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Abstract: New quantitative structure–activity relationship (QSAR) models for bitter peptides were
built with integrated amino acid descriptors. Datasets contained 48 dipeptides, 52 tripeptides and 23
tetrapeptides with their reported bitter taste thresholds. Independent variables consisted of 14 amino
acid descriptor sets. A bootstrapping soft shrinkage approach was utilized for variable selection.
The importance of a variable was evaluated by both variable selecting frequency and standardized
regression coefficient. Results indicated model qualities for di-, tri- and tetrapeptides with R2 and Q2

at 0.950± 0.002, 0.941± 0.001; 0.770± 0.006, 0.742± 0.004; and 0.972± 0.002, 0.956 ± 0.002, respectively.
The hydrophobic C-terminal amino acid was the key determinant for bitterness in dipeptides, followed
by the contribution of bulky hydrophobic N-terminal amino acids. For tripeptides, hydrophobicity
of C-terminal amino acids and the electronic properties of the amino acids at the second position
were important. For tetrapeptides, bulky hydrophobic amino acids at N-terminus, hydrophobicity
and partial specific volume of amino acids at the second position, and the electronic properties of
amino acids of the remaining two positions were critical. In summary, this study not only constructs
reliable models for predicting the bitterness in different groups of peptides, but also facilitates better
understanding of their structure-bitterness relationships and provides insights for their future studies.
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1. Introduction

Food-derived peptides refer to various short amino acid sequences, normally comprised of 3–20
amino acids, originating from food protein [1,2]. They have attracted huge attention because of their
great benefits to our cardiovascular, nervous, immune, and nutritional systems, e.g., anti-inflammation,
anti-oxidant, and anti-hypertensive effects [3]. However, despite of their excellent health-promoting
activities, their sensory attributes, especially the undesirable sensation like bitterness, should also be
taken into consideration when using them as food additives. Bitterness is one of the five basic tastes and
usually taken as an aversion to avoid toxic substances by mammals [4]. In fact, bitterness is frequently
generated during enzymatic process to produce bioactive protein hydrolysates [5]. For example,
most bioactive peptides, having inhibition effects of angiotensin-I-converting enzyme (ACE) to decrease
blood pressure, elicit bitter taste [6,7]. Thus, understanding the bitterness in peptides is essential for
effective use of peptides as food additives.

With high efficiency and low cost, bioinformatic approaches have become more and more popular
in peptide research, especially the quantitative structure–activity relationship (QSAR) study, which
is a basic tool to search for information relating chemical structure to biological activities [8]. For a
QSAR model, a set of numerical descriptors related to the structure of interest, e.g., amino acids,
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serves as independent variables (X), while the biological activities are the dependent variables (Y).
The relationship between the X and Y is built by using different methods like multiple linear regression
(MLR), partial least square (PLS) regression, support vector machine (SVC), artificial neural network
(ANN), etc. [9,10]. The earliest amino acid descriptor set reported in the literature is the “3z-scale”,
which was obtained from 29 physiochemical properties of 20 coded-amino acids [11]. Three parameters,
including z1, z2, and z3, were generated, representing the hydrophobicity, bulkiness/molecular size
and electronic property of amino acids, respectively [11]. Since then, numerous amino acid descriptor
sets generated from different properties of amino acids have been developed, e.g., the “ISA-ECI
(Isotropic Surface Area and Electronic Charge Index) ” descriptor set connected with the isotropic
surface area and the electronic index; the “DPPS (Divided Chemical Property Scores) ” descriptor set
related to the electronic, steric, hydrophobic properties and hydrogen bond of amino acids, etc. [12,13].
Moreover, the properties of amino acids described by a single parameter have become more and more
complicated, e.g., the second parameter of E descriptor set (E-2) is related to 10 properties of amino
acids, including the conformational parameter for β-turn, the normalized frequency of turn, etc. [14].
Studies on the structure–bitterness relationship of peptides are limited when compared with works on
other bioactivities like the ACE-inhibition effects [15]. In addition, most of the reported studies focused
on the bitterness of dipeptides, with even less reports on tri- and tetrapeptides [5–7,15–20]. On the
other hand, most reported QSAR models for bitterness relied on only one amino acid descriptor, which
probably lack sufficient descriptive power and neglect the relationship between different descriptors.

As a result, this study aimed to (1) build reliable QSAR models to predict bitterness of di-, tri- and
tetrapeptides by using an integration of 14 amino acid descriptors; and (2) find out the key factors that
contribute to the bitterness of peptides. We did not study peptides comprised of more than four amino
acids because of the limitation of available published data.

2. Results

2.1. QSAR Models for Bitter Taste di-, tri- and Tetrapeptides Using Integrated Descriptors

QSAR models were built to predict the bitter taste threshold of di-, tri- and tetrapeptides by using
PLS regression. Datasets for di-, tri- and tetrapeptides were shown in Tables S1–S3. The descriptors
included a combination of 14 amino acid descriptor sets. All of the details are shown in the Material
and Methods (Section 4).

The statistical parameters determined from the QSAR models for di-, tri- and tetrapeptides using
integrated descriptor sets (a combination of 14 amino acid descriptor sets), with and without the
bootstrapping soft shrinkage (BOSS) variable selection process are shown in Table 1. “A” is the number
of principle components used in PLS regression. “R2” (coefficient of determination) and “RMSE” (root
mean square error) indicate the fitting performance, with R2 the larger, the better, RMSE the smaller,
the better. “Q2” (the cross-validated R2), and “RMSECV” (root mean square error cross-validation)
demonstrate the predictive ability of a model, with Q2 the larger, the better, while RMSECV the smaller,
the better.

For di-, tri- and tetrapeptides models without the BOSS variable selection process, their R2 and Q2

were at 0.948 and 0.874; 0.760 and 0.521; and 0.965 and 0.682, respectively. Although the model quality
for dipeptides was good (with high R2 and Q2, low RMSECV and RMSE), model qualities for tri- and
tetrapeptides were less ideal, particularly for the tripeptides with the values of Q2 close to 0.5, and
RMSE near 0.3.

Thus, the BOSS variable selection method was used to further improve the models. In this
study, the BOSS was run 100 times, and the results were expressed as mean ± SD (Table 1). After
the variable selection, model qualities for all data sets were better, with R2 and Q2 for di-, tri- and
tetrapeptides of 0.950 ± 0.002 and 0.941 ± 0.001; 0.700 ± 0.006 and 0.742 ± 0.004; and 0.972 ± 0.002
and 0.956 ± 0.002, respectively. The RMSECV also decreased dramatically for all three models and a
moderate improvement of RMSE could be seen (Table 1). Moreover, compared with R2, the increase of
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Q2 was more evident for all of the models, suggesting the capability of the BOSS variable selection
process to improve the predictability by the models.

Table 1. Statistical parameters of quantitative structure–activity relationship (QSAR) models for di-, tri-
and tetrapeptides using integrated descriptor sets.

BOSS a Variable
Number

Name of
Group

Statistical Parameters b

A R2 Q2 RMSECV RMSE

No 174 Dipeptides 4.000 0.948 0.874 0.222 0.142
Yes 174 Dipeptides 2.000 ± 0.604 0.950 ± 0.002 0.941 ± 0.001 0.152 ± 0.001 0.139 ± 0.002
No 261 Tripeptides 3.000 0.760 0.521 0.407 0.289
Yes 261 Tripeptides 2.000 ± 0.450 0.770 ± 0.006 0.742 ± 0.004 0.299 ± 0.002 0.282 ± 0.004
No 361 Tetrapeptides 6.000 0.965 0.682 0.429 0.143
Yes 361 Tetrapeptides 6.000 ± 1.222 0.972 ± 0.002 0.956 ± 0.002 0.160 ± 0.004 0.127 ± 0.004
a ‘Yes/No’ indicates the model was built with/without BOSS (bootstrapping soft shrinkage) variable selection process,
respectively; b A: the number of principle components in PLS regression; R2: the coefficient of determination; Q2:
the cross-validated R2; RMSECV: the root mean square error cross validation; RMSE: the root mean square error.

The observed and predicted bitter activities were also compared (Figure 1). The predicted values
were obtained from the models which had the smallest RMSECV and largest predictability (Q2) obtained
by 100 BOSS runs. The observed values were based on previous human sensory evaluations [5].
Results indicated that the predicted bitter activities by this model were close to the observed ones for
di- (Figure 1a), tri- (Figure 1b) and tetrapeptides (Figure 1c).

Figure 1. Observed vs. predicted bitter activities of di- (a), tri- (b) and tetrapeptides (c). The x-axis
represents the observed sensory values from literature. The y-axis represents the corresponding
predicted values derived from the model having the lowest root mean square error cross validation
(RMSECV) obtained by 100 bootstrapping soft shrinkage (BOSS) runs.

2.2. QSAR Models for Bitter Di-, Tri- and Tetrapeptides Using a Single Set of Amino Acid Descriptor

QSAR models built by integrated descriptor sets were compared with those models built by single
descriptor sets (Tables 2–4). Although QSAR models for bitter di-, tri- and tetrapeptides were built
with some of these descriptors before, methodologies and statistical parameters used were usually
different. Besides, not all the descriptors included in this study have been utilized before for model
development, especially for tri- and tetrapeptides. Thus, in order to have more reliable comparison
results, 14 QSAR models based on single descriptor set were built again for each dataset in this study.
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Statistical results for di-, tri-, and tetrapeptides are shown in Tables 2–4 respectively. For the models
obtained by 100 BOSS runs, both the average statistical parameters for the 100 BOSS runs (ID + BOSS1)
and the statistical parameters for the ones with the smallest RMSECV from the 100 runs (ID + BOSS2)
are shown (Tables 2–4).

Table 2. Statistical parameters of QSAR models for dipeptides using a single set of amino acid descriptor
and comparison with models built by integrated descriptor sets.

Descriptor Variable
Number

Statistical Parameters a

A R2 Q2 RMSECV RMSE

3z-scale [11] 6 3 0.838 0.792 0.284 0.251
5z-scale [21] 10 5 0.916 0.869 0.225 0.180
DPPS [13] 20 5 0.934 0.849 0.242 0.160

MS-WHIM [22] 6 4 0.757 0.686 0.349 0.307
ISA-ECI [12] 4 2 0.845 0.808 0.273 0.245
VHSE [23] 16 7 0.943 0.894 0.202 0.149

FASGAI [24] 12 9 0.921 0.814 0.269 0.175
VSW [19] 18 4 0.911 0.773 0.297 0.185

T-scale [25] 10 6 0.900 0.830 0.257 0.197
ST-scale [26] 16 10 0.913 0.655 0.366 0.184
E-scale [14] 10 9 0.940 0.865 0.229 0.152

V [18] 6 5 0.904 0.863 0.231 0.193
G-scale [27] 16 9 0.937 0.855 0.238 0.157
HESH [28] 24 4 0.942 0.881 0.215 0.150

ID b 174 4 0.948 0.874 0.222 0.142
ID + BOSS1 c 174 2.000 ± 0.604 0.950 ± 0.002 0.941 ± 0.001 0.152 ± 0.001 0.139 ± 0.002
ID+BOSS2 d 174 2 0.952 0.943 0.148 0.137

a A: the number of principle components in PLS regression; R2: the coefficient of determination; Q2: the
cross-validated R2; RMSECV: the root mean squares error cross validation; RMSE: the root mean squares error.
b ID: integrated descriptor sets, which means a combination of all the 14 kinds of descriptor sets. c ID + BOSS1:
integrated descriptor sets with BOSS (bootstrapping soft shrinkage) variable selection process, average statistical
parameters of 100 runs. d ID + BOSS2: integrated descriptor sets with BOSS (bootstrapping soft shrinkage) variable
selection process; statistical parameters for the model with the lowest RMSECV.

Table 3. Statistical parameters of QSAR models for tripeptides using a single set of amino acid descriptor
and comparison with models built by integrated descriptor sets.

Descriptor Variable
Number

Statistical Parameters a

A R2 Q2 RMSECV RMSE

3z-scale [11] 9 1 0.503 0.385 0.462 0.415
5z-scale [21] 15 2 0.669 0.526 0.405 0.339
DPPS [13] 30 5 0.722 0.444 0.439 0.310

MS-WHIM [22] 9 1 0.592 0.445 0.439 0.376
ISA-ECI [12] 6 1 0.525 0.357 0.472 0.406
VHSE [23] 24 3 0.689 0.439 0.441 0.329

FASGAI [24] 18 5 0.770 0.572 0.385 0.282
VSW [19] 27 5 0.789 0.504 0.415 0.270

T-scale [25] 15 1 0.629 0.375 0.465 0.359
ST-scale [26] 24 1 0.638 0.548 0.396 0.354
E-scale [14] 15 2 0.678 0.532 0.403 0.334

V [18] 9 2 0.560 0.432 0.444 0.390
G-scale [27] 24 6 0.745 0.533 0.402 0.298
HESH [28] 36 1 0.669 0.520 0.408 0.339

ID b 261 3 0.760 0.521 0.407 0.289
ID + BOSS1 c 261 2.000 ± 0.450 0.770 ± 0.006 0.742 ± 0.004 0.299 ± 0.002 0.282 ± 0.004
ID + BOSS2 d 261 1 0.773 0.751 0.294 0.280

a A: the number of principle components in PLS regression; R2: the coefficient of determination; Q2: the
cross-validated R2; RMSECV: the root mean squares error cross validation; RMSE: the root mean squares error. b ID:
integrated descriptor sets, which means a combination of all the 14 kinds of descriptor sets. c ID+BOSS1: integrated
descriptor sets with BOSS (bootstrapping soft shrinkage) variable selection process, average statistical parameters
of 100 runs. d ID+BOSS2: integrated descriptor sets with BOSS (bootstrapping soft shrinkage) variable selection
process; statistical parameters for the model with the lowest RMSECV.
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Table 4. Statistical parameters of QSAR models for tetrapeptides using a single set of amino acid
descriptor and comparison with models built by integrated descriptor sets.

Descriptor Variable
Number

Statistical Parameters a

A R2 Q2 RMSECV RMSE

3z-scale [11] 12 2 0.822 0.490 0.544 0.322
5z-scale [21] 20 6 0.938 0.533 0.521 0.189
DPPS [13] 40 8 0.968 0.676 0.433 0.136

MS-WHIM [22] 12 3 0.813 0.349 0.615 0.330
ISA-ECI [29] 8 3 0.717 0.017 0.755 0.406
VHSE [23] 32 4 0.922 0.694 0.421 0.213

FASGAI [24] 24 3 0.907 0.714 0.408 0.233
VSW [19] 36 6 0.969 0.512 0.532 0.135

T-scale [25] 20 1 0.624 0.452 0.564 0.467
ST-scale [26] 32 1 0.642 0.155 0.700 0.456
E-scale [14] 20 5 0.948 0.557 0.507 0.173

V [18] 12 2 0.794 0.525 0.525 0.345
G-scale [27] 32 4 0.879 0.620 0.469 0.265
HESH [28] 48 4 0.934 0.703 0.415 0.195

ID b 348 6 0.965 0.682 0.429 0.143
ID + BOSS1 c 348 6.000 ± 1.222 0.972 ± 0.002 0.956 ± 0.002 0.160 ± 0.004 0.127 ± 0.004
ID + BOSS2 d 348 6 0.973 0.956 0.160 0.123

a A: the number of principle components in PLS regression; R2: the coefficient of determination; Q2: the
cross-validated R2; RMSECV: the root mean squares error cross validation; RMSE: the root mean squares error. b ID:
integrated descriptor sets, which means a combination of all the 14 kinds of descriptor sets. c ID+BOSS1: integrated
descriptor sets with BOSS (bootstrapping soft shrinkage) variable selection process, average statistical parameters
of 100 runs. d ID+BOSS2: integrated descriptor sets with BOSS (bootstrapping soft shrinkage) variable selection
process; statistical parameters for the model with the lowest RMSECV.

With the Q2 and R2 values larger than 0.7, RMSECV and RMSE values lower than 0.3, most
models for dipeptides built with single set of amino acid descriptor showed good predictive and fitting
performances, and model with VHSE (Principle Components Score Vectors of Hydrophobic, Steric, and
Electronic Properties) as descriptor set performed the best (Table 2). On the contrary, QSAR models for
tripeptides using single descriptor set showed poor performance, e.g., most of the Q2 values are lower
than 0.5, and RMSE values are larger than 0.3 (Table 3). Among them, models built by FASGI (Factor
Analysis Scale of Generalized Amino Acid Information) and HESH (Hydrophobic, Electronic, Steric
and Hydrogen) descriptor set were the better ones. Poor predictivity were also observed in models
for tetrapeptides, but with the better ones went to that with HESH descriptor set (Table 4). In short,
even without the variable selection process for the three datasets, models built with the integrated
descriptor sets were comparable to those built with single descriptor set. With the largest Q2 and R2

values and the smallest RMSEV and RMSE values, models built with integrated descriptor sets were
the best among all other models.

2.3. Variable Importance Analysis

Variable importance analyses were done to elucidate the relationship between bitterness and the
structure characteristics of amino acids in peptides. Due to the randomness of the algorithm of BOSS,
variables selected in each run were slightly different [30]. Thus, the variable selecting frequency in 100
BOSS runs was combined with the standardized regression coefficient of the variables to analyze the
variable importance. Results are shown in Figures 2–4.

The standardized regression coefficient, which was calculated based on the standardized input (X)
and output variables (Y), can quantify the relative importance of each input variables (X) because of the
removal of the unit scale of variables during the standardizing treatment [30,31]. The variable is more
important when the absolute value of the standardized regression coefficient is larger. For variable
selecting frequency (Figures 2a, 3a and 4a), variable IDs of important variables with a variable selecting
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frequency of more than 60% were shown [30]. The equations of the models for di-, tri- and tetrapeptides
with the smallest RMSEV obtained by 100 BOSS runs are shown in the Supplementary Table S4.

2.3.1. Dipeptides

For dipeptides, an average of 12 independent variables were selected from the original 174
variables in each BOSS run.

Both variable selecting frequencies and standardized regression coefficients are shown in
Figure 2a,b, respectively. Important variables selected by both methods consisted of different kinds
of descriptor sets, which described various characteristics of both N- and C-terminal amino acids.
The two variables with the highest selecting frequency were “N1-T-3” and “N2-HESH-2”, and they
had the largest negative and positive standardized regression coefficients, respectively.

Although variable “N1-T-3” was selected through 100 BOSS runs, its specific structural
characteristic of the amino acid indicated by “T-3” remains unknown [25]. The variable “N2-HESH-2”
was selected 96 times and showed the largest positive impact on bitterness activity. This suggested the
importance of high hydrophobicity of C-terminal amino acids in the dipeptides (Figure 2a,b). Similarly,
other important variables like “N2-VHSE-1”, “N2-DPPS-1”, etc. also demonstrated the hydrophobicity
of amino acids at the C-terminus. Besides the key role of a hydrophobic C-terminal amino acid
in a dipeptide, both the size/bulkiness (in “N1-ISA-ECI-1” and “N1-5z-2”) and hydrophobicity
(in “N1-VHSE-1”) of the N-terminal amino acids also showed positive correlations with bitterness
in dipeptides.

Figure 2. Variable importance of QSAR models for dipeptides. (a) Variable selecting frequencies of
each variable from 100 BOSS runs; (b) standardized regression coefficients of each variable based on
the model with the smallest RMSECV from 100 BOSS runs.
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2.3.2. Tripeptides

Variable selecting frequencies and standardized regression coefficients for tripeptides are shown
in Figure 3. On average, only 11 out of 261 independent variables were chosen from the BOSS runs.

Unlike the dominant role of the C-terminus to bitterness in the dipeptide, C- and N-terminuses
in a tripeptide have nearly equal impact on bitterness with a weaker influence by the middle amino
acids (Figure 3). Even though five variables with high selecting frequencies (>90%) were from “G”,
“ST (Structural Topological)” and “VSW (Vector of Principle Components Scores for Weighted Holistic
Invariant Molecular Index)” descriptor sets (Figure 3a), specific characteristics of the amino acids
described by their parameters cannot be determined due to the fact that each parameter stands for
a complex combination of different characteristics. At this stage, we only know that “G”, “ST” and
“VSW” descriptors are related to physiochemical properties, topological structures and weighted
holistic invariant molecular index, respectively [19,26,27]. From the standardized regression coefficient,
we found some other important variables with clear information. For example, variable “N3-VHSE-1”
reflects the hydrophobicity of C-terminal amino acids while “N2-DPPS-1” is related to the electronic
properties of the middle-position amino acids (Figure 2b).

Figure 3. Variable importance of QSAR models for tripeptides. (a) Variable selecting frequencies of
each variable from 100 BOSS runs; (b) standardized regression coefficients of each variable based on
the model with the smallest RMSECV from 100 BOSS runs.

2.3.3. Tetrapeptides

Figure 4 shows the results for tetrapeptides. Similar to tripeptides, only 12 out of 384 variables
were screened out in each BOSS run on average.
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Important variables for bitterness of tetrapeptides indicated the involvement of amino acids at
all four positions (Figure 4a,b). Descriptors without clear indications are not discussed. For amino
acids at N-terminus, both hydrophobic properties (N1-E-1) and size (N1-MS-WHIM-2) contributed to
bitterness. The partial specific volumes (N2-E-4) and hydrophobic properties (N2-HESH-2) of amino
acid at the second position were important for bitterness. Electronic properties were essential for both
amino acids at the third position (N3-HESH-9) and C-terminus (N4-FASGAI-6 and N4-VHSE-5).

Figure 4. Variable importance of QSAR models for tetrapeptides. (a) Variable selecting frequencies of
each variable from 100 BOSS runs; (b) standardized regression coefficients of each variable based on
the model with the smallest RMSECV from 100 BOSS runs.

3. Discussion

QSAR models have been widely used in the study of peptide bioactivities [32–34]. Despite some
models have been built before to predict bitterness in dipeptides, studies focusing on both tri- and
tetrapeptides are very limited [5,15,20]. By using an integration of 14 amino acid descriptor sets
combined with BOSS variable selection methodology, reliable bitter taste predicting models for di-,
tri- and tetrapeptides are developed and reported here (Table 1 and Figure 1). To the best of our
knowledge, this is the first report of building the QSAR models for bitterness of peptides based on
integrated descriptor sets. Similar work was reported for dipeptides on the ACE-inhibition effect [30].

Even before variable selection, models for di-, tri- and tetrapeptides using integrated descriptor
sets were better than most of the models using single set of amino acid descriptor (Tables 2–4), which
are probably benefit from the more comprehensive descriptive information provided by the integrated
descriptor sets and their mutual influences.
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In this study, for dipeptides, models built with single set of amino acid descriptor showed good
performance, with the best one belongs to the “VHSE” descriptor set. Other descriptor sets, namely,
“DPPS”, “T-scale” and “G-scale”, were used for the modelling, which have never been reported before
to predict bitterness in dipeptides. To compare models in this study with the previous ones, their
R2, Q2 and RMSE were evaluated. Nevertheless, only slight differences were found in some of them,
which could be explained by the differences in the number of principle components (A) used in the
PLS regression. For example, in the “FASGAI” descriptor set, nine principle components were used in
this study while three were reported in previous study [24]. Moreover, some studies applied other
methods such as MLR [15] and SVM [35] to build their QSAR models, which may also contribute to
different results.

For tri- and tetrapeptides, only one work which used “3z-scales” combined with PLS regression is
comparable to ours [5]. No models were built and reported with the remaining 13 single descriptor sets
for both tri- and tetrapeptides. Even with the same datasets, descriptor sets, and number of principle
components used, our results on tripeptides are quite different from theirs. We did not compare
their RMSE values here because the published studies did not provide such values for comparison.
The R2 and Q2 values obtained by us and the study by others were 0.503 and 0.385; 0.71 and 0.75,
respectively. Similar situation is found for tetrapeptides. We used the principle component number of
two while the reported study used four. We obtained R2 and Q2 of 0.822 and 0.490, respectively, for
this study while from the literature; it showed 0.90 and 0.71, respectively, (Table 4). We speculated
that these differences in results could be due to the different algorithms of the software used in the
PLS regression and different methods used for cross-validation. In short, our Q2 results demonstrated
much better predictability when models were built with a combination of 14 descriptor sets instead of
one descriptor set (Tables 3 and 4).

Variable selection is commonly used to eliminate the redundant descriptors in the development
of QSAR models with larger number of variables to start with. The effectiveness of BOSS variable
selection method has been proven before, and results also indicated its superiority to other methods
like GA-PLS, CARS, and MCUVE [36]. After variable selection, the qualities of all three models for di-,
tri- and tetrapeptides built with integrated descriptors were improved, especially for the predictive
ability (Q2), suggesting the large contribution of BOSS variable selection process to the predictability of
the models. Similar results were also obtained by Deng et al. 2017 [13], with an increase in R2 from
0.711 to 0.734 ± 0.004, and Q2 from 0.621 to 0.715 ± 0.002 for the model to predict the ACE-inhibition
effect of dipeptides.

To elucidate the structure-bitterness relationship of di-, tri- and tetrapeptides based on our models,
important variables obtained by the variable selecting frequency and the standardized regression
coefficient were found to be nearly the same, indicating the reliability of the results (Figures 2–4).
Favorable results from both variable selecting frequency and standardized regression coefficient for all
three models were not relied only on one descriptor set, but integrated descriptor sets.

Besides, the amino acids at different terminal locations in a peptide affected the behavior of
the peptide differently (Figures 2–4). This agreed with previous report which proposed that the
N- and C-terminal locations of an amino acid residue in a sequence would determine the peptide
bioactivity [37]. For example, the presence of high molecular weight C-terminal amino acids like Arg,
Tyr and Lys favors the ACE-inhibition effects of dipeptides while for the N-terminus, amino acids with
lower molecular weight and hydrophobic side chains like Leu are more preferred [6].

For the structure-bitterness relationship in dipeptides, the reported bitterness key role of the
hydrophobic C-terminal amino acid remained unchanged even with the current 14 descriptor sets
analyzed (Figure 2) [5], which further confirms its importance. For example, with a stronger
hydrophobicity of C-terminal amino acid “F” [4f value (measurement of hydrophobicity) of 2650] than
C-terminal amino acid “V” (4f value of 1690), dipeptide “AF” (19 mM) showed a lower bitter taste
threshold than dipeptide “AV” (69 mM) [5,38]. Besides, bitterness was also contributed by the strong
hydrophobic, polar/charged and large-size amino acids present at the N-terminus. For example, amino
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acids such as L, I and V are hydrophobic and have bulky side chains. Such relationship is consistent
with other reported works [15,22].

For tripeptides, only bulkiness of amino acids at the N-terminus and hydrophobic amino acids
at the C-terminus have been reported to correlate with bitterness before [5,15]. Despite the reported
contribution of the hydrophobicity of the C-terminal amino acids (e.g., P, F, G, L, I) [5,15], we newly
observed the contribution of the electronic properties of the middle amino acid, which was related to
the first parameter of descriptor set “DPPS”, i.e., DPPS-1 (Figure 2 and Table S4). Larger DPPS-1 values
of the amino acids in the middle position contribute to smaller bitterness thresholds of tripeptides.
With a “DPPS-1” value of −2.86 and 2.34 for amino acids “G“ and “V”, respectively, the resulting
bitterness threshold of tripeptide “GGV” (33 mM) was found to be larger than “GVV” (5 mM). Moreover,
this study firstly demonstrated the importance of the “ST-scale”, “VSW” and “G-scale” descriptor sets
to predict bitterness in tripeptides. Although the specific properties cannot be clearly elucidated due
to the complex characteristics described by each single parameter in a descriptor set, they could still
provide insights for future studies to further manifest the precise relationships.

For the tetrapeptides, only one study has described the structure-bitterness relationship before [5].
By comparing our results with theirs, we found that some important characteristics like the electronic
properties of the C-terminal amino acids (N4-FASGAI-6 and N4-VHSE-5); hydrophobicity and size
of the N-terminal amino acids (N1-E-1 and N1-MS-WHI-2) were the same (Figure 4). These indicate
the importance of the presence of amino acids like F and P with hydrophobicity and bulkiness at the
N-terminus. However, there are still some differences between our results and theirs, e.g., unlike their
emphasis on the role of bulky hydrophobic C-terminal amino acids on bitterness, we found them less
important in our study [5]. This could be due to the mutual influences among the different descriptor
sets. Also, we found some important characteristics of amino acids that contribute to bitterness but have
never been reported before, e.g., the partial specific volume (N2-E-4) which describes the 3D-structure of
amino acids; the hydrophobic properties of the amino acid located at the second position (N2-HESH-2)
and the electronic properties (N3-HESH-9) of amino acids at the third position (Figure 4 and Table S4).
Amino acids with lower E-4 values at the second position of the tetrapeptides favors stronger bitterness
in tetrapeptides, such as amino acids “R” (–0.258), “P” (–0.215) and “F” (–0.215) which have low E-4
values at the second position of the bitter tetrapeptides (Table S3). In addition, similar to tripeptides,
involvement of the characteristics, described by “VSW” and “G-scale” descriptor sets (Figures 2–4),
provides useful information for future studies. In short, these findings not only confirm previous
results but also provide additional properties which contributed bitterness in tetrapeptides.

In conclusion, three models built with integrated descriptors and BOSS variable selection method
are highly reliable to predict bitterness of di-, tri- and tetrapeptides. The important structural
characteristics of amino acids generated from comprehensive descriptive information for bitterness of
di-, tri- and tetrapeptides were elucidated. These findings not only enhance our understanding of the
bitterness-structure relationship of peptides but also provide more insights for future works.

4. Materials and Methods

4.1. Preparation of Data Set

A total of 48, 52 and 23 dipeptides, tripeptides and tetrapeptides with bitterness activities were
used. The bitter thresholds of these peptides were collected from different literatures [39–50] and
summarized by Kim et al. [5]. The number of tetrapeptides used was small with only 23 because of the
limitation in the available reported data. The details of the peptide sequences, the bitterness activities
and the references were described in the Supplementary Tables S1–S3. The bitterness activity of a
peptide is expressed as in Equation (1):

Bitterness activity = log (1/T), (1)

where T is the bitter-tasting threshold concentration (M).
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4.2. Independent Variables Used for Development of QSAR Model

In this study, the independent variables of the QSAR models were parameters of the amino
acid-based descriptors. Fourteen descriptor sets describing the physio-chemical characteristics of
amino acids were used, which included 3z-scale, 5z-scale, DPPS (Divided Physiochemical Property
Scores), MS-WHIM-extended (Weighted Holistic Invariant Molecular approach applied on Molecular
Surface), ISA-ECI (Isotropic Surface Area and Electronic Charge Index), VHSE (Principle Components
Score Vectors of Hydrophobic, Steric, and Electronic Properties), FASGAI (Factor Analysis Scale of
Generalized Amino Acid Information), VSW (Vector of Principle Components Scores for Weighted
Holistic Invariant Molecular Index), T (Topological)-scale, ST (Structural Topological)-scale, E-scale, V,
G-scale and HESH (Hydrophobic, Electronic, Steric, and Hydrogen). The number of parameters in
each descriptor set was 3, 5, 10, 3, 2, 8, 6, 9, 5, 8, 5, 3, 8 and 12, respectively [11–14,18,19,21–28]. Thus,
the total number of parameters of the 14 descriptor sets were 87.

The total number of independent variables were calculated by n x number of parameters, where
‘n’ is the number of amino acids in a peptide. For example, since the descriptor set “3z-scale” contained
three parameters, when using the “3z-scale” to build the model for dipeptides, the total number of
variables was six (i.e., 2 × 3). When using integrated descriptors to build a model for dipeptides, the
total number of variables was 174 (i.e., 2 × 87) since the total number of parameters of the 14 descriptor
sets was 87. Similarly, the total numbers of variables for tri- and tetrapeptides are 261 (i.e., 3 × 87) and
348 (i.e., 4 × 87), respectively, when using integrated descriptors.

Each independent variable was named in the following format: amino acid position-descriptor
name-parameter number. For the amino acid position of dipeptides, N- and C-terminal ones are
indicated by N1 and N2, respectively. For tripeptides, amino acid at the N-terminus, in the middle
position, or at the C-terminus is indicated by N1, N2 and N3, respectively. Similarly, for tetrapeptides,
the position is indicated by N1, N2, N3 and N4. For example, the first parameter of the descriptor set
“3z-scale” for amino acid at N-terminus of a dipeptide is expressed as N1-3z-1.

4.3. Independent Variable Selection

A BOSS approach developed recently was used for variable selection in this study [36]. It is
a combination of bootstrap sampling (BSS) [51], weighted bootstrap sampling (WBS) [52], model
population analysis (MPA) [53] and PLS regression. The principles of these processes have been
explained in detail by Deng et al. (2016) and will not be discussed here.

Briefly, the operation of BOSS approach contains four steps. Firstly, the bootstrapping sampling
was applied to sample space to generate 1000 subsets and 1000 sub-models. Secondly, the prediction
error indicated by the RMSECV of each model was calculated, and the best (10%) models with the
lowest RMSECV were extracted. Thirdly, the regression coefficients of the independent variables in
each extracted model were calculated and summed to obtain weights for each independent variable.
Finally, a weighted bootstrapping sampling (WBS) was applied according to the new weights of
variables to generate new subsets. Steps 2–4 were repeated until the number of independent variables
in the new subsets equal to 1, and the subset with the lowest RMSECV during the iteration was chosen
as the optimal variable set.

4.4. QSAR Model Building

The PLS regression method was used to build the QSAR model between the independent variables
(X) described in Section 4.2 and the bitterness activities (log (1/T)) of di-, tri- and tetrapeptides. All data
were autoscaled to unit variance before modeling.

The number of significant PLS components were chosen automatically by rules based on Q2

(the coefficient of determination of cross-validation). The goodness of model fit was estimated by R2

(coefficient of determination) and RMSE (Equation (2)). The standardized regression coefficient, which
was calculated based on the standardized input (X) and output variables (Y) to remove the influence of
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the unit scale of variables, was used to evaluate the importance of input variables (X). The variable is
more important when the absolute value of the standardized regression coefficient is larger.

RMSE =

√∑N
i=1(yi − ŷi)

2

N
, (2)

where yi and ŷi are the experimental and predicted bitter taste activities (i.e., Log(1/T)) of peptides.
N is the number of peptides sets, 48 for dipeptides, 52 for tripeptides and 23 for tetrapeptides.

4.5. Model Validation

The developed models were assessed by 5-fold cross-validation as previously described [36],
resulting in values for the RMSECV (Equation (3)) and the Q2 (the coefficient of determination of
cross-validation; Equation (4)) [36].

RMSECV =

√∑NCal
i=1 (yi − ŷi)

2

NCal
(3)

Q2 = 1−

∑NCal
i=1 (yi − ŷi)

2∑NCal
i=1 (yi − yi)

2
, (4)

where yi, ŷi and yi are the experimental, predicted and average predicted bitter taste activities (i.e.,
log(1/T)) of the peptides, respectively. NCal is the number of calibration samples.

4.6. Statistical Analysis

All statistical analyses were performed by using MATLAB software (R2019a, The MathWorks,
Inc., Natick, Massachusetts, USA).

5. Conclusions

With the integration of 14 descriptor sets, reliable QSAR models for predicting the bitterness of di-
and tri- and tetrapeptides were built. They have the best fitting and predictability when compared
with previous ones.

Using the variable importance analyzes based on both the variable selecting frequency and
standardized regression coefficient, the key determinants for bitterness among different groups of
peptides were elucidated. For dipeptides, the hydrophobic C-terminal amino acid played a dominant
role followed by the contribution of a bulky hydrophobic amino acid at the N-terminus. For tripeptides,
the hydrophobicity of C-terminal amino acids and electronic properties of amino acids at the second
position were important. For tetrapeptides, bulky hydrophobic amino acids at the N-terminus;
hydrophobicity and partial specific volumes of amino acids at the second position; and the electronic
properties of amino acids at the remained two positions contributed to bitterness.

In short, this study not only constructs reliable models for predicting the bitterness of di- tri- and
tetrapeptides but also enhances better understanding of the structure-bitterness relationship of the
peptides in each group and gives insights for their future studies.

Supplementary Materials: The following are available online, Table S1: Datasets of dipeptides; Table S2: Datasets
of tripeptides; Table S3: Datasets of tetrapeptides; Table S4: Equations of QSAR models for di-, tri- and tetrapeptides
with the smallest RMSECV from 100 BOSS runs.
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