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Abstract

:

This work deals with the size-dependent buckling response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) (FG-CNTRC) curved beams based on a higher-order shear deformation beam theory in conjunction with the Eringen Nonlocal Differential Model (ENDM). The material properties were estimated using the rule of mixtures. The Hamiltonian principle was employed to derive the governing equations of the problem which were, in turn, solved via the Galerkin method to obtain the critical buckling load of FG-CNTRC curved beams with different boundary conditions. A detailed parametric study was carried out to investigate the influence of the nonlocal parameter, CNTs volume fraction, opening angle, slenderness ratio, and boundary conditions on the mechanical buckling characteristics of FG-CNTRC curved beams. A large parametric investigation was performed on the mechanical buckling behavior of FG-CNTRC curved beams, which included different CNT distribution schemes, as useful for design purposes in many practical engineering applications.
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1. Introduction


The reinforcement of nanocomposites with the introduction of carbon nanotubes (CNTs) as filler beside a polymeric matrix is well known to improve the potential applications of a structure in some fields of mechanics and electronics. Indeed, in recent decades, CNTs reinforced nanocomposites have been increasingly studied in the scientific community because of their remarkable properties [1,2,3,4,5,6,7,8,9]. CNTs are made of graphene sheets as it is the thinnest material in the world. Therefore, the use of CNTs with very small dimensions cannot disregard the possibility of size-dependent behavior of materials, especially at a nanoscale. This represents a challenging aspect to consider during the evaluation of the structural behavior of nanomaterials. To overcome this issue, a large variety of methods and strategies have been proposed in the literature, including laboratory tests, molecular dynamics-based simulations, and non-classical mathematical methods [10,11,12,13,14,15,16,17,18,19]. Among them, experimental tests and molecular dynamics simulations, however, are typically expensive and time-consuming, which has led to find an attention to use theoretical and numerical models for approaching similar problems. In this framework, Eringen [20,21] proposed a size-dependent model in which the size-dependent behavior is considered by introducing one small-scale nonlocal parameter. However, this approach considers only the softening enhancement of the size-dependence in nanostructured systems. Bouafia et al. [22] analyzed the bending and vibration response of FG nanobeams via a nonlocal quasi-3D theory. Shahsavari et al. [23] studied the forced vibration of viscoelastic graphene sheet under the moving load using a nonlocal refined plate theory. Ganapathi et al. [24] studied the vibrations of curved nanobeams via a nonlocal higher-order theory based on a finite element approach. For the first time, a guided wave propagation analysis of porous nanoplates was performed by Karami et al. [25] using the differential constitutive nonlocal model of Eringen in conjunction with the first-order shear deformation theory. The elastic stability response of curved nanobeams was analyzed by Polit et al. [26] using a nonlocal higher-order shear deformation theory employed in a finite element context. A further application of the nonlocal higher-order theory can be found in the work of Ganapathi and Polit [27] for the numerical study of the bending and buckling response of curved nanobeams, including the thickness stretching effect. For the first time, the shear buckling analysis of porous nanoplates was presented by Shahsavari et al. [28] using a nonlocal quasi-3D plate theory. A different single variable shear deformable nonlocal theory was applied instead, by Shimpi et al. [29], for the static analysis of rectangular micro/nanobeams subjected to a transverse loading, whereas a comprehensive study of the CNTs reinforced composite plates was presented by Karami et al. [30] by applying a nonlocal second-order shear deformable theory.



In a context where curved structures like beams or tubes play a remarkable role in many nanotechnology applications because of their engineering properties (i.e., high strength/stiffness to weight ratios), various size-dependent investigations of reinforced curved beams, tubes, and shells have been carried out in literature [31,32,33,34,35,36,37,38,39,40,41], including different theoretical or computational strategies.



In the current work, the buckling response of CNT reinforced composite curved beams was investigated through the constitutive equations of the nonlocal elasticity, while originally employing the Galerkin method. A continuum model of the nanobeam was also considered based on a higher-order refined theory of beams, which included the shear deformation effects without any proper introduction of shear correction factors. The nonlocal governing equations of the CNT reinforced curved size-dependent beams are here described by means of the Hamiltonian principle, which has been written in a variational form, and they are solved numerically for simply-supported and clamped boundary conditions. After evaluating the accuracy of the proposed method using the available literature, we represent the main results based on a large parametric investigation aimed to studying the influence of boundary conditions, opening angles, CNT distribution patterns, volume fractions, and nonlocal parameters on the critical mechanical buckling force, which is useful for the structural analysis and design of composite curved nanostructures.



The paper is organized as follows. Following the introduction section, we describe the basic fundamentals of the size-dependent problem in Section 2, while the considered solution strategy is presented in Section 3. Afterwards, Section 4 presents the numerical results of a large parametric investigation, useful for design purposes for many engineering applications. Finally, concluding remarks are summarized in Section 5.




2. Size-Dependent Problem


2.1. Basic Fundamentals


In this section, we consider the nonlocal model of Eringen [20], which is based on the following stress-strain relations:


τij=∫Vα(|x′−x|),τσij(x′)d(V′)



(1)







σij and τij being the local and nonlocal stress tensors, together with the following differential equations typically defined for a size-dependent behavior of nanostructure systems:


(1−(e0a)2∇2)σij=Cijklεkl



(2)




where ∇2 is the Laplacian operator.



Let us consider a CNTRC curved beam with length L and thickness h, as shown in Figure 1. Two different distributions of CNTs are here considered, namely a uniform distribution (UD) and a non-uniform functionally graded (FG) distribution, along the thickness direction of the curved beam (Figure 2), whereby the CNTs are added as filler beside the matrix for the reinforcement purposes. Hence, the effective material properties of CNTRC curved beams are defined, based on the Mori–Tanaka micromechanical scheme and the rule of mixture, as follows [42]:


E11=η1VCNTE11CNT+VmEm



(3)






η2E2=VCNTE22CNT+VmEm



(4)






η3G12=VCNTG12CNT+VmGm



(5)







In the previous relations, E12CNT,E22CNTG12CNT are the Young moduli and shear modulus of CNT; Em, Gm refer to the mechanical properties for the matrix; and VCNT and Vm denote the volume fractions of the CNT and matrix, respectively, such that:


VCNT+Vm=1



(6)







The CNTs efficiency parameters ηj in Equations (3)–(5) must be determined before computing the effective material properties of the structure. Thus, we estimate the CNT efficiency parameters η1 and η2 by comparing the Young’s moduli E11CNT and E22CNT for the CNTRCs, as obtained by the rule of mixtures, with those given by Han and Elliott [43]. In Table 1, the mechanical properties with a clear good agreement between the molecular dynamics and the rule of mixture are summarized after a proper selection of η1 and η2. Moreover, the effective Poisson’s ratio and mass density are expressed as”


ν12=VCNT*ν12CNT+Vmνm



(7)






ρ=VCNTρCNT+Vmρm



(8)




where ν12CNT, ρCNT stand for the Poisson’s ratio and mass density of the CNT; and ν12CNT, ρCNT refer to the Poisson’s ratio and mass density of the matrix, respectively. The selected distribution schemes for CNTs along the thickness direction can be expressed analytically as [42]:


VCNT={VCNT∗(UD)(1+2zh)VCNT∗(FG)



(9)




where:


VCNT∗=wCNTwCNT+(ρCNT/ρm)−(ρCNT/ρm)wCNT



(10)




and wCNT is the mass fraction of the CNTs.



In what follows, we include the interactions among the CNTs and the matrix, while ignoring the effects of strains at general points of the nanocomposite on the stresses at a reference point. Thus, to avoid any possible inaccuracy related to the above-mentioned approximation, it is referred to the presence of nonlocal parameters as required by the Eringen Nonlocal Differential Model (ENDM) to predict the size-dependent behavior of nanostructure systems.




2.2. Displacement Field and Strain


According to the refined beam theory, the curved beam is modeled as a continuum model with its displacement field defined as [44]:


uθ(θ,r,t)=(1+zR)u(θ,t)+zR(∂wb(θ,t)∂θ)+f(z)R(∂ws(θ,t)∂θ)



(11)






wr(θ,r,t)=−wb(θ,t)−ws(θ,t)



(12)




where u is the tangential mid-plane displacement, wb and ws are the bending and shear components of the radial displacement, respectively; and f (z) is the shape function defined as:


f(z)=hπ(sinh[πzh]−z)(cosh[π2])−1



(13)







It is interesting to note that the shape function in Equation (13) satisfies the stress-free boundary conditions on the top and bottom surfaces of the beam without using any shear correction factor. The non-zero strain field related to the displacement components is:


εx=εx0+zkxb+f(z)kxs,  γxz=g(z)(γxz0)



(14)




where:


εx0=1R(−wb−ws+∂u∂θ), kxb=1R2(∂u∂θ+∂2wb∂θ2), kxs=f(z)R2(∂2ws∂θ2), γxz0=−∂wsR∂θ



(15)




and g(z)=1f′(z).




2.3. Governing Equations


The equations of motion for the stability of composite curved beams can be derived from the Hamilton’s principle:


∫0tδ(U+V)dt=0



(16)




where U and V refer to the strain energy and work done by external forces, respectively. The variational form of the strain energy is expressed as:


δU=∫VσijδεijdV=∫V(σxxδεxx+τxzδγxx)dV=∫0L(N(−δwbR−δwsR+∂δuR∂θ)−MbR2(∂δu∂θ+∂2δwb∂θ2)−MsR2∂2δws∂θ2+QR∂δws∂θ)Rdθ



(17)




where:


(N,Mb,Ms)=∫−h2h2(1,z,f(z))σxxdz,  Q=∫−h2h2g(z)τxzdz



(18)







Accordingly, the work done by the applied forces takes the following form:


δV=∫0LNbR2(∂(wb+ws)∂θ∂δ(wb+ws)∂θ)Rdθ



(19)







Nb is the applied tangential force here. By substituting Equations (17), (19) into Equation (16) and integrating by parts with respect to space and time variables, the equations of motion in terms of the displacement components of the curved beam can be obtained as:


−∂N∂θ−1R∂Mb∂θ=0



(20)






∂2MbR∂θ2−N−NbR∂2(wb+ws)∂θ2=0



(21)






∂2MsR∂θ2−N+∂Q∂θ−NbR∂2(wb+ws)∂θ2=0



(22)







Now, the constitutive equations of the nonlocal refined curved beam are introduced as follows:


σxx−μ∂2σxx∂θ2=Eεxx



(23)






τxz−μ∂2τxz∂θ2=Gγxz



(24)




where µ = (e0a)2. By the combination of Equations (2)–(21), (23), (24), we get to the following relations for the curved beam:


N−μ∂2NR2∂θ2=(AR(−wb−ws+∂u∂θ)+BR2(∂u∂θ+∂2wb∂θ2)+BsR2∂2ws∂θ2)



(25)






Mb−μ∂2MbR2∂θ2=(BR(−wb−ws+∂u∂θ)+DR2(∂u∂θ+∂2wb∂θ2)+DsR2∂2ws∂θ2)



(26)






Ms−μ∂2MsR2∂θ2=(BsR(−wb−ws+∂u∂θ)+DsR2(∂u∂θ+∂2wb∂θ2)+HsR2∂2ws∂θ2)



(27)






Q−μ∂2QR2∂θ2=−(AsR∂ws∂θ)



(28)




where:


(A,B,Bs,D,Ds,Hs)=∫−h2h2E(1,z,f(z),z2,zf(z),f2(z))dz



(29)






As=∫−h2h2g2(z)Gdz



(30)







Upon rearrangement, we get to the following governing equations of the beam in terms of displacement components:


AR(−∂wb∂θ−∂ws∂θ+∂2u∂θ2)+BR2(−∂wb∂θ−∂ws∂θ+2∂2u∂θ2+∂3wb∂θ3)+BsR2∂3ws∂θ3+DR3(∂2u∂θ2+∂3wb∂θ3)+DsR3∂3ws∂θ3=0



(31)






BR2(−∂2wb∂θ2−∂2ws∂θ2+∂3u∂θ3)+DR3(∂3u∂θ3+∂4wb∂θ4)+DsR3∂4ws∂θ4−AR(−wb−ws+∂u∂θ)−BR2(∂2wb∂θ2+∂u∂θ)−BsR2∂2ws∂θ2−NbR∂2(wb+ws)∂θ2+μR2(NbR∂4(wb+ws)∂θ4)=0



(32)






BsR2(−∂2wb∂θ2−∂2ws∂θ2+∂3u∂θ3)+DsR3(∂3u∂θ3+∂4wb∂θ4)+HsR3∂4ws∂θ4−AR(−wb−ws+∂u∂θ)−BR2(∂2wb∂θ2+∂u∂θ)−BsR2∂2ws∂θ2−AsR2∂2ws∂θ2−NbR∂2(wb+ws)∂θ2+μR2(NbR∂4(wb+ws)∂θ4)=0



(33)









3. Solution Methodology


The Galerkin method is here employed to solve the equations of motion for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) curved beams with simply-simply (S-S) supports, clamped-simply (C-S) supports, and clamped-clamped (C-C) supports, respectively:



Simply-supports (S):


wb = ws = M = 0 at x = 0, L











Clamped-supports (C):


u = wb = ws = 0 at x = 0, L











Assuming the following expansion for the displacement field:


u(θ)=∑n=1∞Un∂Fm(θ)∂θ



(34)






wb(θ)=∑n=1∞WbnFm(θ)



(35)






ws(θ)=∑n=1∞WsnFm(θ)



(36)




and by introducing the Equations (34)–(36) into Equations (31)–(33), the following set of relations can be obtained:


K{UnWbnWsn}=0



(37)




in which K represents the stiffness matrix. The admissible function Fm is selected in the following as the beam eigenfunction, i.e.,



	
S-S: Fm=sin(nπαθ)



	
C-S: Fm=sin(nπαθ)[cos(nπαθ)−1]



	
C-C: sin2(nπαθ)






To obtain the critical buckling force, we must enforce the determinant of the stiffness matrix equal to zero. This parameter will be quantified in nondimensional form in the next parametric analysis, namely:


Ncr=NbR2EMh3



(38)








4. Numerical Results


The procedure proposed in the previous section is here applied to study the size-dependent buckling behavior of FG-CNTRC curved beams. The higher-order shear deformation beam theory is also applied to model the nanobeam, whereby the size-dependent effect is considered by means of the application of the Eringen nonlocal differential model. Thus, the buckling phenomena of the nanostructure are solved mathematically via the Galerkin method for different boundary conditions. The parametric study presented in this work analyzes the sensitivity of the size-dependent buckling response of FG-CNTRC curved beams reinforced with CNTs to some mechanical parameters (i.e., the nonlocal parameter and the nanotube volume fraction), as well as to some geometrical parameters, (namely, the opening angle, slenderness ratio, and the CNT distribution schemes). The preliminary focus of the investigation was on the accuracy of the proposed method to compute the critical buckling load, whose results are summarized in Table 2 in nondimensional form for an S-S beam, while varying the nonlocal parameter µ. Based on a comparative evaluation between our predictions and those obtained by Reddy [45], Aydogdu [46], and Eltaher [47], a very good match was observed, which confirms the accuracy of the proposed formulation for similar problems.



Next, we discuss about the size-dependence of the buckling load for FG-CNTRC curved beams with different boundary conditions (see Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11 and Figure 3, Figure 4 and Figure 5), together with results for UD-CNTRC counterparts, for a direct comparison. Unless otherwise stated before, the length of the curved beam is fixed at L = 20, whereby a Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} is selected as matrix (henceforth labeled as PmPV), with Poisson’s ratio νm=0.34, elastic modulus Em=2.1 GPa, and temperature T = 300 K. As reinforcement phase, instead, we select an armchair (10, 10) SWCNTs, with elastic moduli E11CNT=5.6466 TPa, E22CNT=7.080 TPa, and Poisson’s ratio νCNT=0.175.



More specifically, Table 3, Table 4 and Table 5 evaluate the effect of the volume fraction and distribution patterns of CNTs on the nondimensional critical buckling load of the composite curved beams for S-S, C-S, and C-C CNTRC curved beams, respectively, while L/h = 1 and α = π/3 are considered. By exploiting the numerical results in Table 3, Table 4 and Table 5 comparatively, it is worth noting that clamped nanostructures yield the maximum buckling load, while S-S beams get the lowest buckling values. Moreover, an increment in the volume fraction of CNTs VCNT* significantly raises the buckling load of both UD- and FG-CNTRCs, with its behavior also affected by the nonlocality µ. More specifically, a rise in nonlocality reduces the buckling load of CNTRC curved beams because of the stiffness-softening mechanisms characterizing the nanostructure. The sensitivity of the buckling response to the volume fraction of CNTs is also plotted in Figure 3 versus the slenderness ratio L/h, for a C-C boundary condition and different distributions of CNTs (namely a UD pattern in Figure 3a and an FG pattern in Figure 3b). Based on Figure 3, it is worth to note that the monotone behavior of the critical buckling load increases for development in slenderness ratios L/h, especially for the higher values of the volume fraction of CNTs VCNT*.



In addition, Table 6, Table 7 and Table 8 summarize the results of the nondimensional critical buckling load for different L/h ratios and nonlocal parameters µ, while considering a S-S, C-S, and C-C composite curved beams reinforced with CNTs, respectively. It is clear that the highest sensitivity of the buckling response of curved beams to the length-to-thickness ratio is obtained for C-C boundary conditions, followed by C-S, and S-S supports, respectively. Moreover, the highest value of the critical load is always reached in size-dependent composite curved beams with µ = 0, whereby as µ increases, the buckling load decreases, independently of the selected L/h ratios and CNTs distributions. A meaningful sensitivity of the response to the boundary conditions is also detected due to an expectable variation in the structural stiffness of the composite curved beams. Furthermore, Figure 4 illustrates the double effect of the nonlocal parameter and the slenderness ratio L/h on the nondimensional critical buckling load of CNTRC curved beams for fixed C-C boundary conditions and different CNTs distribution patterns (namely, a UD pattern in Figure 4a and an FG pattern in Figure 4b).



It is worth noting that the moderately thick CNTRC curved beam with L/h = 10 features the lowest critical buckling load. This last one increases as the length-to-thickness ratio L/h is increased, both in UD and FG-CNTRC curved beams. Another key aspect related to the sensitivity of the response with the nonlocal parameter is that the impact is more pronounced for higher values of L/h, (or equivalently to a lower thickness of the curved beam for a fixed length).



The effect of the opening angle and the nonlocal parameter on the nondimensional critical buckling load is shown in Table 9, Table 10 and Table 11 for S-S, C-S, and C-C CNTs reinforced composite curved beams, respectively. By exploiting comparatively, the results can be found that an increasing value of the opening angle decreases the buckling load whose value is also affected by the selected boundary condition. The results are obtained far from a size-dependence of the structure. It means that the buckling load of size-dependent and independent response of curved beams decreases by increasing the opening angle for each boundary conditions.



The double effect of the opening angle and slenderness ratio is finally emphasized in Figure 5 for each CNT reinforcement patterns, while considering a fixed C-C boundary condition. Based on this last plot, it is clearly visible that the higher sensitivity of the response for thick CNTs reinforced curved beams (i.e., for L/h = 50) compared to thin structures.




5. Conclusions


The size-dependent buckling of FG-CNTRC curved beams was investigated within the framework of a refined beam theory and Eringen nonlocal differential model. The CNTs distributions were considered uniform and graded through the thickness direction, and the material properties were estimated using the rule of mixtures. The Galerkin method was also employed to obtain the critical buckling load of FG-CNTRC curved beams for different boundary conditions. The effects of the nonlocal parameter, CNT volume fraction, slenderness ratio, opening angle, boundary conditions, and CNTs distribution scheme on the critical buckling load of FG-CNTRC curved beams were discussed in detail. Based on the numerical results, the following concluding remarks can be summarized:



An increase in CNT volume fraction leads to an increase in the critical buckling load for both UD- and FG-CNTRC curved beams.



A UD of CNTs in composite curved beams yields higher values of the critical buckling load compared to an FG distribution of CNTs.



An increase in the opening angle leads to a lower value of the critical buckling load for both UD- and FG-CNTRC curved beams.



The highest values of the critical buckling load of FG-CNTRC curved beams is obtained for completely clamped C-C boundary conditions, due to an increase in structural stiffness compared to simply supported boundary conditions.



Using nonlocality phenomena, the critical buckling load of FG-CNTRC curved beam decreases. Moreover, the effect of the nonlocal parameter in curved beams with higher slenderness ratios is more pronounced, if compared to lower slenderness ratios.
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Figure 1. Geometry of a carbon nanotubes (CNTs) reinforced composite curved beam. 
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Figure 2. Distribution schemes of CNTs along the thickness direction. UD = uniform distribution; FG = functionally graded. 
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Figure 3. Critical buckling load versus slenderness ratio for different volume fractions and distribution patterns of CNTs: (a) UD pattern, (b) FG pattern. (µ = 2 nm2, L = 20, α = π/3). 
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Figure 4. Critical buckling load versus slenderness ratio for different nonlocal parameters and distribution patterns of CNTs: (a) UD pattern, (b) FG pattern. (L = 20, α = π/3, VCNT* = 0.14). 
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Figure 5. Critical buckling load versus slenderness ratio for different opening angles and distribution patterns of CNTs: (a) UD pattern, (b) FG pattern. (µ = 1 nm2, L = 20, VCNT* = 0.14). 
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Table 1. Mechanical properties for a Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} (PmPV)/CNT composites reinforced by (10,10) SWCNT at the temperature T = 300 K.






Table 1. Mechanical properties for a Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} (PmPV)/CNT composites reinforced by (10,10) SWCNT at the temperature T = 300 K.





	
VCNT*

	
MD [43]

	
Rule of Mixture






	

	
E11 (GPa)

	
E22 (GPa)

	
E11 (GPa)

	
η1

	
E22 (GPa)

	
η2




	
0.11

	
94.8

	
2.2

	
94.42

	
0.149

	
2.20

	
0.934




	
0.14

	
120.2

	
2.3

	
120.38

	
0.150

	
2.30

	
0.941




	
0.17

	
145.6

	
3.5

	
144.77

	
0.140

	
3.49

	
1.381
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Table 2. Nondimensional buckling force for a simply supported beam.
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	µ
	Reddy [45]
	Aydogdu [46]
	Eltaher [47]
	Present





	0
	9.8696
	9.8696
	9.86973
	9.80601



	1
	8.9830
	9.6319
	8.98312
	8.92692



	2
	8.2426
	9.4055
	8.24267
	8.19176



	3
	7.6149
	9.1894
	7.61499
	7.56846



	4
	7.0761
	8.9830
	7.07614
	7.03246
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Table 3. Nondimensional critical buckling load for simply- simply (S-S) CNTRC curved beams with L/h = 10, α = π/3.
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	VCNT*
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	0.11
	12.5642
	12.4111
	12.2617
	12.1158
	11.9734
	11.6983



	
	0.14
	14.3533
	14.1784
	14.0077
	13.8411
	13.6783
	13.3641



	
	0.17
	19.6015
	19.3626
	19.1295
	18.9019
	18.6797
	18.2505



	FG-CNTRC
	0.11
	10.1067
	9.9835
	9.8633
	9.7459
	9.6314
	9.4101



	
	0.14
	11.7678
	11.6244
	11.4844
	11.3478
	11.2144
	10.9567



	
	0.17
	15.6689
	15.4780
	15.2916
	15.1097
	14.9321
	14.5890
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Table 4. Nondimensional critical buckling load for clamped simply (C-S) CNTRC curved beams with L/h = 10, α = π/3.
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	VCNT*
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	0.11
	123.0005
	119.3204
	115.8541
	112.5835
	109.4924
	103.7931



	
	0.14
	153.2617
	148.6762
	144.3571
	140.2818
	136.4303
	129.3288



	
	0.17
	189.3549
	183.6894
	178.3532
	173.3182
	168.5597
	159.7857



	FG-CNTRC
	0.11
	120.5401
	116.9336
	113.5366
	110.3314
	107.3022
	101.7169



	
	0.14
	150.8821
	146.3677
	142.1157
	138.1037
	134.3120
	127.3207



	
	0.17
	185.4017
	179.8545
	174.6296
	169.6998
	165.0406
	156.4498
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Table 5. Nondimensional critical buckling load for clamped- clamped (C-C) CNTRC curved beams with L/h = 10, α = π/3.
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	VCNT*
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	0.11
	251.6676
	239.8324
	229.0603
	219.2143
	210.1798
	194.1748



	
	0.14
	316.4206
	301.5402
	287.9965
	275.6171
	264.2581
	244.1351



	
	0.17
	386.8498
	368.6573
	352.0990
	336.9642
	323.0770
	298.4749



	FG-CNTRC
	0.11
	249.5883
	237.8509
	227.1678
	217.4031
	208.4433
	192.5705



	
	0.14
	314.4762
	299.6872
	286.2267
	273.9234
	262.6343
	242.6349



	
	0.17
	383.5269
	365.4907
	349.0746
	334.0698
	320.3018
	295.9111
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Table 6. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for S-S CNTRC curved beams with α = π/3, VCNT* = 0.14.
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	L/h
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	10
	14.3533
	14.1784
	14.0077
	13.8411
	13.6783
	13.3641



	
	20
	25.2537
	24.9459
	24.6456
	24.3524
	24.0660
	23.5132



	
	30
	29.4450
	29.0862
	28.7360
	28.3941
	28.0603
	27.4156



	
	50
	32.1881
	31.7958
	31.4130
	31.0393
	30.6744
	29.9697



	FG-CNTRC
	10
	11.7678
	11.6244
	11.4844
	11.3478
	11.2144
	10.9567



	
	20
	18.4256
	18.2010
	17.9819
	17.7680
	17.5591
	17.1557



	
	30
	20.6574
	20.4057
	20.1600
	19.9202
	19.6860
	19.2337



	
	50
	22.0620
	21.7931
	21.5307
	21.2746
	21.0244
	20.5414
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Table 7. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for C-S CNTRC curved beams with α = π/3, VCNT* = 0.14.
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	L/h
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	10
	153.2617
	148.6762
	144.3571
	140.2818
	136.4303
	129.3288



	
	20
	575.5663
	558.3455
	542.1252
	526.8208
	512.3568
	485.6873



	
	30
	1247.1406
	1209.8265
	1174.6804
	1141.5187
	1110.1779
	1052.3904



	
	50
	3353.4099
	3253.0768
	3158.5732
	3069.4054
	2985.1338
	2829.7502



	FG-CNTRC
	10
	150.8821
	146.3677
	142.1157
	138.1037
	134.3120
	127.3207



	
	20
	564.4312
	547.5436
	531.6372
	516.6288
	502.4446
	476.2911



	
	30
	1228.5852
	1191.8263
	1157.2031
	1124.5348
	1093.6603
	1036.7326



	
	50
	3327.6844
	3228.1210
	3134.3424
	3045.8586
	2962.2334
	2808.0419
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Table 8. Effect of the slenderness ratio L/h on the nondimensional critical buckling load for C-C CNTRC curved beams with α = π/3, VCNT* = 0.14.
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	L/h
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	10
	316.4206
	301.5402
	287.9965
	275.6171
	264.2581
	244.1351



	
	20
	1230.3705
	1172.5095
	1119.8461
	1071.7102
	1027.5419
	949.2954



	
	30
	2714.6098
	2586.9490
	2470.7560
	2364.5519
	2267.1018
	2094.4639



	
	50
	7393.5474
	7045.8487
	6729.3838
	6440.1251
	6174.7087
	5704.5098



	FG-CNTRC
	10
	314.4762
	299.6872
	286.2267
	273.9234
	262.6343
	242.6349



	
	20
	1218.4960
	1161.1934
	1109.0383
	1061.3669
	1017.6249
	940.1336



	
	30
	2691.1353
	2564.5784
	2449.3901
	2344.1045
	2247.4971
	2076.3521



	
	50
	7355.7738
	7009.8515
	6695.0035
	6407.2225
	6143.1622
	5675.3655
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Table 9. Effect of the opening angle α on the nondimensional critical buckling load for S-S CNTRC curved beams with L/h = 10, VCNT* = 0.14.
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	α
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	π/4
	28.3891
	28.0431
	27.7055
	27.3759
	27.0540
	26.4325



	
	π/3
	14.3533
	14.1784
	14.0077
	13.8411
	13.6783
	13.3641



	
	π/2
	4.5393
	4.4840
	4.4300
	4.3773
	4.3258
	4.2264



	
	2π/3
	1.4001
	1.3830
	1.3664
	1.3501
	1.3342
	1.3036



	FG-CNTRC
	π/4
	23.3784
	23.0935
	22.8155
	22.5440
	22.2790
	21.7672



	
	π/3
	11.7678
	11.6244
	11.4844
	11.3478
	11.2144
	10.9567



	
	π/2
	3.6889
	3.6440
	3.6001
	3.5573
	3.5155
	3.4347



	
	2π/3
	1.1279
	1.1141
	1.1007
	1.0876
	1.0748
	1.0501
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Table 10. Effect of the opening angle α on the nondimensional critical buckling load for C-S CNTRC curved beams with L/h = 10, VCNT* = 0.14.
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	α
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	π/4
	172.4731
	167.3128
	162.4523
	157.8662
	153.5319
	145.5402



	
	π/3
	153.2617
	148.6762
	144.3571
	140.2818
	136.4303
	129.3288



	
	π/2
	139.5855
	135.4092
	131.4754
	127.7638
	124.2560
	117.7882



	
	2π/3
	134.8634
	130.8284
	127.0277
	123.4417
	120.0526
	113.8035



	FG-CNTRC
	π/4
	168.1669
	163.1354
	158.3962
	153.9246
	149.6986
	141.9064



	
	π/3
	150.8821
	146.3677
	142.1157
	138.1037
	134.3120
	127.3207



	
	π/2
	138.6057
	134.4586
	130.5525
	126.8670
	123.3838
	116.9614



	
	2π/3
	134.3841
	130.3633
	126.5762
	123.0029
	119.6258
	113.3990
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Table 11. Effect of the opening angle α on the nondimensional critical buckling load for C-C CNTRC curved beams with L/h = 10, VCNT* = 0.14.
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	α
	µ = 0
	µ = 0.5
	µ = 1
	µ = 1.5
	µ = 2
	µ = 3





	UD-CNTRC
	π/4
	337.8116
	321.9253
	307.4660
	294.2497
	282.1228
	260.6394



	
	π/3
	316.4206
	301.5402
	287.9965
	275.6171
	264.2581
	244.1351



	
	π/2
	301.1614
	286.9986
	274.1080
	262.3256
	251.5144
	232.3618



	
	2π/3
	295.8488
	281.9358
	269.2726
	257.6981
	247.0776
	228.2628



	FG-CNTRC
	π/4
	334.3510
	318.6274
	304.3162
	291.2353
	279.2327
	257.9693



	
	π/3
	314.4762
	299.6872
	286.2267
	273.9234
	262.6343
	242.6349



	
	π/2
	300.3202
	286.1970
	273.3424
	261.5930
	250.8119
	231.7128



	
	2π/3
	295.4045
	281.5124
	268.8683
	257.3111
	246.7066
	227.9201
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