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Abstract: We introduce SAR by Space, a concept to drastically accelerate structure-activity relationship
(SAR) elucidation by synthesizing neighboring compounds that originate from vast chemical spaces.
The space navigation is accomplished within minutes on affordable standard computer hardware
using a tree-based molecule descriptor and dynamic programming. Maximizing the synthetic
accessibility of the results from the computer is achieved by applying a careful selection of building
blocks in combination with suitably chosen reactions; a decade of in-house quality control shows that
this is a crucial part in the process. The REAL Space is the largest chemical space of commercially
available compounds, counting 11 billion molecules as of today. It was used to mine actives against
bromodomain 4 (BRD4). Before synthesis, compounds were docked into the binding site using a
scoring function, which incorporates intrinsic desolvation terms, thus avoiding time-consuming
simulations. Five micromolar hits have been identified and verified within less than six weeks,
including the measurement of IC50 values. We conclude that this procedure is a substantial time-saver,
accelerating both ligand and structure-based approaches in hit generation and lead optimization stages.
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1. Introduction

Over the last decades, medicinal chemistry has made a major breakthrough into expanding the
accessible chemical space, which is estimated to amount to approximately 1063 possibilities [1,2].
With introducing high-throughput technologies in various areas of drug discovery, as well as major
advancements in computational techniques, it became possible to mine the “observable” chemical space
in an efficient manner [2,3]. A number of papers have appeared describing efforts to enumerate as many
as possible compounds which might be relevant to drug discovery, the “Generated DataBase” (GDB)
by Reymond group being one of the most prominent examples of such studies [4]. Combined with
the current highly improved virtual screening capabilities, such “virtual” databases are a promising
source of novel lead structures for various biological targets [2]. The major drawback of virtually
generated databases is related to synthetic accessibility of the virtual hits obtained after in silico
screening. One of the possible ways to address this problem relies on the use of commercially available
off-the-shelf compounds (e.g., ZINC database [5,6]); in this case, however, patentability issues might
arise when the initial hit is progressed further. Several big pharma companies, as well as academic
institutions, reported the construction of large virtual libraries based on in-house validated or reported
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reactions (e.g., Merck’s MASSIV space [7] or Pfizer’s PGVL [8]) and internally or commercially available
reagents [9,10], respectively [2]. Over a decade ago, we used a similar idea to generate the so-called
REAL Database [11,12], which is covered by compounds easily synthesizable from the available
collection of pre-validated building blocks through a set of validated reactions, and deliverable with
high feasibility within short times upon demand.

Traditionally, in silico screening was mostly conducted in the so-called “enumerated” libraries
that range in size from a few thousand to, recently, a few hundred million molecules (7 × 108, the
REAL Database) [13]. Being inaccessible to any enumeration-based method, much larger numbers
than the traditional libraries can only be reached when exploiting chemical spaces that are created
using combinatorics [3,14]. With a focus on commercial availability, we have used this idea to create a
combinatorial reaction-driven chemical space, the REAL Space (version 1: 6.5 × 108, currently: 1.1 × 1011

molecules). The molecules in the REAL Space are not stored as the final enumerated structures, but as
the building blocks and the chemical reactions of how to combine them to obtain the final products.
This is not to be confused with the well-known, enumerated REAL Database (previous version used
in [15]: 1.7 × 108; currently: 7 × 108) [12], that is magnitudes smaller than the REAL Space. Both
REAL Database and REAL Space are continuously being further expanded; the REAL Space counts
over 11 billion tangible compounds today. Navigation through such large combinatorial spaces can
be accomplished with software that builds up the results on-the-fly, assembling the hits during the
search process [16]. The underlying algorithm, Feature Trees (FTrees), describes molecules as trees,
the nodes of which contain physicochemical information about the contributing atoms. A similarity
value between two virtual molecules is computed by creating the best possible alignment of two trees
(cp. below for more details). It should be noted that due to the huge size of the REAL Space, as well as
the fact that the structures of the final compounds are not enumerated and retrieved prior to the search,
classical substructure-based searches become very complicated and time-consuming as compared to
the similarity-based one.

In a recent paper, we demonstrated the utility of the REAL Database for the straightforward
fragment-based discovery of novel bromodomain-containing protein 4 (BRD4) inhibitors [15]. This
extensively studied member of the bromo- and extra terminal domain (BET) family has been related to
numerous diseases including cancer, human immunodeficiency virus (HIV) infection, cardiovascular
diseases, inflammation, and central nervous system (CNS) disorders [17–22]. Several BRD4 modulators
have reached clinical trials as anti-cancer agents, e.g., Mivebresib (ABBV-075, 1), GSK-525762 (2),
CPI-0610 (3), or AZD5153 (4) [18,22–24] (Figure 1). Unfortunately, none of them has reached higher
phases (i.e., at least phase 2) in clinical studies so far. The known molecules obviously fulfill
pharmacophoric needs to bind to the target, but none of them seems to have the perfect structure to
become a drug. Therefore, new bromodomain ligands with pharmacophoric features but of slightly
different structure are of significant interest. For cases like this, fuzzy similarity descriptors capturing
pharmacophore-like features such as the FTrees algorithm [25] are suitable as these compute similarities
between molecules based on physico-chemical properties of parts of the molecule.

Figure 1. Investigational drugs—bromodomain 4 (BRD4) inhibitors.

In our work mentioned above [15], the REAL Database was used as a source of highly feasible
compounds for fragment evolution using the “SAR by catalog” approach. Although the proposed
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methodology was efficient and could deliver low-micromolar hits in a timely manner, it required
synthesis and biological evaluation of thousands of analogs for the initially discovered active fragments.
This approach becomes even less feasible when much larger REAL Space is considered as the compound
source. In this work, we have developed an alternative strategy for hit expansion which was based on
virtual screening for analogs in the REAL Space, followed by synthesis and biological evaluation of a
small series of virtual hits thus identified.

2. Results and Discussion

The construction of the first version of the REAL Space, which was used in this project, relied on
106 well-validated chemical transformations and ca. 130,000 off-the-shelf building blocks. Statistical
data on the reactivity collected from over a decade was used to assign the reactivity score for each
combination of building blocks and the corresponding reactions, and only the combinations with the
highest scores were selected (the score assignment might also include a visual inspection by an expert)
(Figure 2). This resulted in 54,548 well-validated building blocks, which were used to generate the
REAL Space, version 1, containing 647,141,139 molecules [12].

Figure 2. Selection of building blocks for REAL Space construction.

The REAL Space navigation uses the query and fragments it in multiple ways (for further details,
see the original FTrees-FS publication [16]). Starting with a query fragment, the chemical space
fragments (that correspond to building blocks) are searched in such a way that the user-imposed target
similarity is matched as good as possible. The results are built-up by adding one result fragment
to the next one while continuously optimizing the similarity towards the given “target similarity”
(cp. above). The similarity is defined through the best possible alignment of query fragments to REAL
Space fragments, using the FTrees graphs as trees to be aligned [25].

The scope of this work was to increase the set of actives—as a second round after a first study—in
a fast follow-up. During the first work [15] 14 compounds were found which showed high thermal shift
and enzyme inhibition at 40 µM in a time-resolved fluorescence resonance energy transfer (TR-FRET)
assay against BRD4 but no measurable IC50. To find close neighbors with measurable IC50s those
14 molecules (Figure 3) were used as queries to mine from the REAL Space (version 1) [12]. For each
query molecule, 5000 similar molecules were retrieved from the REAL Space using the FTrees-FS
algorithm (cp. below) [16]. The resulting molecules were filtered for duplicates. As for post-processing,
the hit molecules were docked (PDB structure 3mxf) using the pharmacophoric constraint that the
H-bond donor on Asn140 had to be met. Molecules for testing were picked in SeeSAR [26] with putting
attention not only to a good predicted binding affinity but as well good torsion qualities [27], plausible
interactions and good physicochemical parameters. A set of 32 compounds was selected for synthesis.
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Figure 3. Fourteen compounds from the previous work [15] used as the queries to mine from the
REAL Space.

The compounds were synthesized according to the standard protocols for typical parallel
synthesis transformations, including amide/sulfonamide coupling, reductive amination, urea synthesis,
arylation/alkylation, etc. The synthesis was completed in a three-week period and all the 32 compounds
could actually be synthesized. The products obtained were subjected to thermal shift assay (TSA)
using recombinant, truncated, His-tagged bromodomain 1 of BRD4 [28] at 40, 20, and 10 µM (Figure 4).
The hit selection criteria followed those described in our previous publication [15]:

|∆Tm| ≥ |∆Tm,av| + 3|σ(∆Tm)| (1)

|∆Tm| ≥ 2|σ(Tm,DMSO)| (2)

where ∆Tm—thermal shift caused by the compound; ∆Tm,av—mean thermal shift value within the
plate; σ(∆Tm)—standard deviation of the thermal shift values within the plate; σ(Tm,DMSO)—standard
deviation of the melting temperature values obtained for the control samples.

Figure 4. Thermal shift values (∆Tm) for the 32 synthesized compounds.
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As a result, 12 hits 19–30 were identified which represented two distinct structural series
(Figure 5). One of these series (6-amino [1,2,4]triazolo[4,3-b]pyridazine derivatives) has been
well-documented since its representative AZD5153 (4) has recently entered Phase Ib clinical trials
against hematologic malignancies [24]. The other one (5-substituted indolin-2-ones, 6-substituted
3,4-dihydroquino-lin-2(1H)-ones, and their analogs) is much less studied; only a few representatives
with modest structural similarity can be found (Figure 6) [29,30].

Figure 5. Two structural series identified after the thermal shift assay.

Figure 6. Known BRD4 inhibitors—analogs of the series identified in this work.

Dose-response curves were built for these compounds, and for 5 of them, IC50 values were
determined in TR-FRET assay as an average from three independent experiments (Table 1). Comparing
the resulting hit molecules with the corresponding initial queries, one can see considerable structural
differences. Low Tanimoto similarity (calculated from Morgan fingerprints using RDKit in KNIME)
indicates that those hits could be easily be missed using a classical similarity and even sub-structural
search. The relatively high FTrees similarity explains why they were not missed in the REAL Space
search: The molecules still have very similar pharmacophoric properties in a similar arrangement. As
the FTrees algorithm is fuzzy regarding the connectivity this can lead as well to significantly different
binding modes of query and hit. This is exemplary shown in Figure 7 for compound 20 and its
respective query molecule 15. The shift of the nitrogen atom to the β position of the pyridine ring, as
well as the different linker length, led to a completely flipped binding mode. It is also important to
stress that the starting points of this study which led to the hits (compounds 19–22) had no significant
activity against BRD4 in the functional (TR-FRET) assay; they were identified only in the binding
assay (TSA).
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Table 1. Most active BRD4 inhibitors identified after TR-FRET (time-resolved fluorescence energy transfer) assay.

# Query in the REAL Space Hit
Similarity ∆Tm (◦C) at IC50 (µM)

Tanimoto FTrees 40 µM 20 µM 10 µM

1 0.456 0.956 0.71 ± 0.01 0.39 ± 0.08 0.31 ± 0.05 10.7

2 0.277 0.920 1.52 ± 0.59 0.72 ± 0.41 0.30 ± 0.10 26.4

3 0.323 0.933 1.33 ± 0.17 0.98 ± 0.22 0.34 ± 0.13 44.6

4 0.333 0.953 1.56 ± 0.05 0.78 ± 0.14 0.34 ± 0.19 68.2

5 0.356 0.932 0.53 ± 0.25 0.44 ± 0.06 0.29 ± 0.01 141



Molecules 2019, 24, 3096 7 of 11

Figure 7. Binding poses of the molecules 15 (in yellow) and 20 (in green). The small changes of the
molecular structure result in very different binding modes.

3. Materials and Methods

3.1. General

All tested compounds were obtained from Enamine Ltd. (Kyiv, Ukraine). Stock solutions of
the tested compounds were prepared in 100% DMSO and were stored at −20 ◦C until use. The
bromodomain 1 of BRD4 was expressed using pNIC28-Bsa4 plasmid vector with an insert representing
domain 1 of BRD4 (44–168 AA, sequence entry O60885.1 in UniProtKB Database [31]), N-terminus
His6-tag and 16-amino acid linker.

3.2. Thermal Shift Assays

All thermal shift assay (TSA) experiments with BRD4 protein were performed using ViiA™7
real-time PCR System equipped with 384-well heat block (Applied Biosystems, Waltham, MA, USA).
General TSA methodology was adopted from the literature [32–34] and experimentally modified in
order to optimize conditions for measuring BRD4 melting temperature shifts upon interaction with
small molecules. The optimal buffer composition for the TSA procedure was determined as described
previously. [15] Buffer consisting of 50 mM Phosphate-Na, 100 mM NaCl, pH = 7.5 was selected for
BRD4 screening in this study. Purified BRD4 protein was pre-mixed with SYPRO Orange dye (Thermo
Fischer Scientific, Cat. S6650, 5000x stock, Waltham, MA, USA) to prepare a master mix at 4 µM protein
and 6× dye concentrations. Tested compounds were added to the protein-dye master mix at 40, 20, or
10 µM at 1% final DMSO concentration and incubated at 4 ◦C for 1 h in MicroAmp® optical 384-well
reaction plates (ThermoFisher, Cat. 4309849, Waltham, MA, USA) sealed with optical sealing film
(ThermalSeal RT2, Excel Scientific, Cat. TS-RT2, Victorville, CA, USA). The volumes of all reaction
mixtures were 10 µL (4 µg BRD4 per well). The reaction plates were then kept at ambient temperature
(22–24 ◦C) for an additional 15 min to ensure protein-compound interactions. Thermal scanning was
performed by raising the temperature to 40 ◦C at 1.6 ◦C/min without signal detection followed by
40 ◦C to 90 ◦C temperature ramp at 0.05 ◦C/s with constant fluorescence intensity reading at 1-sec
intervals using EX470/EM623 nm filter set.

Primary screening of the whole test set of 49 compounds was carried out in singletons. The raw
data of dye fluorescence intensity change upon protein melt were exported using the ViiA7 RUO
software (Applied Biosystems/Thermo Fischer Scientific). Further data visualization, curve fitting,
melting temperature calculations on the raw fluorescence data were performed using custom-made
Microsoft Excel scripts. The peak of the first derivative for the fluorescence curve was used to define
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melting temperature (Tm). Averaged Tm values for the control wells containing only the protein, dye
and 1% DMSO were used as a reference point to determine melting temperature shifts (∆Tm).

3.3. TR-FRET Assays and IC50 Measurements

All TR-FRET assays and IC50 measurements were performed using BRD4 (BD1+BD2) TR-FRET
assay kit from BPS Bioscience (www.bpsbioscience.com) following the standard procedure [35].

3.4. Molecular Docking Studies

The 14 best molecules—regarding their thermal shift—from a previous publication [15] were
used as queries to mine from the REAL Space (version 1, containing 647 million molecules) [12]. For
each query molecule, 5000 similar molecules were retrieved from the REAL Space using the FTrees-FS
algorithm [16]. The resulting molecules were filtered for duplicates. All molecular batch processing
was accomplished using the KNIME package v3.5.3 [36], containing BioSolveIT nodes as well as all
community nodes. All molecular initialization and consistency was ensured through NAOMI and
ProToss functionalities [37,38]. As post-processing step, the hit molecules were docked. To ensure a
reasonable docking, six different crystal structures of BRD4 were loaded from the PDB (codes: 3mxf,
3zyu, 4e96, 4nud, 5igk, 5uvw) and superposed using SeeSAR v7.2 [26]. The binding modes of all
co-crystalized ligands and their key-interaction points inside the binding pockets were analyzed. Those
were found to be mainly H-bonds to Asn140, Asp88, and water-mediated H-bonds to Ile144 and Gln85.
Re-docking of known binders from the crystal structures showed best results with the crystal structure
3mxf. The active site was defined as a 7.5 Å around the ligand JQ1. To improve the docking results a
pharmacophore was applied, which was that the H-bond donor on Asn140 had to be met. This had
shown the best ranking of known binders in the test-dockings trying different pharmacophores. All
64,683 molecules were docked with 5 poses per molecule using FlexX [39] and subsequently scored
using HYDE [40,41]. Thirty-three molecules for testing were picked in SeeSAR [26].

4. Conclusions

This work demonstrates a much-accelerated structure-activity relationship (SAR) exploration via
fast navigation through large chemical space. Using query compounds to mine in the reaction-driven
REAL Space we identified molecules with similar pharmacophores but different Bemis–Murcko
scaffolds. As expected, the hits show low Tanimoto similarity as compared to the original query
structures. Pocket compatibility was rapidly assessed using parallel docking. Compared to both the
classical as well as fragment-based hit expansion approaches (in particular the one used in our previous
work [15]), the methodology proposed herein enabled much faster evaluation of SAR hypotheses
(Figure 8). More importantly, the strategy required much fewer (100-fold) compounds to be synthesized
and subjected to “wet” screening, which resulted in higher cost-efficiency. Compared to previous
works, the chemical space that served as a pool for the compound selection to mine in is orders
of magnitude larger. Notably, all the selected compounds could be synthesized within a 3-week
timeframe. In summary, the approach described here has the potential to significantly streamline the
early drug discovery process in general.

www.bpsbioscience.com
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Figure 8. The workflow of the project described in this work compared to the fragment hit expansion
used in our previous publication [15].

Author Contributions: Conceptualization: F.M.K., C.L. and Y.S.M.; Creation of REAL Space (Content): O.S.
and Y.S.M.; Creation of REAL Space (Software): CL; Investigation (Modeling Tasks): F.M.K.; Investigation
(Experiments): P.B. and A.G.; Data Curation: O.S. and K.E.G.; Writing—Original Draft Preparation: F.M.K., M.G.,
O.O.G., and O.S.; Writing—Review and Editing: O.O.G., C.L. and Y.S.M.; Supervision: F.M.K. and Y.S.M.

Funding: Y.S.M. was funded by NIH (Grant No. GM133836). O.O.G. was funded by the Ministry of Education
and Science of Ukraine (Grant No. 19BF037-03).

Acknowledgments: The authors thank Andrey A. Tolmachev for his encouragement and support.

Conflicts of Interest: The work herein is a joint collaboration between Enamine or BioSolveIT of which some of
the authors are employees; the chemical space navigation software is available for free for testing but commercially
available for longer term usage from BioSolveIT. Enamine offers the compounds for purchase. The funding parties
had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

References

1. Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular
modeling perspective. Med. Res. Rev. 1996, 16, 3–50. [CrossRef]

2. Walters, W.P. Virtual chemical libraries. J. Med. Chem. 2019, 62, 1116–1124. [CrossRef]
3. Hoffmann, T.; Gastreich, M. The next level in chemical space navigation: Going far beyond enumerable

compound libraries. Drug Discov. Today 2019, 24, 1148–1156. [CrossRef] [PubMed]
4. Reymond, J.-L. The chemical space project. Acc. Chem. Res. 2015, 48, 722–730. [CrossRef] [PubMed]
5. Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry

for biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [CrossRef] [PubMed]
6. Lucas, X.; Grüning, B.A.; Bleher, S.; Günther, S. The purchasable chemical space: A detailed picture. J. Chem.

Inf. Model. 2015, 55, 915–924. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1&lt;3::AID-MED1&gt;3.0.CO;2-6
http://dx.doi.org/10.1021/acs.jmedchem.8b01048
http://dx.doi.org/10.1016/j.drudis.2019.02.013
http://www.ncbi.nlm.nih.gov/pubmed/30851414
http://dx.doi.org/10.1021/ar500432k
http://www.ncbi.nlm.nih.gov/pubmed/25687211
http://dx.doi.org/10.1021/ci3001277
http://www.ncbi.nlm.nih.gov/pubmed/22587354
http://dx.doi.org/10.1021/acs.jcim.5b00116
http://www.ncbi.nlm.nih.gov/pubmed/25894297


Molecules 2019, 24, 3096 10 of 11

7. Knehans, T.; Klingler, F.-M.; Kraut, H.; Saller, H.; Herrmann, A.; Rippmann, F.; Eiblmaier, J.; Lemmen, C.;
Krier, M. Merck AcceSSible InVentory (MASSIV): In silico synthesis guided by chemical transforms obtained
through bootstrapping reaction databases. In Proceedings of the Abstracts of Papers, 254th ACS National
Meeting & Exposition, Washington, DC, USA; 2017.

8. Hu, Q.; Peng, Z.; Sutton, S.C.; Na, J.; Kostrowicki, J.; Yang, B.; Thacher, T.; Kong, X.; Mattaparti, S.; Zhou, J.Z.;
et al. Pfizer global virtual library (PGVL): A chemistry design tool powered by experimentally validated
parallel synthesis information. ACS Comb. Sci. 2012, 14, 579–589. [CrossRef] [PubMed]

9. Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G.
DOGS: Reaction-driven de novo design of bioactive compounds. PLoS Comput. Biol. 2012, 8, 1–12. [CrossRef]

10. Chevillard, F.; Stotani, S.; Karawajczyk, A.; Hristeva, S.; Pardon, E.; Steyaert, J.; Tzalis, D.; Kolb, P. Interrogating
dense ligand chemical space with a forward-synthetic library. Proc. Natl. Acad. Sci. U.S.A. 2019, 116,
11496–11501. [CrossRef]

11. Shivanyuk, A.; Ryabukhin, S.V.; Bogolubsky, A.V.; Tolmachev, A. Enamine real database: Making chemical
diversity real. Chem. Today 2007, 25, 58–59.

12. Enamine REAL Space and REAL Database. Available online: https://enamine.net/library-synthesis/real-
compounds (accessed on 7 September 2018).

13. Lyu, J.; Irwin, J.J.; Roth, B.L.; Shoichet, B.K.; Levit, A.; Wang, S.; Tolmachova, K.; Singh, I.; Tolmachev, A.A.;
Che, T.; et al. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566, 224–229.
[CrossRef]

14. Nicolaou, C.A.; Watson, I.A.; Hu, H.; Wang, J. The proximal lilly collection: Mapping, exploring and
exploiting feasible chemical space. J. Chem. Inf. Model. 2016, 56, 1253–1266. [CrossRef]

15. Borysko, P.; Moroz, Y.S.; Vasylchenko, O.V.; Hurmach, V.V.; Starodubtseva, A.; Stefanishena, N.; Nesteruk, K.;
Zozulya, S.; Kondratov, I.S.; Grygorenko, O.O. Straightforward hit identification approach in fragment-based
discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Bioorganic Med. Chem. 2018, 26, 3399–3405.
[CrossRef]

16. Rarey, M.; Stahl, M. Similarity searching in large combinatorial chemistry spaces. J. Comput. Aided. Mol. Des.
2001, 15, 497–520. [CrossRef]

17. Cochran, A.G.; Conery, A.R.; Sims, R.J. Bromodomains: A new target class for drug development. Nat. Rev.
Drug Discov. 2019, 18, 609–628. [CrossRef]

18. Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting
bromodomain-containing protein 4. J. Med. Chem. 2017, 60, 4533–4558. [CrossRef]

19. Donati, B.; Lorenzini, E.; Ciarrocchi, A. BRD4 and cancer: Going beyond transcriptional regulation. Mol.
Cancer 2018, 17, 164. [CrossRef]

20. Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev.
Drug Discov. 2014, 13, 337–356. [CrossRef]

21. Ali, I.; Conrad, R.J.; Verdin, E.; Ott, M. Lysine acetylation goes global: From epigenetics to metabolism and
therapeutics. Chem. Rev. 2018, 118, 1216–1252. [CrossRef]

22. Duan, Y.; Guan, Y.; Qin, W.; Zhai, X.; Yu, B.; Liu, H. Targeting Brd4 for cancer therapy: Inhibitors and
degraders. Medchemcomm 2018, 9, 1779–1802. [CrossRef]

23. Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.;
Felletar, I.; et al. Selective inhibition of BET bromodomains. Nature 2010, 468, 1067–1073. [CrossRef]

24. Bradbury, R.H.; Callis, R.; Carr, G.R.; Chen, H.; Clark, E.; Feron, L.; Glossop, S.; Graham, M.A.;
Hattersley, M.; Jones, C.; et al. Optimization of a series of bivalent triazolopyridazine based bromodomain and
extraterminal inhibitors: The discovery of (3 R )-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-
4-piperidyl]phenoxy]ethyl]-1,3-dimethyl-piperazin-2. J. Med. Chem. 2016, 59, 7801–7817. [CrossRef]

25. Rarey, M.; Dixon, J.S. Feature trees: A new molecular similarity measure based on tree matching. J. Comput.
Aided. Mol. Des. 1998, 12, 471–490. [CrossRef]

26. BioSolveIT GmbH SeeSAR version 7.2. Available online: https://www.biosolveit.de/SeeSAR/ (accessed on
10 January 2018).

27. Schärfer, C.; Schulz-Gasch, T.; Hert, J.; Heinzerling, L.; Schulz, B.; Inhester, T.; Stahl, M.; Rarey, M. CONFECT:
Conformations from an expert collection of torsion patterns. ChemMedChem 2013, 8, 1690–1700. [CrossRef]

http://dx.doi.org/10.1021/co300096q
http://www.ncbi.nlm.nih.gov/pubmed/23020747
http://dx.doi.org/10.1371/journal.pcbi.1002380
http://dx.doi.org/10.1073/pnas.1818718116
https://enamine.net/library-synthesis/real-compounds
https://enamine.net/library-synthesis/real-compounds
http://dx.doi.org/10.1038/s41586-019-0917-9
http://dx.doi.org/10.1021/acs.jcim.6b00173
http://dx.doi.org/10.1016/j.bmc.2018.05.010
http://dx.doi.org/10.1023/A:1011144622059
http://dx.doi.org/10.1038/s41573-019-0030-7
http://dx.doi.org/10.1021/acs.jmedchem.6b01761
http://dx.doi.org/10.1186/s12943-018-0915-9
http://dx.doi.org/10.1038/nrd4286
http://dx.doi.org/10.1021/acs.chemrev.7b00181
http://dx.doi.org/10.1039/C8MD00198G
http://dx.doi.org/10.1038/nature09504
http://dx.doi.org/10.1021/acs.jmedchem.6b00070
http://dx.doi.org/10.1023/A:1008068904628
https://www.biosolveit.de/SeeSAR/
http://dx.doi.org/10.1002/cmdc.201390041


Molecules 2019, 24, 3096 11 of 11

28. Ember, S.W.J.; Zhu, J.-Y.; Olesen, S.H.; Martin, M.P.; Becker, A.; Berndt, N.; Georg, G.I.; Schönbrunn, E.
Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase
inhibitors. ACS Chem. Biol. 2014, 9, 1160–1171. [CrossRef]

29. Romero, F.A.; Taylor, A.M.; Crawford, T.D.; Tsui, V.; Côté, A.; Magnuson, S. Disrupting acetyl-lysine
recognition: progress in the development of bromodomain inhibitors. J. Med. Chem. 2016, 59, 1271–1298.
[CrossRef]

30. Liu, Z.; Tian, B.; Chen, H.; Wang, P.; Brasier, A.R.; Zhou, J. Discovery of potent and selective BRD4 inhibitors
capable of blocking TLR3-induced acute airway inflammation. Eur. J. Med. Chem. 2018, 151, 450–461.
[CrossRef]

31. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [CrossRef]
32. Lo, M.-C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of

fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 2004,
332, 153–159. [CrossRef]

33. Matulis, D.; James, K.; Kranz, F.; Raymond Salemme, A.; Todd, M.J. Thermodynamic stability of carbonic
anhydrase: Measurements of binding affinity and stoichiometry using thermofluor. Biochemistry 2005, 44,
5258–5266. [CrossRef]

34. Niesen, F.H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions
that promote protein stability. Nat. Protoc. 2007, 2, 2212–2221. [CrossRef]

35. BRD4 (BD1+BD2) TR-FRET Assay Kit Data Sheet. Available online: http://bpsbioscience.com/media/

wysiwyg/BRDs/32612_150629.pdf (accessed on 18 January 2018).
36. KNIME AG KNIME version 3.5.3. Available online: https://www.knime.com/downloads/download-knime

(accessed on 12 December 2017).
37. Urbaczek, S.; Kolodzik, A.; Fischer, J.R.; Lippert, T.; Heuser, S.; Groth, I.; Schulz-Gasch, T.; Rarey, M. NAOMI:

On the almost trivial task of reading molecules from different file formats. J. Chem. Inf. Model. 2011, 51,
3199–3207. [CrossRef]

38. Bietz, S.; Urbaczek, S.; Schulz, B.; Rarey, M. Protoss: A holistic approach to predict tautomers and protonation
states in protein-ligand complexes. J. Cheminform. 2014, 6, 1–12. [CrossRef]

39. BioSolveIT GmbH LeadIT version 2.32. Available online: https://www.biosolveit.de/LeadIT/ (accessed on 27
August 2019).

40. Reulecke, I.; Lange, G.; Albrecht, J.; Klein, R.; Rarey, M. Towards an integrated description of hydrogen
bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function.
ChemMedChem 2008, 3, 885–897. [CrossRef]

41. Schneider, N.; Hindle, S.; Lange, G.; Klein, R.; Albrecht, J.; Briem, H.; Beyer, K.; Claußen, H.; Gastreich, M.;
Lemmen, C.; et al. Substantial improvements in large-scale redocking and screening using the novel HYDE
scoring function. J. Comput. Aided. Mol. Des. 2012, 26. [CrossRef]

Sample Availability: Samples of the compounds 19–30 are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/cb500072z
http://dx.doi.org/10.1021/acs.jmedchem.5b01514
http://dx.doi.org/10.1016/j.ejmech.2018.04.006
http://dx.doi.org/10.1093/nar/gkw1099
http://dx.doi.org/10.1016/j.ab.2004.04.031
http://dx.doi.org/10.1021/bi048135v
http://dx.doi.org/10.1038/nprot.2007.321
http://bpsbioscience.com/media/wysiwyg/BRDs/32612_150629.pdf
http://bpsbioscience.com/media/wysiwyg/BRDs/32612_150629.pdf
https://www.knime.com/downloads/download-knime
http://dx.doi.org/10.1021/ci200324e
http://dx.doi.org/10.1186/1758-2946-6-12
https://www.biosolveit.de/LeadIT/
http://dx.doi.org/10.1002/cmdc.200700319
http://dx.doi.org/10.1007/s10822-011-9531-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General 
	Thermal Shift Assays 
	TR-FRET Assays and IC50 Measurements 
	Molecular Docking Studies 

	Conclusions 
	References

