Thiol-ene "click" synthesis and pharmacological evaluation of C-glycoside sp²-iminosugar glycolipids

Elena M. Sánchez-Fernández^{1,*}, M. Isabel García-Moreno¹, Raquel García-Hernández², José M. Padrón³, José M. García Fernández⁴, Francisco Gamarro², Carmen Ortiz Mellet^{1,*}

Supplementary Information

List of contents

S1 to S28	NMR spectra of new C-glycoside sp ² -iminosugars.
S29 to S45	Dixon and Lineweaver-Burk plots for <i>K</i> _i determination
S46	Anti-proliferative activity (GI ₅₀) of new C-glycoside sp ² -iminosugars

Figure S1. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of **14**.

Figure S2. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of **15**.

Figure S3. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of 16.

Figure S4. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of **17**.

Figure S5. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of **18**.

Figure S6. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of **1**.

Figure S7. 1 H and 13 C NMR spectra (400 MHz and 100.6 MHz, CD₃OD) of **2**.

Figure S8. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of **3**.

Figure S10. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of **20**.

Figure S11. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of **21**.

Figure S13. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of 5.

Figure S14. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of 6

Figure S15. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of 23.

Figure S16. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of 24.

Figure S18. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of **26**.

Figure S19. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, $CDCl_3$) of 27.

Figure S20. ^1H and ^{13}C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of 7.

Figure S22. 1 H and 13 C NMR spectra (300 MHz and 75.5 MHz, CD₃OD) of 9.

Figure S23. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, $CDCl_3$) of 28.

Figure S24. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, CDCl₃) of 29.

Figure S25. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, $CDCl_3$) of **30**.

Figure S26. 1 H and 13 C NMR spectra (500 MHz and 125.7 MHz, 7:3 CD₃OD-CDCl₃) of **10**.

Figure S27. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, 7:3 CD_3OD -CDCl₃) of **11**.

Figure S28. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, 7:3 CD₃OD-CDCl₃) of **12**.

Figure S29. Dixon Plot for K_i determination (79 μ M) of 15 against yeast maltase α -glucosidase.

Figure S30. Lineweaver-Burk Plot for K_i determination (0.34 μ M) of 1 against yeast maltase α -glucosidase.

Figure S31. Lineweaver-Burk Plot for K_i determination (0.74 μ M) of 2 against yeast maltase α -glucosidase.

Figure S32. Lineweaver-Burk Plot for K_i determination (0.28 μ M) of 3 against yeast maltase α -glucosidase.

Figure S33. Lineweaver-Burk Plot for K_i determination (2.6 μ M) of 4 against yeast maltase α -glucosidase.

Figure S34. Lineweaver-Burk Plot for K_i determination (2.5 μ M) of 5 against yeast maltase α -glucosidase.

Figure S35. Lineweaver-Burk Plot for K_i determination (0.75 μ M) of 6 against yeast maltase α -glucosidase.

Figure S37. Dixon Plot for K_i determination (54 μ M) of 2 against bovine liver β -glucosidase.

Figure S38. Dixon Plot for K_i determination (151 μ M) of 3 against bovine liver β -glucosidase.

Figure S39. Dixon Plot for K_i determination (172 μ M) of 4 against bovine liver β -glucosidase.

Figure S40. Dixon Plot for K_i determination (85 μ M) of 5 against bovine liver β -glucosidase.

Figure S41. Dixon Plot for K_i determination (342 μ M) of 6 against bovine liver β -glucosidase.

Figure S42. Lineweaver-Burk Plot for K_i determination (53 μ M) of 8 against bovine liver β -glucosidase.

Figure S43. Dixon Plot for K_i determination (422 μ M) of **10** against bovine liver β -glucosidase.

Figure S44. Dixon Plot for K_i determination (134 μ M) of 11 against bovine liver β -glucosidase.

FigureS45. Dixon Plot for K_i determination (770 μ M) of **12** against bovine liver β -glucosidase.

FigureS46. Anti-proliferative activity (GI₅₀) of **1**, **2**, **5**, **7**, **8**, **11** against different human solid tumor cell lines. Compounds **3**, **4**, **6**, **9**, **10** and **12** did not achieved 50% growth inhibition at the highest concentration tested (100 μ M).