	35
Figure S32. (+)-HRESIMS spectrum of 4	36
Figure S33. UV spectrum of 4	37
Figure S34. ¹ H NMR spectrum of 5 in C ₅ D ₅ N	38
Figure S35. ¹³ C NMR spectrum of 5 in C ₅ D ₅ N	39
Figure S36. $^{1}H-^{1}H$ COSY NMR spectrum of 5 in C ₅ D ₅ N	40
Figure S37. HSQC NMR spectrum of 5 in C5D5N	41
Figure S38. HMBC NMR spectrum of 5 in C5D5N	42

Figure S39. ROESY NMR spectrum of 5 in C5D5N	43
Figure S40. (+)-LRESIMS spectrum of 5	44
Figure S41. (+)-HRESIMS spectrum of 5	45
Figure S42. UV spectrum of 5	46
Figure S43. The HPLC analysis for the purity of compound 1	47
Figure S44. The HPLC analysis for the purity of compound 2	48
Figure S45. The HPLC analysis for the purity of compound 3	49
Figure S46. The HPLC analysis for the purity of compound 4	50
Figure S47. The HPLC analysis for the purity of compound 5	51

Compds.	HeLa	A549	MCF-7	MDA-MB-231
1	46.98%	40.23%	22.60%	46.01%
2	96.82%	98.52%	94.44%	80.22%
3	-6.82%	6.32%	-4.61%	-3.09%
4	3.78%	12.12%	23.34%	29.44%
5	27.22%	23.36%	-1.74%	23.57%
6	42.41%	-16.16%	1.36%	2.85%
7	47.25%	17.07%	3.68%	10.63%
8	15.77%	28.09%	13.56%	21.63%
9	-12.59%	10.32%	1.45%	20.21%
10	9.63%	-15.30%	10.94%	5.52%
11	44.02%	12.36%	23.41%	47.55%
12	-0.24%	-3.75%	0.38%	19.12%

Table S1. The preliminary cytotoxic screening results for compounds 1–12 at 30 μ M

Number	Conformer	Energy (hartree)	Energy (kcal/mol)	Proportion (%)
1		-1247.5965011	-782879.280405261	39.47
2		-1247.5952798	-782878.514027298	10.81
3		-1247.5930675	-782877.125786925	1.04
4		-1247.5956592	-782878.752104592	16.17
5		-1247.5959064	-782878.907225064	21.01
6		-1247.5953387	-782878.550987637	11.51

Table S2. Re-optimized conformers, energies and proportions for 1

Number	Conformer	Energy (hartree)	Energy (kcal/mol)	Proportion (%)
1		-1320.4351139	-828586.238323389	67.93
2		-1320.4340493	-828585.570276243	21.97
3	من م	-1320.4316955	-828584.093243205	1.81
4		-1320.4331291	-828584.992841541	8.28

Table S3. Re-optimized conformers, energies and proportions for 3

Number	Conformer	Energy (hartree)	Energy (Kcal/mol)	Proportion (%)
1	, , , , , , , , , , , , , , , , , , ,	-1247.6113009	-782888.567427759	23.85
2		-1247.6118684	-782888.923539684	43.53
3		-1247.6115965	-782888.752919715	32.63

Table S4. Re-optimized conformers, energies and proportions for 5

Figure S2. ¹³C NMR spectrum of 1 in CDCl₃

Figure S3. ¹H–¹H COSY NMR spectrum of 1 in CDCl₃

Figure S4. HSQC NMR spectrum of 1 in CDCl₃

Figure S5. HMBC NMR spectrum of 1 in CDCl₃

Figure S6. ROESY NMR spectrum of 1 in CDCl₃

Figure S9. ¹³C NMR spectrum of 2 in CDCl₃

Figure S10. ¹H-¹H COSY NMR spectrum of 2 in CDCl₃

Figure S11. HSQC NMR spectrum of 2 in CDCl₃

Figure S12. HMBC NMR spectrum of 2 in CDCl₃

Figure S13. ROESY NMR spectrum of 2 in CDCl₃

Figure S14. (+)-LRESIMS spectrum of 2

Figure S15. (+)-HRESIMS spectrum of 2

Figure S16. ¹H NMR spectrum of 3 in CDCl₃

Figure S17. ¹³C NMR spectrum of 3 in CDCl₃

Figure S18. ¹H-¹H COSY NMR spectrum of 3 in CDCl₃

Figure S20. HMBC NMR spectrum of 3 in CDCl₃

Figure S22. (+)-LRESIMS spectrum of 3

Figure S23. (+)-HRESIMS spectrum of 3

Figure S24. UV spectrum of 3

-213.74210 200 -199.55 190 ·,, Ĥ. Ĥ 180 170 -166.01Ο 160 150 140 -136.29 130 120 110 f1 (ppm) 100 60.17 51.70 46.74 42.89 42.76 40.05 8 8 -36.82 -36.82 -35.46 -35.40 -30.88 -30.14 70 8 -30.14 -28.58 -28.53 -28.44 -26.58 -25.94 -23.02 -22.07 -21.86 -21.86 -21.84 50 6 8 -19.99 -16.48 15.81 15.38 20 ; -

Figure S27. ¹H-¹H COSY NMR spectrum of 4 in CDCl₃

Figure S28. HSQC NMR spectrum of 4 in CDCl₃

Figure S29. HMBC NMR spectrum of 4 in CDCl₃

0 -1.0 1. 0100 0 -1.5 2 00 f1 (ppm) 0' 10 0 -2.0 14 R AUX. -2.5 0 p 1 0 -3.0 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 12 (ppm)

Figure S30. ROESY NMR spectrum of 4 in CDCl₃

Figure S31. (+)-LRESIMS spectrum of 4

Figure S32. (+)-HRESIMS spectrum of 4

Figure S33. UV spectrum of 4

Figure S35. ¹³C NMR spectrum of 5 in C₅D₅N

Figure S36. $^{1}H-^{1}H$ COSY NMR spectrum of 5 in C₅D₅N

Figure S38. HMBC NMR spectrum of 5 in C_5D_5N

Figure S39. ROESY NMR spectrum of 5 in C₅D₅N

Figure S40. (+)-LRESIMS spectrum of 5

Figure S43. The HPLC analysis for the purity of compound 1

Figure S44. The HPLC analysis for the purity of compound ${\bf 2}$

Figure S45. The HPLC analysis for the purity of compound 3

Figure S46. The HPLC analysis for the purity of compound 4

Figure S47. The HPLC analysis for the purity of compound 5