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Abstract: Ensemble docking is a widely applied concept in structure-based virtual screening—to
at least partly account for protein flexibility—usually granting a significant performance gain at a
modest cost of speed. From the individual, single-structure docking scores, a consensus score needs
to be produced by data fusion: this is usually done by taking the best docking score from the available
pool (in most cases—and in this study as well—this is the minimum score). Nonetheless, there are a
number of other fusion rules that can be applied. We report here the results of a detailed statistical
comparison of seven fusion rules for ensemble docking, on five case studies of current drug targets,
based on four performance metrics. Sevenfold cross-validation and variance analysis (ANOVA)
allowed us to highlight the best fusion rules. The results are presented in bubble plots, to unite the
four performance metrics into a single, comprehensive image. Notably, we suggest the use of the
geometric and harmonic means as better alternatives to the generally applied minimum fusion rule.
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1. Introduction

Molecular docking has proven to be an invaluable tool of structure-based drug discovery in
the past three decades, powering many virtual screening campaigns [1], which have resulted in the
discovery of new kinase inhibitors [2], G-protein coupled receptor (GPCR) agonists and antagonists [3]
and various other types of small-molecule ligands. Docking embodies a delicate balance between
speed and precision: despite being based mostly on principles of molecular mechanics (and often
involving a thorough evaluation of various intermolecular interaction terms), it is still capable of
examining large ligand sets (up to the order of 106 ligands) in a reasonable time. Hence, ligand docking
lies in-between the fields of molecular modelling and cheminformatics. The rigid treatment of the
protein structure allows for fast calculations, but it is also the greatest limitation of docking in terms of
its precision, particularly for scoring. There are various approaches to at least partly increase precision
at the cost of speed: the most popular one is undoubtedly ensemble docking, i.e., the simultaneous
application of multiple, conformationally diverse structures to represent the protein [4]. The term
“ensemble docking” was coined in the 2007 work of Huang and Zou [5], and methodologies for
ensemble selection/optimization were proposed in the recent years [6,7], including cases of multiple
experimental structures [8], as well as homology models [9]. By the present day, with the increase of
computational power, ensemble docking has become a routine approach in early-stage drug discovery.
While the current standards of ensemble docking rely on structure generation by molecular dynamics
(MD) simulations and ensemble selection by the conformational clustering of (either experimental,
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or MD-generated) structures, researchers of the field are simultaneously exploring new directions for
the enhanced sampling of conformational space, such as Markov state models [4].

From a molecular modelling perspective, many important methodological questions regarding
ensemble docking have been studied, such as ensemble size, selection algorithm and other factors [10]
and best practices were suggested for ensemble generation with molecular dynamics simulations [11]
and normal mode analysis [12]. The effect of dataset composition on virtual screening was studied
by Bojarski et al. [13,14], while various aspects of decoy selection were summarized in the recent
review of Réau et al. [15]. However, if we look at ensemble docking from a cheminformatics point
of view, it evidently presents a task of data fusion, i.e., how do we rank or select from the screened
compounds when we have multiple docking score values for each of them? (More technically: how
do we define the consensus docking score for a compound, given n docking scores on the individual
protein structures?) While several data fusion methods exist – and have been thoroughly studied for
ligand-based virtual screening [16,17] –, an extensive study to explore their application for ensemble
docking is still lacking.

With this study, we aim to fill this void, by conducting a thorough statistical comparison of several
data fusion options on multiple datasets, coming from ensemble docking-based virtual screenings on
kinases (case studies 1 and 2) [18,19], a GPCR (G-protein coupled receptor) target (case study 3) [20],
an oxidoreductase enzyme (case study 4), and a nuclear receptor (case study 5). Data fusion methods
compiled by Willett are evaluated, including minimum, maximum, various types of averages and
the Euclidean fusion rule [16]. A combination of performance metrics is applied for the evaluation,
including area under the receiver operating characteristic (ROC) curve (AUC), average precision
(AP), Boltzmann-enhanced discrimination of ROC (BEDROC) and sum of ranking differences (SRD)
values. Ultimately, the paper intends to point the attention of the cheminformatics and drug discovery
communities to the possible applications of data fusion rules in the context of ensemble docking.

2. Results and Discussion

Five case studies were applied for the statistical comparisons conducted in this work. Case study
1 was a virtual screening that has resulted in the identification of five new, potent inhibitors of Janus
kinase 1 (JAK1, a kinase enzyme involved in autoimmune in inflammatory diseases) [18]. Likewise,
case study 2 resulted in the discovery of six new inhibitors of JAK2 (subtype 2 of the same enzyme
family) [19]. Both studies have employed ensemble docking into five protein structures (either a crystal
structure, or selected from a molecular dynamics simulation) and involved a thorough optimization of
the virtual screening workflows by retrospective virtual screening.

Case study 3 is a molecular modeling study focused on identifying the most important structural
features for ligand recognition by the serotonin receptor 5-HT6, involving homology modeling and
molecular dynamics (MD) simulations of the receptor [20]. To that end, the authors evaluated a large
number of models and MD snapshots in retrospective virtual screening experiments, using three ligand
sets from different sources. They identified nine protein structures that gave the best enrichment of
active molecules in retrospective screening.

Case studies 4 and 5 are two retrospective screens conducted by us on the aldose reductase 2
enzyme (ALR2) and the estrogen receptor (ER), respectively, to provide a more diverse set of target
proteins and allowing for more general conclusions. The ligand sets were downloaded from the
DUD database [21], and the protein structures used for docking were selected by clustering from the
available structures deposited in the Protein Data Bank (PDB) database.

From all of the five case studies, datasets used for retrospective screening (with docking scores
and known active/inactive labels for each compound) were applied in the present work. Dataset
compositions are summarized in Section 3.1.

Various data fusion rules were explored, as collected and detailed by Willett [16]; these included
the minimum (MIN) and maximum (MAX) rules—which simply assign the smallest (best) and largest
(worst) individual docking score as the consensus score for each compound—, the mean (SUM), median
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(MED) and Euclidean norm (EUC) rules, and two further types of average: the geometric (GEOM) and
harmonic means (HARM). The formulas are summarized in Section 3.2. Originally, the reciprocal rank
fusion (RRF) rule was considered as well, but it quickly became clear that without setting a threshold
(e.g., considering only the top 1 % of each list of docking scores) it provides highly redundant values
(see Supplementary Figure S1a,b), thus it was omitted from further study.

For the statistical comparison of the fusion rules, we have applied several performance metrics,
including the area under the ROC curve values (AUC), average precision (AP), Boltzmann-enhanced
discrimination of receiver operating characteristic (BEDROC) and sum of ranking differences
(SRD)—these are summarized in Section 3.3. The workflow of the project is included in Figure 1.

Figure 1. The workflow of the complete study. Single-structure docking scores from five case studies
were used to generate consensus scores by the various data fusion rules, which were then compared by
four performance metrics (SRD, AUC, AP, BEDROC) and statistical analysis (ANOVA).

For the JAK1 and JAK2 datasets, as a first level of comparison, we have calculated ROC
curves and the corresponding AUC values (standard deviations were calculated based on sevenfold
cross-validation). ROC curves for the JAK2 dataset are shown in Figure 2A (and Supplementary
Figure S2 for JAK1, with highly similar results).

As seen in Figure 2A, ROC curves provide little distinction between the data fusion rules, although
it is clear that the maximum rule (MAX) is somewhat worse than the others for both datasets. Since the
maximum rule selects the worst docking score, we can conclude that it is not advantageous to apply
the strictest possible fusion rule.

To provide a more detailed picture, we have extended the comparison to include other performance
metrics as well. Average precision (AP) is calculated analogously to AUC, but instead of the ROC
curve, the area under the precision-recall curve is calculated. Thus, AP gives information about how
precise the selection of compounds is, which is the fraction of actives among the selected compounds
averaged over the varying score thresholds T. BEDROC is a weighted version of the AUC value
where the early part of the ROC curve is given more weight—meaning that BEDROC focuses more on
early enrichment. Finally, sum of ranking differences (SRD) is a robust statistical method, specifically
developed for method comparison tasks. Briefly, it evaluates Manhattan distances of a set of rank
transformed vectors (here, corresponding to different data fusion rules) from a reference vector which
corresponds to a hypothetical ideal reference method. The reference vector can be a “gold standard” or
experimental values (where available), or a consensus method based on data fusion itself. In our case,
an ideal method would produce the best (lowest) possible consensus scores for the active molecules,
and the worst (highest) possible scores for the inactives; thus, we have defined the reference vector
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by taking the lowest single-structure docking score for the actives and the highest for the inactives
(minimax rule). The performance metrics are explained in more detail in Section 3.3.

An extensive statistical analysis was carried out on the AUC, AP, BEDROC and SRD values for
significance testing between the fusion rules with one-way ANOVA and Tukey HSD post-hoc tests.
Even if the standard deviations have overlapped in several cases, the fusion rules have proven to be
significant as the ANOVA factor, and Tukey HSD tests have shown the significant difference between
most pairs of the fusion rules and single-structure docking scores. A brief summary of the Tukey
HSD tests with the ratios of the significant and non-significant pairs of variables can be found in the
Supplementary Materials (Figure S3a–c) for each dataset, while the ANOVA results are tabulated in
Supplementary Table S1a–t.

The SRD plot is shown in Figure 2B for the JAK2 dataset and in Supplementary Figure S4 for
the JAK1 dataset, which yielded similar results. Sevenfold randomized cross-validation was used
for establishing uncertainty to SRD values, and normalized SRD values were used for comparability.
All the data fusion methods and single-structure docking scores were better than random ranking,
as they do not overlap with the cumulative relative frequency curve of random ranking. Based on SRD,
all fusion rules are more consistent with the reference than single-structure docking scores (4, 9, 18, 20,
3E62), which was not unexpected—except for MIN (in the JAK2 dataset) and MAX (in the JAK1 dataset).
The various types of averages and the Euclidean norm are consistently among the best options.

Figure 2. (A) ROC curves of the JAK2 dataset. The AUC values and standard deviations for each
fusion rule are included in the legend. Single-structure docking scores are omitted for clarity. (B) SRD
analysis of the JAK2 dataset. Normalized SRD values are plotted on the x and left y axes, and the
cumulative relative frequencies of SRD values for random ranking are plotted on the right y axis and
shown as the black curve. Single-structure docking scores are labeled based on PDB code (3E62) or
sequential MD frame number (4, 9, 18, 20).
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The same workflow was applied to test the fusion rules for the ensemble docking of a dataset of
5-HT6 ligands (case study 3), based on docking to the nine best receptor structures that were identified
in the respective study [20].

ROC curves of the fusion rules are plotted in Figure 3A. Similarly to case studies 1 and 2, only
the maximum rule stands out as a somewhat worse option as compared to the others, but all of them
are far from random. Nonetheless, we wanted to see whether the four performance metrics could
distinguish between the fusion rules in this setting; therefore, we have carried out the same analysis as
for case studies 1 and 2.

Figure 3. (A) ROC curves of the 5-HT6 dataset. The AUC values and standard deviations for each
fusion rule are included in the legend. Single-structure docking scores are omitted for clarity. (B) SRD
analysis of the 5-HT6 dataset. Normalized SRD values are plotted on the x and left y axes, and the
cumulative relative frequencies of SRD values for random ranking are plotted on the right y axis and
shown as the black curve. The MD frame numbers in the bracket denote single-structure docking
scores; the structure labels are taken from Table 2 of case study 3 [20].
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According to the SRD result (Figure 3B), the various averages and the maximum rule (MAX) were
closest to the ideal reference vector, while the minimum rule (MIN) overlapped with the single-structure
docking scores. All the fusion rules and docking scores were better than random ranking. All of the
four performance metrics were checked with ANOVA as well, and the difference between the data
fusion methods were significant (at α = 0.05) in each case.

To summarize the four performance metrics in a single image, 4D bubble plots were created
(Figure 4). AUC and AP values were plotted on the x and y axis, respectively, SRD values were used as
the size of the bubbles (the smaller the better), and the colors were assigned based on the BEDROC
values (increasing from red to green). The plotted values are the average of every cross-validation
section for all four metrics. Single-structure docking scores and the maximum rule (MAX) were omitted
from this figure due to the bigger distance from the others; the omitted ones are compared with the
best method in Supplementary Figure S5.

Figure 4. Bubble plots of the JAK1 (A), JAK2 (B), 5-HT6 (C), ALR2 (D) and ER (E) datasets. AP values
are plotted against the AUC values. Bubble sizes correspond to SRD values (the smaller the better) and
the colors correspond to BEDROC values, increasing from red to green (see color scale on the right).
The MAX rule and single-structure docking scores were omitted due to their greater distance from the
other fusion rules (see Supplementary Figure S5).
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To extend the scope of our study to more protein targets, two further case studies were conducted
on a non-kinase enzyme (aldose reductase 2, case study 4) and a non-GPCR receptor (estrogen receptor,
case study 5), respectively. In these case studies, protein structures were selected by clustering the
available experimental structures from the PDB database and selecting the centroids for each cluster
(see Section 3.1 for more detail). The results of these case studies are presented as 4D bubble plots in
Figure 4 as well.

Capturing all of the available information in a single plot provides a clearer distinction of the data
fusion rules. First, it is evident that the strictest fusion rule (MAX) falls short of the rest of the options.
Also, while there is a general trend of the various performance metrics changing in a concordant way;
e.g., AP increasing together with AUC, some exceptions arise. Most notably, the de facto standard
minimum fusion rule (MIN), which boasts good AUC values, is relatively inconsistent with regard to
the rest of the three performance metrics. Results for the median (MED) rule are mostly promising.
However, while it seems to be among the best fusion rules for the JAK1 and 5-HT6 datasets, its
BEDROC, AP and AUC values are significantly worse in case studies 4 and 5. On the other hand,
the geometric mean (GEOM) and harmonic mean (HARM) are consistently among the best options
based on all of the performance metrics. They both provide good overall retrieval of actives (AUC),
as well as early enrichment (BEDROC) and consistence with the ideal reference method (SRD) for all
datasets. Therefore, based on the results on these five case studies, we can recommend the geometric
and harmonic means as new fusion rules for creating a consensus score after ensemble docking.

Maximum (MAX), again, overlapped with the single-structure docking scores, and therefore it
was omitted from Figure 4 (see Supplementary Figure S5). The results confirm the main conclusions
drawn from the first two case studies, with the cluster comprising the various averages and the
median forming the best options. In comparison, the two most consistent options are the geometric
(GEOM) and harmonic means (HARM), followed by the median (MED). minimum (MIN) proves to be
a suboptimal solution here, whereas the arithmetic mean (SUM) and the Euclidean distance (EUC) are
somewhat inconsistent among the five case studies.

3. Methods

3.1. Dataset Generation and Docking

Five case studies were used for the evaluations. Case studies 1 and 2 were virtual screenings that
resulted in the identification of five and six new, potent inhibitors of Janus kinase subtypes 1 (JAK1) [18]
and 2 (JAK2) [19], respectively. Janus kinases are a family of tyrosine protein kinases involved in the
JAK/STAT intracellular signaling pathway, with pharmacological relevance in a number of autoimmune
and inflammatory diseases [22]. In both studies, a thorough retrospective screening, based on known
literature inhibitors and a decoy set from the DUD database [21], was carried out to optimize the
virtual screening protocol and compile the protein structure ensemble from a pool of available crystal
structures and molecular dynamics (MD) simulation frames. Active compounds—reported IC50 below
1 µM—and their bioactivity data were manually collected from numerous literature sources, while
the decoy set for CDK2—the closest kinase based on sequence identity, with a decoy set available at
the time—was downloaded from the DUD database. Briefly, ligand preparation and docking were
carried out with Schrödinger’s Ligprep and Glide programs [23], respectively. Dataset compositions
are included in Table 1, the virtual screening protocols are presented in more detail in refs. [18,19].

Case study 3 presented a thorough molecular modeling study, involving homology modeling and
molecular dynamics (MD) simulations of the 5-HT6 receptor [20]. The 5-HT6 receptor is a G-protein
coupled serotonin receptor with great potential for the treatment of neuropathological disorders,
such as Parkinson’s disease, Alzheimer’s disease, and schizophrenia [24]. Homology modeling was
carried out with Schrödinger’s Prime [25], while the MD simulations were conducted with the NAMD
software [26]. Three ligand sets were used to evaluate a large number of models and MD snapshots,
to determine the most important structural determinants of ligand recognition by the receptor. Here,
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we apply the docking scores that resulted for the dataset of 5-HT6 antagonists (Ki < 100 nM) and
experimentally confirmed inactives included in the Drugmatrix dataset, which were hosted on the
ChEMBL database [27]. Table 2 of the paper identifies nine specific structures from MD simulations
that were particularly successful in retrospective virtual screening tests. Docking results on these nine
structures for the Drugmatrix set [27] were applied in the present study for the comparison of the data
fusion methods.

To allow for more general conclusions on a more diverse set of protein targets, two further
datasets were downloaded from the directory of useful decoys (DUD) [21]: Case studies 4 and 5
are two retrospective virtual screens that we conducted against aldose reductase 2 (ALR2), and the
estrogen receptor (ER), respectively. Aldose reductase 2 is a key enzyme in the polyol pathway: it
catalyzes the reduction of glucose to sorbitol, and is also involved in the development of cardiovascular
complications in diabetes mellitus [28]. The discovery of ALR2 inhibitors are therefore highly desired,
to prevent the onset of these complications (such as ischemia, atherosclerosis or atherothrombosis).
Estrogen has a wide role in human physiology, including, among others, reproduction, cardiovascular
health, cognition and behavior [29]. As a consequence, it is implicated in the development of a number
of diseases, from neurodegenerative diseases to obesity. Since estrogen mediates its effects through the
estrogen receptor, this target is the basis for therapeutic intervention.

Table 1 summarizes the dataset compositions of the five case studies, in terms of the number
of active and inactive molecules, the number and type (X-ray, MD) of protein structures, and the
starting structures for the MD simulations, where applicable. RMSD values between the protein
structures are included in Supplementary Table S2. All protein structures used for docking or
MD simulations, including the homology model template 5-HT2B structure in case study 3, were
ligand-bound. The ensemble selection approach for case studies 1 and 2 is published in detail in [18],
where the ensembles were iteratively optimized to produce the best early enrichments on the training
datasets. In case study 3, the nine best structures were selected based on their individual virtual
screening performances [20]. In case studies 4 and 5, the X-ray structures available in the PDB database
(141 and 251, respectively) were clustered, based on a complete RMSD matrix calculated on the binding
site residues, using the Euclidean distance, the complete linkage method and distance cutoffs of 1 Å
and 4 Å, respectively. The centroid of the resulting six, and three clusters were selected.

Table 1. Dataset composition of the five case studies.

# Dataset
Name

Protein Structures
Actives Inactives

X-ray MD
Frames

MD Starting
Structure

1 JAK1 3EYG [30], 4IVC [31] 3 4IVC [31] 115 1644
2 JAK2 3E62 [32] 4 3TJD [33] 82 1437

3 5-HT6 - 9 homology model
based on 4IB4 [34] 20 689

4 ALR2 1IEI [35], 2FZD [36], 2PFH [37],
3LZ5 [38], 3M0I [39], 4GCA - - 26 917

5 ER 2BJ4 [40], 5TM9 [41], 6CHZ [42] - - 38 1344

3.2. Data Fusion Methods

Data fusion rules for similarity rankings employed in ligand-based virtual screening were collected
and summarized in the work of Willett [16]. These include the simple minimum and maximum (MIN
and MAX) rules, as well as the arithmetic (SUM), geometric (GEOM) and harmonic means (HARM),
the median (MED), and the Euclidean norm (EUC), which views the set of (docking) scores for each
compound as an n-dimensional vector and computes the Euclidean norm for that vector. Since we
wanted to apply the fusion rules to the whole datasets, we have discarded the cutoff-based ANZ
and MNZ rules. Also, while we have originally considered the reciprocal rank fusion (RRF) rule
as well, it quickly became apparent that it produces noisy and mostly random numbers for larger
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datasets without setting a cut-off (i.e., considering the whole dataset rather than only the top x %, see
Supplementary Figure S1a,b). The formulas of the fusion rules are summarized in Table 2.

Table 2. Formulas of the applied fusion rules.

Rule Full Name Formula1

MIN Minimum min(DS1, DS2 . . . DSn)
MAX Maximum max(DS1, DS2 . . . DSn)

SUM Arithmetic mean 1
n

n∑
i=1

DSi

GEOM Geometric mean n

√
n∏

i=1
DSi

HARM Harmonic mean
(∑n

i=1 DSi
−1

n

)−1

MED Median median(DS1, DS2 . . . DSn)

EUC Euclidean norm

√
n∑

i=1
DSi

2

1 Docking scores are denoted by DS1, DS2 . . . DSn.

3.3. Performance Metrics and Statistical Analysis

The different data fusion methods were compared by several performance metrics. In this sense, it can
be considered as multicriteria optimization as well. These include “global” performance metrics, such as
the area under the (ROC) curve (AUC) and average precision (AP), the Boltzmann-enhanced discrimination
of receiver operating characteristic—BEDROC, which focuses more on early enrichment—, and a robust
statistical tool for method comparison, sum of ranking differences (SRD).

For classification by docking results, we usually need to define a score threshold T to assign which
molecules are predicted to be actives (docking score better than or equal to T) and inactives (docking
score worse than T). Then, if the true class labels are known (retrospective screening), we can determine
the number of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) and
many derived parameters, such as the true positive rate or recall:

TPR =
TP

TP + FN
, (1)

the false positive rate:

FPR =
FP

FP + TN
, (2)

or the precision:

Pr =
TP

TP + FP
. (3)

However, setting the threshold T involves an inevitable level of subjectivity. The advantage
of “global” performance parameters such as AUC and average precision is that they eliminate this
subjectivity by accounting for all possible threshold values and compacting this information into a
single number. AUC is calculated by plotting the true positive rates against the false positive rates
(by increasing score thresholds T) and taking the area under the curve, while average precision (AP) is
calculated analogously from the precision-recall plot (Figure 5). The BEDROC metric was proposed
by Truchon and Bayly to tackle the “early recognition” problem by using a continuously decreasing
exponential weight as a function of rank [43]. Briefly, BEDROC can be considered as a weighted version
of the AUC value, where the beginning of the ROC curve is taken into account with a greater weight.
Thus, BEDROC values reflect early enrichment rather than the “global” performance of the classifier.
AUC, AP and BEDROC values—the latter with an α = 20 parameter setting—were calculated with the
Scikit-learn Python package [44].
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Figure 5. Example for (a) a ROC plot, and (b) a precision-recall curve (consensus score with the MIN
fusion rule on the JAK2 dataset). The areas under the curves are (a) the AUC value (here, 0.916),
and (b) the AP (average precision) value (here, 0.484), respectively. The dashed line on the ROC plot
corresponds to random classification.

Sum of ranking differences (SRD) can be applied for the comparison of different metrics, models,
methods etc., and in our case: the data fusion methods [45,46]. The method is robust, but also sensitive
to small differences between the compared variables. By convention, the data matrix contains the
comparable variables (data fusion methods) in the columns and the samples (molecules) in the rows.
It is crucial that a reference vector is added as the last column of the matrix, which can be a set of
known reference values, e.g., from a measurement if available, but we can also use row-wise data
fusion (average, minimum or maximum), if an exact reference vector is not available. Data fusion
is an inherent, crucial step in SRD analysis. Row-maximums are selected as a gold standard for
those magnitudes where the ‘larger the better’ reasoning applies (e.g., for correlation coefficients,
accuracy, etc.) and row minimums for those magnitudes where the ‘smaller the better’ applies (RMSE,
misclassification errors, etc.) With this approach we can hypothetically define the best method that
unites all the advantageous features. Then, the variables—including the reference vector—are rank
transformed in increasing magnitude. Then, the absolute differences between the ranks assigned
by the reference vector and the other variables are calculated one-by-one, for each sample and each
variable. In the final step, these differences are summed for each variable (i.e., column-wise), which
gives the SRD values. SRD values represent a Manhattan distance from the reference vector (commonly
normalized between 0 and 100); thus, the smaller the better. The concept of SRD is illustrated in
more detail in our recent work [47]. SRD has two types of validation protocol: cross-validation and a
randomization test. With the randomization test, we can establish whether the ranking produced by
a variable/method (here, data fusion rule) is significantly different from assigning ranks randomly,
whereas with cross-validation we can test whether the SRD value distributions of two methods (fusion
rules) are significantly different. SRD applies special plots, where the column heights do not carry
information, but fairly the proximity of the columns to zero and to the frequency distribution curve of
random ranking. We have used SRD in our recent works for the comparison of similarity metrics for
molecular [47], metabolomic [48] and interaction fingerprints [49].

In the present study, the single-structure docking scores were rank transformed prior to computing
the reference vector to remove any docking score offset between the various protein structures, and the
resulting datasets were standardized for the SRD analysis itself, as the data fusion metrics produce
values in different ranges. Sevenfold cross-validation with randomized selection was applied for the
validation procedure. The reference column was defined in the following way: for the active molecules,
the row-minima were used, and for the decoy molecules, the row-maxima were used. (A hypothetical,
ideal reference method should provide the lowest, i.e., best possible score for actives and the highest,
i.e., worst score for inactives.)

Multiway comparison was based on the average values of the results of cross-validations for each
metric (SRD, AUC, AP, BEDROC). The average values were compared in 4D bubble plots. The coloring
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scheme for the bubble plot was based on the BEDROC values (increasing from red to green), while
bubble sizes were based on the SRD values (the smaller the better).

One-way ANOVA was also used to test the significance of the different data fusion methods
(as factor) based on the above mentioned four parameters.

4. Conclusions

Seven different fusion rules were compared in ensemble docking studies with a multi-way
comparison protocol to find the best and most consistent options to create consensus scores from the
single-structure docking scores. To that end, three case studies reporting retrospective virtual screenings
were collected from the literature, corresponding to two major classes of currently investigated drug
targets (kinases and GPCRs). Two further retrospective virtual screens were conducted as part of the
present study on two further, relevant drug targets. Four different performance metrics: area under
the ROC curve (AUC), average precision (AP), Boltzmann-enhanced discrimination of ROC (BEDROC)
and sum of ranking differences (SRD) values were used in the comparison to find the most optimal
solution. We can conclude that the use of data fusion methods have statistically significant effects on
the outcome. The typical solution with the use of the minimum score as the fusion rule (MIN) was not
the best option according to the four performance metrics. It was surpassed by the geometric (GEOM)
and harmonic means (HARM), which clearly outperformed the others. On the other end of the scale,
the strictest maximum (MAX) fusion rule is not recommended. The two methods mentioned above
could provide consistently better results based on the multi-way comparison and are hereby suggested
for the drug discovery community for use in ensemble docking studies.

Supplementary Materials: The following are available online, Supplementary Figures S1–S5, Supplementary
Table S1.
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