Highly active iminopyridine iron-based catalysts for the polymerization of isoprene

Obaid H. Hashmi, Yohan Champouret * and Marc Visseaux *

UMR 8181–UCCS–Unité de Catalyse et de Chimie du Solide, ENSCL, Centrale Lille, University of Artois, University of Lille, CNRS, F-59000 Lille, France

* Correspondence: yohan.champouret@univ-lille.fr (Y.C.); marc.visseaux@univ-lille.fr (M.V.)

-SUPPORTING INFORMATION-

Figures S1-S3. 1H NMR, 13C NMR and 19F NMR of the ligand L6

Figures S4-S8. ¹H NMR of the ligands L1-L5

Figures S9-S14. 1H NMR of the complexes C1-C6

Figure S15. ¹H NMR spectra of stacked of all iron-based complexes

Table S1. Polymerization of isoprene using C1 – C6/AlEt₃/[Ph₃C][B(C₆F₅)₄] (1/10/1) catalytic systems

Table S2. Polymerization of isoprene using C1 – C6/MAO (1/500) catalytic systems

Table S3. Polymerization of isoprene using C1 – C6/Al^{*i*}Bu₃/[Ph₃C][B(C₆F₅)₄] (1/3/1) catalytic systems

Table S4. Polymerization of isoprene (2,500 eq.) using C4/ MAO (1/500) catalytic systems

Figure S16. Kinetic Profile of Polymerization with complexes C1-C4

Table S5. Polymerization of 5,000 equiv. of isoprene/Fe using $C1 - C4/Al^{i}Bu_{3}/[Ph_{3}C][B(C_{6}F_{5})_{4}]$ catalytic systems ^a

Figures S17-S53. ¹H and ¹³C NMR spectra of the polymers obtained

Figure S54. SEC traces of the polymers obtained

Figure S1. ¹H NMR of L6 (300 MHz, C₆D₆, 25 °C)

¹H NMR (300 MHz, C₆D₆) δ (ppm) = 8.35 (dd, ³J_{HH} = 4.8 Hz, ⁴J_{HH} = 1.7 Hz, 1H, H_a), 8.25 (d, ³J_{HH} = 7.8 Hz, 1H, H_b), 7.03 (ddd, ³J_{HH} = 7.8, 7.8 Hz, ⁴J_{HH} = 1.7 Hz, 1H, H_c), 6.63 (dd, ³J_{HH} = 7.8 Hz, ³J_{HH} = 4.8 Hz, 1H, H_d), 2.20 (s, 3H, H_e).

¹³C NMR (75 MHz, C₆D₆, 25 °C) δ (ppm) = 175.1, 154.9, 148.5, 139.7, 139.3, 139.1, 138.7, 135.9, 125.4, 121.8, 17.5. At this stage, we could not assign the ¹³C NMR spectrum

Figure S3. ¹⁹F NMR of L6 (282 MHz, C₆D₆, 25 °C)

¹⁹F NMR (282 MHz, C₆D₆, 25 °C) δ (ppm) = -152.5 (d, *J* = 23.8 Hz, 2F, F_{meta}), -163.1 (t, *J* = 21.7 Hz, 1F, F_{para}), -163.6 (dd, *J* = 23.8, 21.7 Hz, 2F, F_{ortho}).

Figure S4. 1H NMR of L1 (300 MHz, CDCl3, 25 °C)

¹H NMR of L1 (300 MHz, CDCl₃, 25 °C) δ (ppm) = 8.71 (d broad, 1H, H_a), 8.40 (dd broad, 1H, H_b), 7.82 (dd broad, 1H, H_c), 7.39 (dd broad, 1H, H_d), 7.09-6.98 (m, 3H, $H_{e,f}$), 2.20 (s, 3H, H_g), 2.05 (s, 6H, H_b). The ¹H NMR spectrum of L1 was poorly resolved; however, the chemical shifts and integrations of each proton are consistent with previous reported data.

Ref [33] *New J. Chem.* **2002**, *26* (4), 387–397: ¹H NMR (CDCl₃): δ (ppm) = 8.69 (ddd, ³ *J*(HH) = 4.9, ⁴ *J*(HH) = 1.8, ⁵ *J*(HH) = 0.9 Hz, 1H, *H*_{6-py}), 8.30 (ddd, ³ *J*(HH) = 7.7, ⁴ *J*(HH) = 1.3, ⁵ *J*(HH) = 0.9 Hz, 1H, *H*_{3-py}), 7.83 (td, ³ *J*(HH) = 7.7, ⁴ *J*(HH) = 1.8 Hz, 1H, *H*_{4-py}), 7.40 (ddd, ³ *J*(HH) = 7.7, 4.9, ⁴ *J*(HH) = 1.3 Hz, 1H, *H*_{5-py}), 6.91–7.10 (m, 3H, *H*_{phenyl}), 2.20 (s, 3H, *H*_{bridge-Me}), 2.05 (s, 6H, *H*_{Me}).

Ref [34] *Org. Chem. Front.* **2014**, *1* (9), 1101–1106: ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 8.68-8.66 (m, 1H, H_{6-py}), 8.38-8.36 (m, 1H, H_{3-py}), 7.82-7.78 (m, 1H, H_{4-py}), 7.39-7.36 (m, 1H, H_{5-py}), 7.06 (d, *J* = 7.2 Hz, 2H, *H*_{phenyl}), 6.93 (t, *J* = 7.6 Hz, 1H, *H*_{phenyl}), 2.19 (s, 3H, *H*_{bridge-Me}), 2.04 (s, 6H, *H*_{Me}).

Figure S5. ¹H NMR of L2 (300 MHz, CDCl₃, 25 °C)

¹H NMR of L2 (300 MHz, CDCl₃, 25 °C) δ (ppm) = 8.70 (ddd, ³*J*_{HH} = 4.8 Hz, ⁴*J*_{HH} = 1.7 Hz, ⁵*J*_{HH} = 0.8 Hz, 1H, *H*_a), 8.41 (d, ³*J*_{HH} = 8.1 Hz, 1H, *H*_b), 7.85 (ddd, ³*J*_{HH} = 8.1 Hz, ⁴*J*_{HH} = 1.7 Hz, 1H, *H*_c), 7.42 (ddd, ³*J*_{HH} = 8.1 Hz, ⁴*J*_{HH} = 4.8 Hz, ⁵*J*_{HH} = 0.8 Hz, 1H, *H*_d), 7.21-7.03 (m, 3H, *H*_{e,f}), 2.74 (sept, ³*J*_{HH} = 6.9 Hz, 2H, *H*_g), 2.24 (s, 3H, *H*_b), 1.15 (d, ³*J*_{HH} = 6.9 Hz, 12H, *H*_i). The chemical shifts and integrations of each proton are consistent with previous reported data.

Ref [32] *J. Organomet. Chem.* **2000**, 606 (2), 112–124: ¹H NMR (CDCl₃) δ (ppm) = 8.69 (d, 1H, *H*_{6-Py}), 8.36 (d, 1H, *H*_{3-Py}), 7.82 (t, 1H, *H*_{4-Py}), 7.39 (m, 1H, *H*_{5-Py}), 7.11-7.20 (m, 3H, *H*_{phenyl}), 2.75 (m, 2H, CHMe₂), 2.21 (s, 3H, *H*_{bridge-Me}), 1.15 (d, 12H, *H*_{Me})

Ref [33] *New J. Chem.* **2002**, *26* (4), 387–397: ¹H NMR (CDCl₃) δ (ppm) = 8.70 (ddd, ³ *J*(HH) = 5.0, ⁴ *J*(HH) = 1.8, ⁵ *J*(HH) = 0.9 Hz, 1H, H_{6-py}), 8.37 (ddd, ³ *J*(HH) = 7.7, ⁴ *J*(HH) = 1.3, ⁵ *J*(HH) = 0.9 Hz, 1H, H_{3-py}), 7.83 (td, ³ *J*(HH) = 7.7, ⁴ *J*(HH) = 1.8 Hz, 1H, H_{4-py}), 7.41 (ddd, ³ *J*(HH) = 7.7, 5.0, ⁴ *J*(HH) = 1.3 Hz, 1H, H_{5-py}), 7.01– 7.21 (m, 3H, *H*_{phenyl}), 2.76 (sept., ³ *J*(HH) = 7.0 Hz, 2H, *CH*Me₂), 2.23 (s, 3H, *H*_{bridge-Me}), 1.16 (d, ³ *J*(HH) = 7.0 Hz, 12H, *H*_{Me}).

Figure S6. ¹H NMR of L3 (300 MHz, CDCl₃, 25 °C)

¹H NMR of **L3** (300 MHz, CDCl₃, 25 °C) δ (ppm) = 8.76 (d, ³J_{HH} = 4.7 Hz, 1H, H_a), 8.42 (s, 1H, H_b), 8.34 (d, ³J_{HH} = 7.9 Hz, 1H, H_c), 7.85 (dd, ³J_{HH} = 7.9, 7.9 Hz, 1H, H_d), 7.46-7.37 (m, 1H, H_e), 7.14-6.96 (m, 3H, H_{fg}), 2.23 (s, 6H, H_b). The chemical shifts and integrations of each proton are consistent with previous reported data

Ref [33] *New J. Chem.* **2002**, *26* (4), 387–397: ¹H NMR (CDCl₃): δ (ppm) = 8.73 (ddd, ³*J*(HH) = 4.9, ⁴ *J*(HH) = 1.8, ⁵*J*(HH) = 1.0 Hz, 1H, *H*_{6-py}), 8.36 (s, 1H, C(H)=N), 8.30 (ddd, ³*J*(HH) = 7.7, ⁴*J*(HH) = 1.4, ⁵*J*(HH) = 1.0 Hz, 1H, *H*_{3-py}), 7.85 (td, ³*J*(HH) = 7.7, ⁴*J*(HH) = 1.8 Hz, 1H, *H*_{4-py}), 7.42 (ddd, ³*J*(HH) = 7.7, 4.9, ⁴*J*(HH) = 1.4 Hz, 1H, *H*_{5-py}), 6.95–7.13 (m, 3H, *H*_{phenyl}), 2.18 (s, 6H, *H*_{Me}).

Figure S7. ¹H NMR of L4 (300 MHz, C₆D₆, 25 °C)

¹H NMR of L4 (300 MHz, C₆D₆, 25 °C) δ (ppm) = 8.59 (s, 1H, H_a), 8.46 (dd, ³J_{HH} = 4.8 Hz, ⁴J_{HH} = 1.7 Hz, 1H, H_b), 8.27 (d, ³J_{HH} = 7.9 Hz, 1H, H_c), 7.13-7.04 (m, 4H, H_{e,f,g}), 6.65 (dd, ³J_{HH} = 7.9, 4.8 Hz, 1H, H_d), 3.15 (sept, ³J_{HH} = 6.8 Hz, 2H, H_b), 1.15 (d, ³J_{HH} = 6.8 Hz, 12H, H_i). We encountered hydrolysis of the product when the ¹H NMR spectrum was performed in CDCl₃, probably due to the presence of traces of acid in the deuterated solvent. The integrations are consistent with the molecular formula of L4.

Ref [33] *New J. Chem.* **2002**, *26* (4), 387–39: ¹H NMR (CDCl₃): δ (ppm) = 8.73 (ddd, ³*J*(HH) = 5.0, ⁴*J*(HH) = 1.8, ⁵*J*(HH) = 0.9 Hz, 1H, *H*_{6-py}), 8.31 (s, 1H, C(H)=N), 8.27 (ddd, ³*J*(HH) = 7.7, ⁴*J*(HH) = 1.3, ⁵*J*(HH) = 0.9 Hz, 1H, *H*_{3-py}], 7.86 (td, ³*J*(HH) = 7.7, ⁴*J*(HH) = 1.8 Hz, 1H, *H*_{4-py}), 7.42 (ddd, ³*J*(HH) = 7.7, 5.0, ⁴*J*(HH) = 1.3 Hz, 1H, *H*_{5-py}), 7.05–7.23 (m, 3H, *H*_{phenyl}), 2.97 (sept., ³*J*(HH) = 7.0 Hz, 2H, CHMe₂), 1.16 (d, ³*J*(HH) = 7.0 Hz, 12H, *H*_{Me}).

Ref [35] *Eur. J. Inorg. Chem.* **1999**, 959-964: ¹H NMR (CDCl₃): δ (ppm) = 1.17 (d, 12 H, *H*_{Me}), 2.97 (m, 2 H, *CH*Me₂), 7.16 (m, 3 H, *H*_{phenyl}), 7.42 (m, 1 H, *H*_{5-py}), 7.86 (t, 1 H, *H*_{4-py}), 8.27 (d, 1 H, *H*_{3-py}), 8.31 (s, 1 H, *C*(H)=N), 8.73 (d, 1 H, *H*_{6-py}).

¹H NMR of **L5** (300 MHz, CD₂Cl₂, 25 °C) δ (ppm) = 8.67 (dd, ³J_{HH} = 4.8 Hz, ⁴J_{HH} = 1.7 Hz, 1H, *H*_a), 8.25 (d, ³J_{HH} = 7.8 Hz, 1H, *H*_c), 7.83 (dd, *J* = 7.8, 7.8 Hz, 1H, *H*_d), 7.65 (s, 1H, *H*_b), 7.42 (dd, ³J_{HH} = 7.8, 4.8 Hz, 1H, *H*_c), 7.30 (s, 2H, *H*_f), 2.37 (s, 3H, *H*_g). We encountered hydrolysis of the product when the ¹H NMR spectrum was performed in CDCl₃, probably due to the presence of traces of acid in the deuterated solvent. The integrations are consistent with the molecular formula of L5.

Ref [36] *Angew. Chem. Int. Ed.* **2018**, 57 (37), 12111–12115: ¹H NMR (300 MHz, CDCl₃) δ (ppm) = 8.69 (d, J = 4.5 Hz, 1H, *H*_{6-pyridine}), 8.24 (d, J = 8.1 Hz, 1H, *H*_{phenyl}), 7.90-7.74 (m, 1H, *H*_{3-pyridine}), 7.63 (s, 1H, *H*_{4-pyridine}), 7.48-7.33 (m, 1H, *H*_{5-pyridine}), 7.27 (s, 2H, *H*_{phenyl}), 2.39 (s, 3H, *H*_{bridge-Me});

Figure S9. ¹H NMR spectrum of complex C1 (300 MHz, CD₂Cl₂, 25 °C)

 $\delta \text{ (ppm)} = 102.7 \text{ } (\Delta v_{1/2} = 80 \text{ Hz}, 3\text{H}), 72.6 \text{ } (\Delta v_{1/2} = 54 \text{ Hz}, 1\text{H}), 65.5 \text{ } (\Delta v_{1/2} = 1089 \text{ Hz}, 1\text{H}), 49.1 \text{ } (\Delta v_{1/2} = 61 \text{ Hz}, 1\text{H}), 10.6 \text{ } (\Delta v_{1/2} = 194 \text{ Hz}, 6\text{H}), 3.0 \text{ } (\Delta v_{1/2} = 28 \text{ Hz}, 2\text{H}), -18.4 \text{ } (2\text{H}).$

Figure S10. ¹H NMR spectrum of complex C2 (300 MHz, CD₂Cl₂, 25 °C)

δ (ppm) = 99.0 ($Δν_{1/2}$ = 134 Hz, 1H), 75.1 ($Δν_{1/2}$ = 55 Hz, 1H), 51.0 ($Δν_{1/2}$ = 48 Hz, 1H), 3.1 ($Δν_{1/2}$ = 34 Hz, 3H), 2.4 ($Δν_{1/2}$ = 28 Hz, 12H), 0.4 ($Δν_{1/2}$ = 39 Hz, 1H), -5.6 ($Δν_{1/2}$ = 94 Hz, 2H), -17.8 ($Δν_{1/2}$ = 29 Hz, 2H), -19.3 ($Δν_{1/2}$ = 42 Hz, 1H).

Figure S11. ¹H NMR spectrum of complex C3 (300 MHz, CD₂Cl₂, 25 °C)

 δ (ppm) = 85.9 ($\Delta v_{1/2}$ = 183 Hz, 1H), 64.4 ($\Delta v_{1/2}$ = 1526 Hz 1H), 54.2 ($\Delta v_{1/2}$ = 62 Hz, 1H), 50.5 ($\Delta v_{1/2}$ = 77 Hz, 1H), 11.3 ($\Delta v_{1/2}$ = 228 Hz, 6H), 5.1 (1H), -13.5 ($\Delta v_{1/2}$ = 31 Hz, 2H), -17.3 ($\Delta v_{1/2}$ = 47 Hz, 1H).

Figure S12. ¹H NMR spectrum of complex C4 (300 MHz, CD₂Cl₂, 25 °C)

δ (ppm) = 85.6 ($Δν_{1/2}$ = 156 Hz, 1H), 62.5 ($Δν_{1/2}$ = 2300 Hz, 1H), 54.8 ($Δν_{1/2}$ = 61 Hz, 1H), 51.1 ($Δν_{1/2}$ = 75 Hz, 1H), 3.8 ($Δν_{1/2}$ = 50 Hz, 12H), 2.2 ($Δν_{1/2}$ = 447 Hz, 1H), -3.1 ($Δν_{1/2}$ = 95 Hz, 2H), -13.0 ($Δν_{1/2}$ = 34 Hz, 2H), -18.0 ($Δν_{1/2}$ = 48 Hz, 1H).

Figure S13. ¹H NMR spectrum of complex C5 (300 MHz, CD₂Cl₂, 25 °C)

δ (ppm) = 72.7 (Δν_{1/2} = 496 Hz, 1H), 67.1 (Δν_{1/2} = 611 Hz, 1H), 53.2 & 50.65 (1H), 12.4 (Δν_{1/2} = 1146 Hz, 1H), -7.5 (Δν_{1/2} = 215 Hz, 3H), -11.6 (Δν_{1/2} = 162 Hz, 1H), -16.6 (Δν_{1/2} = 1711 Hz, 1H).

Figure S14. ¹H NMR spectrum of complex C6 (300 MHz, CD₂Cl₂, 25 °C)

δ (ppm) = 70.1 (Δ ν_{1/2} = 809 Hz, 2H), 53.6 (Δ ν_{1/2} = 555 Hz, 1H), 48.8 (Δ ν_{1/2} = 304 Hz, 1H), -19.4 (Δ ν_{1/2} = 487 Hz, 3H).

Figure S15. ¹H NMR spectrum of complexes C1- C6 stacked (300 MHz, CD₂Cl₂, 25 °C)

Entry	Committee	Conv.	$M_{ m n(exp)}$ b	Đь	Microstructure ^c (%)	
	Complex	(%)	(g/mol)	_	1,4 (trans/cis)	3,4
1	C1	>99	63,000 ^d	1.6	90 (57/33)	10
2	C2	>99	19,000 ^d	1.5	91 (79/12)	9
3	C3	>99	45,000	1.9	79 (25/54)	21
4	C4	>99	47,000	1.5	75 (32/43)	25
5	C5	>99	342,000	1.5	58 (0/58)	42
6	C6	>99	385,500	1.3	54 (0/54)	46

Table S1. Polymerization of isoprene using C1–C6/AlEt3/[Ph3C][B(C6F5)4] (1/10/1) catalytic systems a

^a Polymerization conditions: 10 µmol of Fe(II) complex; Isoprene/Fe/AlEt₃/[Ph₃C][B(C₆F₅)₄] = 500/1/10/1; toluene = 5mL; time = 1 h; temperature = 25 °C; ^b determined by size exclusion chromatography (SEC); ^c determined by ¹H NMR and ¹³C NMR; $M_{n(th)}$ = 33 700 g/mol (considering one growing chain per metal center); Activity = 34 x 10³ g(Pl).mol_(cat)-¹h⁻¹ or TOF = 500 h⁻¹ for all; ^d contribution of a low amount (< 5 %) of a second fraction displaying high M_n

Table S2. Polymerization of isoprene using C1-C6/MAO (1/500) catalytic systems ^a

			1 0			5	
		Conv.	$M_{ m n(exp)}$ b	Đь	Microstructure ^c (%)		
Entry	Complex	(%)	(g/mol)		1,4	3,4	
					(trans/cis)		
1	C1	>99	21,000	2.2	81 (50/31)	19	
2	C2	>99	13,000 ^d	1.3	91 (77/14)	9	
3	C3	>99	33,500	1.9	89 (32/57)	11	
4	C4	>99	29,000 ^d	1.4	76 (30/46)	24	
5	C5	>99	184,000	1.3	58 (0/58)	42	
6	C6	>99	223,000 ^e	1.8	54 (0/54)	46	

^a Polymerization conditions: 10 µmol of Fe(II) complex; Isoprene/Fe/MAO = 500/1/500; toluene = 5 mL; time = 1 h; temperature = 25 °C; ^b determined by size exclusion chromatography (SEC); ^c determined by ¹H NMR and ¹³C NMR; $M_{n(the)} = 33,700$ g/mol (considering one growing chain per metal center); Activity = 34 x 10³ g(Pl).mol_(cat)-1 h⁻¹ or TOF = 500 h⁻¹ for all; ^d contribution of a low amount (< 5 %) of a second fraction displaying high M_{n} ; ^e bimodal

Entry	Committee	Conv.	Microstructure ^b (%)		
	Complex	(%)	1,4 (trans/cis)	3,4	
1	C1	>99	91 (76/15)	9	
2	C2	>99	92 (76/16)	8	
3	C3	>99	78 (28/50)	22	
4	C4	>99	75 (26/49)	25	
5	C5	>99	59 (0/59)	41	
6	C6	>99	54 (0/54)	46	

Table S3. Polymerization of isoprene using C1 – C6/Al/Bu3/[Ph3C][B(C6F5)4] (1/3/1) catalytic systems^a

^a Polymerization conditions: 10 µmol of Fe(II) complex; Isoprene/Fe/AlEt₃/[Ph₃C][B(C₆F₅)₄] = 500/1/3/1; toluene = 5mL; time = 1 h; temperature = 25 °C; ^b determined by ¹H NMR and ¹³C NMR; Activity = 34 x 10³ g(Pl).mol_(cat)-¹ h⁻¹ or TOF = 500 h⁻¹ for all.

Table S4. Polymerization of isoprene (2,500 equiv./Fe) using C4/MAO (1/500) catalytic systems^a

Entre	Commlan	Conv.	(%)	
Entry	Complex	(%)	1,4 (trans/cis)	3,4
1	C4	> 99	73 (21/52)	27
Reference*	C4	83	74.4 (4.5/70)	25.6

^a Polymerization conditions: 8 μ mol of Fe(II) complex; Isoprene/Fe/MAO = 2 500/1/500; toluene = 7 mL and CH₂Cl₂

= 1 mL; time = 2 h; temperature = 25 °C; ^b determined by ¹H NMR and ¹³C NMR; * ref. Guo, L.; Jing, X.; Xiong, S.; Liu, W.; Liu, Y.; Liu, Z.; Chen, C. Influences of Alkyl and Aryl Substituents on Iminopyridine Fe(II)- and Co(II)-Catalyzed Isoprene Polymerization. *Polymers* **2016**, *8* (11), 389

Complex	Time (min)	Conversion ^b (%)	Complex	Time (min)	Conversion ^b (%)
	4	17		1	21
C1	10	44	C3	3	70
	15	59		6	82
	20	83		8	86
	5	3		10	89
	10	5		2	15
C2	15	9	C4	5	42
	30	12		7	60
	60	25		10	78

Table S5. Polymerization of 5,000 equiv. of isoprene/Fe using $C1 - C4/Al^{1}Bu_{3}/[Ph_{3}C][B(C_{6}F_{5})_{4}]$ catalytic systems a

^a : Polymerization conditions: 5 µmol of Fe(II) complex; Isoprene/AlⁱBu₃/[Ph₃C][B(C₆F₅)₄]/Fe = 5,000/3/1/1; toluene = 25 mL; temperature = 25 °C; ^b determined by ¹H NMR.

Figure S16. First-order kinetic plots for pre-catalysts C1 – C4 (Isoprene/Al/Bu₃/[Ph₃C][B(C₆F₅)₄]/Fe = 5,000/3/1/1).

Figure S17. 1 H (top) and 13 C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table 1.

Figure S18. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table 1.

Figure S19. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table 1.

Figure S20. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 4 of Table 1.

Figure S21. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table 1.

Figure S22. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 6 of Table 1.

Figure S23. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table S1.

Figure S24. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table S1.

Figure S25. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table S1.

Figure S26. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 4 of Table S1.

Figure S27. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table S1.

Figure S28. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 6 of Table S1.

Figure S29. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table S2.

Figure S30. 1 H (top) and 13 C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table S2.

Figure S31. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table S2.

Figure S32. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 4 of Table S2.

Figure S33. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table S2.

Figure S34. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 6 of Table S2.

Figure S35. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table S3.

Figure S36. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table S3.

Figure S37. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table S3.

Figure S38. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 4 of Table S3.

Figure S39. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table S3.

Figure S40. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 6 of Table S3.

Figure S41. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table S4.

Figure S42. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 1 of Table 2.

Figure S43. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table 2.

Figure S44. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table 2.

Figure S45. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 4 of Table 2.

Figure S46. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table 2.

Figure S47. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 6 of Table 2.

Figure S48. ¹H (top) and ¹³C (bottom) spectra of the polymer obtained with the Entry 1 of Table 4.

Figure S49. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 2 of Table 4.

Figure S50. 1 H (top) and 13 C (bottom) NMR spectra of the polymer obtained with the Entry 3 of Table 4

Figure S51. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 5 of Table 4

Figure S52. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 7 of Table 4

Figure S53. ¹H (top) and ¹³C (bottom) NMR spectra of the polymer obtained with the Entry 8 of Table 4

Figure S54. SEC traces of polymerization experiments

