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Abstract: Gentiana rigescens Franchet, which is famous for its bitter properties, is a traditional drug of
chronic hepatitis and important raw materials for the pharmaceutical industry in China. In the study,
high-performance liquid chromatography (HPLC), coupled with diode array detector (DAD) and
chemometrics, were used to investigate the chemical geographical variation of G. rigescens and to
classify medicinal materials, according to their grown latitudes. The chromatographic fingerprints of
280 individuals and 840 samples from rhizomes, stems, and leaves of four different latitude areas
were recorded and analyzed for tracing the geographical origin of medicinal materials. At first,
HPLC fingerprints of underground and aerial parts were generated while using reversed-phase
liquid chromatography. After the preliminary data exploration, two supervised pattern recognition
techniques, random forest (RF) and orthogonal partial least-squares discriminant analysis (OPLS-DA),
were applied to the three HPLC fingerprint data sets of rhizomes, stems, and leaves, respectively.
Furthermore, fingerprint data sets of aerial and underground parts were separately processed and
joined while using two data fusion strategies (“low-level” and “mid-level”). The results showed that
classification models that are based OPLS-DA were more efficient than RF models. The classification
models using low-level data fusion method built showed considerably good recognition and prediction
abilities (the accuracy is higher than 99% and sensibility, specificity, Matthews correlation coefficient,
and efficiency range from 0.95 to 1.00). Low-level data fusion strategy combined with OPLS-DA
could provide the best discrimination result. In summary, this study explored the latitude variation
of phytochemical of G. rigescens and developed a reliable and accurate identification method for
G. rigescens that were grown at different latitudes based on untargeted HPLC fingerprint, data fusion,
and chemometrics. The study results are meaningful for authentication and the quality control of
Chinese medicinal materials.

Keywords: authentication; liquid chromatography fingerprint; chemometrics; random forest;
OPLS-DA; data fusion; Gentiana rigescens

1. Introduction

Gentiana rigescens Franchet (Dian long dan) is a herbaceous species that grows in mountainous
regions of Yunnan-Guizhou Plateau in the southwest of China [1]. Like European traditional medicinal
plant yellow gentian (G. lutea L), G. rigescens is famous for its bitter properties that are due to the bitter
active principles (e.g., loganin, gentiopicroside, swertiamarin, sweroside, etc.) [2–4]. Those compounds
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have pharmacological effects of anti-inflammation, antioxidant, anti-cancer, antiviral, cholagogic agent,
hepatoprotective, wound-healing activities, and so forth [3,5]. Additionally, they are used to stimulate
appetite and improve digestion [5–7]. In addition, a series of neuritogenic compounds had been
isolated from the aerial and underground parts of G. rigescens, which could be used as raw material
for the preparation of functional food and a therapeutic drug for Alzheimer’s disease [8–11]. Now,
G. rigescens have been the official drug of Chinese pharmacopoeia (2015 edition) for chronic hepatitis
and important raw materials for the pharmaceutical industry in China [12].

G. rigescens were usually collected from different regions of Yunnan-Guizhou Plateau in order
to provide satisfaction of continuously increasing industrial demands for raw materials. However,
some of the researchers had reported that chemical constitutions of underground part of G. rigescens
were extremely variable and diverse according to plant grown location or producing area [13–15].
Quantitative analysis of bioactivity compounds (such as gentiopicroside, sweroside, swertiamarin,
isoorientin, and other compounds) from rhizomes, stems, leaves, and flowers indicated that northwest
of Yunnan-Guizhou Plateau was suitable for chemical compounds accumulation [13–16]. Additionally,
conversion and transport of those compounds might be influenced by climatic conditions in the plant
habitat [14,17].

Latitude has a strong impact on the local climate environment in southwest China [18,19]. As the
main distribution area of G. rigescens, Yunnan-Guizhou Plateau is characterized by very complex
topography and it displays a wide variety of micro-climates [18–21]. There are six climatic zones from
the north towards the south [20]. Especially, in the higher latitude areas, such as northwest Yunnan
or south of the Hengduan Mountains (26–28◦ N), the temperature gradients are more abrupt than in
the other regions [19]. Furthermore, precipitation and temperature in the Yunnan-Guizhou Plateau
also show clear variations along the latitude gradients [19,21]. Therefore, it is necessary to explore the
variation of phytochemical and medicinal material quality of G. rigescens that were grown in different
latitudes and build a classification model for tracing producing areas of medicinal materials.

As we know, the contents of bioactive compounds and quality of medicinal materials have a
close relationship with the environment of producing area [22–25]. Quality control and geographical
indication of medicinal materials raise many concerns by pharmaceutical industries with the expansion
in the use of herbal medicines. However, using few marker compounds could not reflect the
chemical complexity of herbs and this method is hard to effectively authenticate the origin of herbal
medicines [26,27]. Chemical fingerprints, as a comprehensive evaluation methodology, have been
widely used to deal with the problem [26,28,29]. In recent years, infrared spectroscopy (IR), UV-Vis
spectroscopy (UV-Vis), and other spectral fingerprints have been well-established analytical techniques
for geographical traceability studies of G. rigescens and other medicinal plants in the worldwide [30–34].
In contrast, there were limited reports on the use of chromatographic fingerprint to identify the
producing regions of herbal materials [30–35]. Although there were many reports about discrimination
of herbs according to their producing areas while using liquid chromatography technology, most of
them are based on the information of limited chemical markers or chromatographic profiles [36–39].
The potential of chromatographic fingerprints for herbs authentication needs to be further explored.

When compared with chemical marker or chromatographic profile (targeted), chromatographic
fingerprint (untargeted) contains unspecific and non-evident information and chemometric tools should
extract chemical information [40]. Recently, literature reported some successful studies applying
chromatographic fingerprint, together with chemometric methodology, to discriminate herbs and food
samples of different origin or cultivars [41–44]. All of those studies suggested that it is possible to
develop a reliable and accurate method for the geographical tracing of G. rigescens by applying the
chromatographic fingerprint methodology.

In the progression of improving geographical authentication of food and drugs, one of the
important goals is building discrimination models with a less error rate and reducing the uncertainty
of the prediction results [33,44]. Data fusion strategy has been widely used in the last years in the field
of food authentication in order to improve class discrimination techniques [45]. Some reports about
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Panax notoginseng, Paris Polyphylla var. yunnanensis and other herb materials also showed the huge
potential of this strategy in the discrimination of medicinal materials producing areas [46–48]. Today,
most of the fused data come from spectral fingerprint and very few studies report the data fusion
of chromatographic fingerprint [42,43]. Furthermore, data fusion studies are mostly based on the
fusion of multivariate instrumental techniques [42,43], while reports of P. Polyphylla var. yunnanensis,
Macrohyporia cocos, and other species indicated that reliable classification results were also available by
the fusion analysis of chemical fingerprint data collected from different medicinal parts of herbs [35,49].
Accumulation and distribution of metabolites in the different parts of plants were different because
of the differential response of root, stem, flower and other organs to the environment variation of
producing area [17,50]. Therefore, fingerprint data fusion of multi-medicinal parts may provide
integrated chemical information for the authentication of medicinal materials. At the same time,
this method also contributes to a more comprehensive understanding of the response and adaptation
of medicinal plants to complex geographical environments.

The aim of this study is to explore the variation of chromatographic fingerprints of G. rigescens
along the latitude gradients and to use chemometrics to mine fingerprint chemical information, and to
investigate the potential of the untargeted chromatographic fingerprint to trace herbs grown at different
latitudes. For this purpose, we developed fingerprint of rhizomes, stems, and leaves of G. rigescens
by high-performance liquid chromatography with diode array detection (HPLC-DAD) technology.
Subsequently, classification models for the identification of different producing areas were built by
HPLC fingerprint combined with RF (random forest algorithm) and OPLS-DA (orthogonal partial
least-squares discriminant analysis). At last, two types of data fusion strategies, “low- level” and
“mid-level” data fusion, were studied in order to improve the model performances.

2. Results and Discussion

2.1. Chromatographic Fingerprints Variation Along the Latitude Gradients

Figure 1 displays the representative chromatographic fingerprints of rhizome, stem, and leaf.
From HPLC fingerprints, it can be found that the five marker compounds of iridoids were eluted
before 15 min. The retention times (t/min) of loganin (1), 6′-O-β-d-glucopyranosylgentiopicroside (2),
swertiamarine (3), gentiopicroside (4), and sweroside (5) were 7.279, 9.213, 9.573, 11.376, and 11.622 min,
respectively. Loganin and gentiopicroside were mainly accumulation in the underground part and
sweroside accumulated more in the overground parts. Furthermore, differences in the chemical
composition of rhizome, stem, and leaf can also be visually observed through chromatographic
fingerprints. For facilitating subsequent data exploration and modeling analysis, the retention time
of fingerprints signal was replaced by variables (Figure 1d–f). As a result, there were 3839, 4140,
and 4140 variables of rhizome, stem, and leaf fingerprints, respectively.

Principal component analysis (PCA) and two-dimensional score plots visualized the differences
and variation trends of three medicinal parts. Figure 2 shows that the rhizomes and stems of G. rigescens
tended to cluster to the left part, while the leaves data scattered to the right.

Although the fingerprints between the aboveground and underground medicinal parts were
obvious differences, an interesting result is that a trend of separation according to product region
latitude was observed from the PCA and score plots of samples of three medicinal parts. For example,
two-dimensional score plots of chromatographic fingerprint of rhizomes showed that the samples
separation trend increases with an increase in geographical distance and a clear separation between
samples that were collected from lower latitude and higher latitude regions (Figure 3). In contrast to
this, when considering the separation between samples with product regions geographically close to
each other, we observed that the rhizome samples separation trend decreases with a decrease in the
geographical distance (Figure 4). The PCA score plots of stems and leaves changed in the same trend
as rhizomes (Figures S1–S4).



Molecules 2019, 24, 2562 4 of 23
Molecules 2019, 24, x 4 of 23 

 

 

 

 

Figure 1. High-performance liquid chromatography (HPLC) fingerprint of rhizome (a), stem (b), leaf 
(c) and fingerprints after variable transformation (d–f). (1) loganin, (2) 6′-O-β-D-
glucopyranosylgentiopicroside, (3) swertiamarine, (4) gentiopicroside, and (5) sweroside. 
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and fingerprints after variable transformation (d–f). (1) loganin, (2) 6′-O-β-d-glucopyranosylgentiopicroside,
(3) swertiamarine, (4) gentiopicroside, and (5) sweroside.
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The results of PCA highlighted that the chromatographic fingerprints of G. rigescens were different
among rhizomes, stems, and leaves, and were affected by latitude gradients of the production regions.
Especially between lower latitudes and higher latitudes, the samples seem to be clearly distinguishable.
Based on PCA exploratory analysis (unsupervised methods), supervised pattern recognition (OPLS-DA)
should be applied to gain better classification results for samples that were grown in different latitudes
(Figures 5 and 6), and OPLS-DA and variable importance in the projection (VIP) analysis were used to
further investigate the fingerprint variables of G. rigescens that were sensitive to latitude changes.
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(b) is low latitude and mid-high latitude and (c) is low latitude and high latitude (green circles = low
latitudes area, 23.92–23.66◦ N, blue circles = mid-latitude area, 24.95–25.06◦ N, red circles = mid-high
latitude area, 26.49–26.64◦ N, yellow circles = high latitude area, 27.34–28.52◦ N).
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24.95–25.06◦ N, red circles = mid-high latitude area, 26.49–26.64◦ N, yellow circles = high latitude area,
27.34–28.52◦ N).



Molecules 2019, 24, 2562 7 of 23

Molecules 2019, 24, x 7 of 23 

 

production regions. Especially between lower latitudes and higher latitudes, the samples seem to be 
clearly distinguishable. Based on PCA exploratory analysis (unsupervised methods), supervised 
pattern recognition (OPLS-DA) should be applied to gain better classification results for samples that 
were grown in different latitudes (Figures 5 and 6), and OPLS-DA and variable importance in the 
projection (VIP) analysis were used to further investigate the fingerprint variables of G. rigescens that 
were sensitive to latitude changes. 

 
Figure 5. Two-dimensional principal component score plots for samples of rhizomes (a), stems (b), 
and leaves (c) of G. rigescens grown at four latitudes. 

 
Figure 6. Three-dimensional (3D) Scores-plot diagram of rhizomes (a), stems (b), and leaves (c) 
orthogonal partial least-squares discriminant analysis (OPLS-DA) analysis among four different 
latitudes (OPLS-DA model (a) R2 = 0.74 and Q2 = 0.68, model (b) R2 = 0.75 and Q2 = 0.68, model (c) R2 
= 0.72 and Q2 = 0.71, permutation plot of three models were shown in Figure S5–S7). 

The variable’s VIP value was greater than 1.00, which indicates that the variable was obviously 
affected by the change of the latitude of the producing areas. From Figure 7a, it could be found that 
the change of three ranges of rhizome’s fingerprint was closely related to producing areas latitude. 
The first range was related to variables of retention time at 2.00–13.00 min. The second range was 
related to variables of retention time at 15.00–20.00 min. Additionally, the third range was related to 
the variables of retention time after 25.00 min. Figure 7b showed that important variables (VIP value 
> 1.00) of stem fingerprint relate to the variables of retention time at 2.00–20.00 min. and 25.00–30.00 
min. For leaf fingerprint, chromatographic variables, retention time at 2.00–15.00 min, 17.00–19.00 
min. and 25.00–30.00 min., were the most sensitive to latitude changes of producing areas (Figure 7c). 
According to the identification of the major compounds in fingerprint, it showed that many of these 
important variables were chromatographic signals of iridoids and secoiridoids, such as loganin, 6′-
O-β-D-glucopyranosylgentiopicroside, swertiamarine, gentiopicroside, and sweroside. A previous 
study regarding the spatial profiling of iridoids phytochemical constituents found that the 
geographical variation of those compounds could be attributed to some environmental factors 
[13,17], for example, the difference of precipitation of natural habitats [17]. Additionally, it was 
interesting to note that the number of important variables after 25 min is gradually increasing from 

Figure 5. Two-dimensional principal component score plots for samples of rhizomes (a), stems (b),
and leaves (c) of G. rigescens grown at four latitudes.

Molecules 2019, 24, x 7 of 23 

 

production regions. Especially between lower latitudes and higher latitudes, the samples seem to be 
clearly distinguishable. Based on PCA exploratory analysis (unsupervised methods), supervised 
pattern recognition (OPLS-DA) should be applied to gain better classification results for samples that 
were grown in different latitudes (Figures 5 and 6), and OPLS-DA and variable importance in the 
projection (VIP) analysis were used to further investigate the fingerprint variables of G. rigescens that 
were sensitive to latitude changes. 

 
Figure 5. Two-dimensional principal component score plots for samples of rhizomes (a), stems (b), 
and leaves (c) of G. rigescens grown at four latitudes. 

 
Figure 6. Three-dimensional (3D) Scores-plot diagram of rhizomes (a), stems (b), and leaves (c) 
orthogonal partial least-squares discriminant analysis (OPLS-DA) analysis among four different 
latitudes (OPLS-DA model (a) R2 = 0.74 and Q2 = 0.68, model (b) R2 = 0.75 and Q2 = 0.68, model (c) R2 
= 0.72 and Q2 = 0.71, permutation plot of three models were shown in Figure S5–S7). 

The variable’s VIP value was greater than 1.00, which indicates that the variable was obviously 
affected by the change of the latitude of the producing areas. From Figure 7a, it could be found that 
the change of three ranges of rhizome’s fingerprint was closely related to producing areas latitude. 
The first range was related to variables of retention time at 2.00–13.00 min. The second range was 
related to variables of retention time at 15.00–20.00 min. Additionally, the third range was related to 
the variables of retention time after 25.00 min. Figure 7b showed that important variables (VIP value 
> 1.00) of stem fingerprint relate to the variables of retention time at 2.00–20.00 min. and 25.00–30.00 
min. For leaf fingerprint, chromatographic variables, retention time at 2.00–15.00 min, 17.00–19.00 
min. and 25.00–30.00 min., were the most sensitive to latitude changes of producing areas (Figure 7c). 
According to the identification of the major compounds in fingerprint, it showed that many of these 
important variables were chromatographic signals of iridoids and secoiridoids, such as loganin, 6′-
O-β-D-glucopyranosylgentiopicroside, swertiamarine, gentiopicroside, and sweroside. A previous 
study regarding the spatial profiling of iridoids phytochemical constituents found that the 
geographical variation of those compounds could be attributed to some environmental factors 
[13,17], for example, the difference of precipitation of natural habitats [17]. Additionally, it was 
interesting to note that the number of important variables after 25 min is gradually increasing from 

Figure 6. Three-dimensional (3D) Scores-plot diagram of rhizomes (a), stems (b), and leaves (c)
orthogonal partial least-squares discriminant analysis (OPLS-DA) analysis among four different latitudes
(OPLS-DA model (a) R2 = 0.74 and Q2 = 0.68, model (b) R2 = 0.75 and Q2 = 0.68, model (c) R2 = 0.72
and Q2 = 0.71, permutation plot of three models were shown in Figures S5–S7).

The variable’s VIP value was greater than 1.00, which indicates that the variable was obviously
affected by the change of the latitude of the producing areas. From Figure 7a, it could be found
that the change of three ranges of rhizome’s fingerprint was closely related to producing areas
latitude. The first range was related to variables of retention time at 2.00–13.00 min. The second
range was related to variables of retention time at 15.00–20.00 min. Additionally, the third range was
related to the variables of retention time after 25.00 min. Figure 7b showed that important variables
(VIP value > 1.00) of stem fingerprint relate to the variables of retention time at 2.00–20.00 min and
25.00–30.00 min. For leaf fingerprint, chromatographic variables, retention time at 2.00–15.00 min,
17.00–19.00 min and 25.00–30.00 min, were the most sensitive to latitude changes of producing areas
(Figure 7c). According to the identification of the major compounds in fingerprint, it showed that many
of these important variables were chromatographic signals of iridoids and secoiridoids, such as loganin,
6′-O-β-d-glucopyranosylgentiopicroside, swertiamarine, gentiopicroside, and sweroside. A previous
study regarding the spatial profiling of iridoids phytochemical constituents found that the geographical
variation of those compounds could be attributed to some environmental factors [13,17], for example,
the difference of precipitation of natural habitats [17]. Additionally, it was interesting to note that the
number of important variables after 25 min is gradually increasing from the rhizome to the leaves.
The results suggested that, in addition to iridoids, other low polarity products in G. rigescens have
implications for the differentiation of different geographical origins.
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Figure 7. Important variables of fingerprint (purple = variable VIP value > 1) (a) rhizome, (b) stem,
and (c) leaf.

In a word, current research indicated that the chemical composition of G. rigescens changes with
the grown latitude in a way that could be traced with the chromatographic fingerprint. Furthermore,
three-dimensional (3D) score plots and VIP analysis showed a difference of phytochemical geographic
variation for overground and underground parts. Those differences might affect the result of
geographical origin traceability of samples.
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2.2. Geographic Authentication Based on Fingerprints of Different Medicinal Parts

In recent years, literature had already reported satisfying classification results that were obtained
by RF or OPLS-DA models [51–54]. As an ensemble learning method, the RF algorithm could correct for
decision trees’ habit of overfitting to their training set [55]. Additionally, OPLS could help to overcome
these obstacles by separating useful information from noise and improve complex chemical data
features and interpretability [56,57]. In this work, we tested RF and OPLS-DA models, combined with
rhizome, stem, and leaf fingerprint data in order to classify G. rigescens according to their grown latitude.

2.2.1. RF Classification

In the beginning, samples from the data set of rhizomes (280 samples and 3839 variables) were
separated into a calibration set (186 samples) and a validation set (94 samples) by the Kennard-Stone
algorithm. Subsequently, 186 rhizome samples that were collected from four latitude gradients were
used to establish the calibration model (R_RF). During the modeling process, the initial value of ntree

(needs to be optimized) was defined as 2000, the initial value of mtry was defined as the square root of
the number of variables, and the rest of the parameters were defined as the default value. Subsequently,
OOB errors were calculated and the value of the best ntree was obtained according to the lowest OOB
error. Figure 8 shows that the minimum error and the standard error are the lowest, with 663 trees.
Based on the optimal number of trees, mtry was re-selected by searching the values ranged from 50 to
75. The calculation results found that the mtry value should be defined as 61, because of the model
had the lowest OOB classification error. Finally, a final classification model was established based on
optimum ntree and mtry values.
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Table 1 shows that the accuracies for samples of calibration set were 96.77% for low latitude
samples, 99.46% for mid-latitude samples, 94.62% for mid-high latitude samples, and 94.09% for high
latitude samples. Additionally, the accuracies of samples of validation set were 91.49%, 95.74%, 94.68%,
and 98.94% for four different latitudes samples, respectively.

Table 1. The major parameters of random forest (RF) model based on rhizomes data set.

Model Performance
Calibration Set Validation Set

I II III IV I II III IV

R_RF

ACC (%) 96.77 99.46 94.62 94.09 91.49 95.74 94.68 98.94
SE 0.92 0.97 0.93 0.89 0.92 0.75 0.93 0.96
SP 0.99 1.00 0.95 0.96 0.91 1.00 0.95 1.00

MCC 0.92 0.98 0.88 0.84 0.80 0.84 0.88 0.97
EFF 0.95 0.98 0.94 0.92 0.92 0.87 0.94 0.98
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Like previous investigations of the rhizome model, the data set of stems (280 samples and
4140 variables) and leaves (280 samples and 4140 variables) were separated into calibration sets and
validation sets, respectively. Subsequently, RF calibration modes of stems (S_RF) and leaves (L_RF)
were built. The optimum ntree and mtry could be found in Figures 9 and 10.

For the RF model of the stem, the accuracies of samples of calibration set of 92.47%, 94.62%, 93.01%,
and 93.01% were achieved for low latitudes, mid-latitudes, mid-high latitudes, and high latitudes.
Additionally, the accuracies of samples of validation set were 98.94%, 97.87%, 96.81%, and 97.87%,
respectively (Table 2).

For RF model of the leaf, accuracies of 92.47%, 96.24%, 93.01%, and 94.62% were achieved for the
calibration set. Additionally, accuracies of 85.11%, 93.62%, 89.36%, and 93.62% for the validation set
(Table 3).
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Table 2. The major parameters of RF model based on stems data set.

Model Performance
Calibration Set Validation Set

I II III IV I II III IV

S_RF

ACC (%) 92.47 94.62 93.01 93.01 98.94 97.87 96.81 97.87
SE 0.92 0.69 0.91 0.87 1.00 0.88 1.00 0.91
SP 0.93 1.00 0.94 0.95 0.99 1.00 0.95 1.00

MCC 0.82 0.80 0.84 0.81 0.97 0.92 0.93 0.94
EFF 0.92 0.83 0.93 0.91 0.99 0.94 0.98 0.96
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Table 3. The major parameters of RF model based on leaves data set.

Model Performance
Calibration Set Validation Set

I II III IV I II III IV

L_RF

ACC (%) 92.47 96.24 93.01 94.62 85.11 93.62 89.36 93.62
SE 0.94 0.78 0.91 0.85 0.88 0.69 0.86 0.74
SP 0.92 1.00 0.94 0.98 0.84 0.99 0.91 1.00

MCC 0.82 0.86 0.84 0.85 0.67 0.76 0.76 0.83
EFF 0.93 0.88 0.93 0.91 0.86 0.82 0.88 0.86

2.2.2. OPLS-DA Classification

The OPLS-DA models of rhizomes (R_OPLS-DA), stems (S_OPLS-DA), and leaves (L_OPLS-DA)
were constructed based on the same calibration and validation sets that were used in RF models. All of
the models were constructed based on the internal seven-fold cross-validation and permutation plot
could be found in Supplementary Materials.

Table S1 showed that the R2 of models ranged from 0.77 to 0.82 and the Q2 of models were
larger than 0.50, which indicated that the OPLS-DA models were well fitted and better predictive.
The permutation test results could be found in Figures S14–S16.

The classification results of R_OPLS-DA model showed (Table 4) accuracies of calibration set were
98.92% for all classes. Accuracies of validation set were 95.47%, 98.94%, 94.86%, and 97.87% for low
latitudes, mid-latitudes, mid-high latitudes, and high latitudes samples, respectively. For S_OPLS-DA
models (Table 4), although 98.92%, 99.46%, 98.92%, and 98.39% values of calibration set accuracies
were obtained for samples that were grown in four different latitudes, a lower value of total accuracy
rate of validation set was obtained (93.62%). Parameters of L_OPLS-DA model showed (Table 4)
that the accuracies of the calibration set were 97.31%, 99.46%, 97.31%, and 98.39% for low latitude,
mid-latitude, mid-high latitude, and high latitude samples, respectively. However, the total accuracy
of the validation set was lower than the calibration set. Especially, for samples of class 1, the accuracy
was only 88.30%.

Table 4. The major parameters of OPLS-DA models.

Model Performance
Calibration Set Validation Set

I II III IV I II III IV

R_OPLS-DA

ACC (%) 98.92 98.92 98.92 98.92 95.74 98.94 94.68 97.87
SE 0.98 0.97 0.98 0.98 0.92 0.94 0.93 0.96
SP 0.99 0.99 0.99 0.99 0.97 1.00 0.95 0.99

MCC 0.97 0.96 0.97 0.97 0.89 0.96 0.88 0.94
EFF 0.99 0.98 0.99 0.99 0.95 0.97 0.94 0.97

S_OPLS-DA

ACC (%) 98.92 99.46 98.92 98.39 91.49 93.62 91.49 97.87
SE 1.00 0.97 1.00 0.93 0.92 0.81 0.83 0.91
SP 0.99 1.00 0.98 1.00 0.91 0.96 0.95 1.00

MCC 0.97 0.98 0.98 0.96 0.80 0.77 0.80 0.94
EFF 0.99 0.98 0.99 0.97 0.92 0.88 0.89 0.96

L_OPLS-DA

ACC (%) 97.31 99.46 97.31 98.39 88.30 95.74 92.55 93.62
SE 0.94 1.00 0.93 1.00 0.81 0.88 0.90 0.83
SP 0.99 0.99 0.99 0.98 0.91 0.97 0.94 0.97

MCC 0.93 0.98 0.94 0.96 0.71 0.85 0.83 0.82
EFF 0.96 1.00 0.96 0.99 0.86 0.92 0.92 0.90

Finally, we made a comprehensive comparison to the six models’ classification performance
superiority on the basis of the above analysis. For the RF model, the order of calibration total accuracy
was as follows: R_RF (96.24%) > L_RF (94.09%) > S_RF (93.28%). The order of validation total accuracy
was as follows: S_RF (97.87%) > R_RF (95.21%) > L_RF (90.43%). For the OPL-DA model, the order of
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calibration total accuracy was as follows: R_OPL-DA (98.92%) and S_OPLS-DA (98.92%) > L_OPLS-DA
(98.12%). The order of validation total accuracy was as follows: R_OPL-DA (96.81%) > S_OPLS-DA
(93.62%) > L_OPLS-DA (92.55%). Classification models that were built by using leaf data set presented
the worst performance from the accuracy point of view. Additionally, validation sets of the L_RF and
L_OPL-DA model had lower Matthews correlation coefficient (MCC) values. By contrast, all of the
models based on rhizome data set presented a better classification performance (total accuracy ranged
from 95.21% to 98.92%). The best total accuracy occurred when rhizome data combined with the OPLS
algorithm. We could find that phenomenon of imbalance category recognition in R_OPLS-DA model
was better than other models from SE values, SP values, MCC values, and EFF value.

Although the classification performance for OPLS-DA and RF models on the basis of rhizome
data set was good, the model classification ability, accuracy, sensitivity (SE), specificity (SP), MCC,
and efficiency (EFF), need to be enhanced. In a further step, the feasibility of combining the information
from rhizome, stem, and leaf fingerprint data for samples geographical traceability was investigated
by low-level and mid-level data fusion strategies.

2.3. Geographic Authentication Based on Data Fusion Strategy

2.3.1. Low-Level Data Fusion

According to the method that was described in data preprocessing (Figure 11), fingerprint data
sets of overground and underground organs as subsets were used to concatenate into a single data
block (a new data set). In the case of the low-level strategy, four data sets, rhizome combined with
stem (RS), rhizome combined with leaf (RL), stem combined with leaf (SL), and all data combined
(RSL), were used to build RF (RS_RF, RL_RF, SL_RF, and RSL_RF) and OPLS-DA (RS_OPLS-DA,
RL_OPLS-DA, SL_OPLS-DA, and RSL_OPLS-DA) models. For every data set, the samples were
randomly selected as a calibration set and the rest of the samples were used as a validation set (finished
by Kennard-Stone algorithm).
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The optimum ntree and mtry values were selected at first (Figure S8). Afterwards, final classification
models were established based on the best values of arguments. From Table 5, it could be seen that
the samples collected from four different latitudes were better discriminated by using RS data set and
RSL data set. RS_RF model achieved 95.43% total accuracy for the calibration set and achieved 96.81%
total accuracy for calibration set. RSL_RF model achieved 94.89% correctly for the calibration set and
achieved 97.37% correctly for the calibration set. From a comparison with SE, SP, MCC, and EFF values
of S_RF and L_RF models (Tables 1 and 3), we found that the low-level data fusion strategy improved
the phenomenon of imbalance category recognition in the RF model (Table 5). However, the total
accuracy of models was not obviously improved.

Table 5. The major parameters of RF models based on low-level data fusion strategy.

Model Class
Calibration Set Validation Set

I II III IV I II III IV

RS_RF

ACC (%) 96.77 98.92 92.47 93.55 95.74 97.87 95.74 97.87
SE 0.92 0.94 0.91 0.87 0.92 0.88 0.97 0.96
SP 0.99 1.00 0.93 0.96 0.97 1.00 0.95 0.99

MCC 0.92 0.96 0.83 0.83 0.89 0.92 0.90 0.94
EFF 0.95 0.97 0.92 0.91 0.95 0.94 0.96 0.97

RL_RF

ACC (%) 94.09 98.39 93.01 96.24 87.23 94.68 91.49 92.55
SE 0.90 0.91 0.91 0.91 0.96 0.75 0.86 0.70
SP 0.96 1.00 0.94 0.98 0.84 0.99 0.94 1.00

MCC 0.85 0.94 0.84 0.90 0.74 0.80 0.80 0.80
EFF 0.93 0.95 0.93 0.95 0.90 0.86 0.90 0.83

SL_RF

ACC (%) 93.55 95.70 92.47 93.55 90.43 96.81 96.81 94.68
SE 0.94 0.75 0.91 0.85 0.92 0.88 0.93 0.83
SP 0.93 1.00 0.93 0.96 0.90 0.99 0.98 0.99

MCC 0.84 0.84 0.83 0.82 0.78 0.88 0.92 0.85
EFF 0.94 0.87 0.92 0.90 0.91 0.93 0.96 0.90

RSL_RF

ACC (%) 95.70 99.46 91.94 92.47 94.68 96.81 100.00 97.87
SE 0.94 0.97 0.86 0.85 0.86 1.00 1.00 0.96
SP 0.96 1.00 0.95 0.95 0.98 0.96 1.00 0.99

MCC 0.89 0.98 0.81 0.80 0.87 0.88 1.00 0.94
EFF 0.95 0.98 0.90 0.90 0.92 0.98 1.00 0.97

The permutation plot of all models could be found in Supplementary Materials (Figures S17–S20).
The classification results of OPLS-DA models based on low-level data fusion showed models’ R2 values
ranged from 0.86 to 0.90 and Q2 values ranged from 0.74 to 0.80 (Table S2). Total accuracy rates of the
calibration set of RS_OPLS-DA, RL_OPLS-DA, SL_OPLS-DA, and RSL_OPLS-DA were 99.46%, 99.73,
100.00%, and 99.73%, respectively (Table 6). Additionally, correct classification rates of validation sets
varied from 97.34% to 98.40% (Table 6). The comparison parameters for SE, SP, MCC, and EFF (Tables 4
and 6), the results highlight classification abilities of data fusion OPLS-DA models were better than the
individual data set models. What is more, the RS_OPLS-DA model was the optimum classification
model when using low-level data fusion strategy (Tables 5 and 6).

Table 6. The major parameters of OPLS-DA models based on low-level data fusion strategy.

Model Class
Calibration Set Validation Set

I II III IV I II III IV

RS_OPLS-DA

ACC (%) 99.46 100.00 99.46 98.92 97.87 98.94 97.87 98.94
SE 1.00 1.00 1.00 0.96 0.96 1.00 0.97 0.96
SP 0.99 1.00 0.99 1.00 0.99 0.99 0.98 1.00

MCC 0.99 1.00 0.99 0.97 0.95 0.96 0.95 0.97
EFF 1.00 1.00 1.00 0.98 0.97 0.99 0.98 0.98
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Table 6. Cont.

RL_OPLS-DA

ACC (%) 99.46 100.00 100.00 99.46 95.74 97.87 97.87 97.87
SE 1.00 1.00 1.00 0.98 0.88 1.00 0.97 0.96
SP 0.99 1.00 1.00 1.00 0.99 0.97 0.98 0.99

MCC 0.99 1.00 1.00 0.99 0.89 0.93 0.95 0.94
EFF 1.00 1.00 1.00 0.99 0.93 0.99 0.98 0.97

SL_OPLS-DA

ACC (%) 100.00 100.00 100.00 100.00 94.68 98.94 97.87 97.87
SE 1.00 1.00 1.00 1.00 1.00 0.94 0.93 0.91
SP 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00

MCC 1.00 1.00 1.00 1.00 0.88 0.96 0.95 0.94
EFF 1.00 1.00 1.00 1.00 0.96 0.97 0.96 0.96

RSL_OPLS-DA

ACC (%) 99.46 100.00 100.00 99.46 96.81 98.94 97.87 97.87
SE 1.00 1.00 1.00 0.98 0.92 1.00 0.97 0.96
SP 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.99

MCC 0.99 1.00 1.00 0.99 0.92 0.96 0.95 0.94
EFF 1.00 1.00 1.00 0.99 0.95 0.99 0.98 0.97

2.3.2. Mid-Level Data Fusion

At the end of the research, the feasibility for further optimizing the model parameters by feature
subset selection and data fusion was investigated (Figure 11). Variables selection was one of the
steps of the mid-level data fusion strategy. For the RF model, the “Boruta” algorithm was used to
identify important chromatographic signal variables that significantly contributed to the classification
performance. “Boruta” selection was finished based on three RM models that were built while using
data sets of rhizomes (3839 variables), stems (4140 variables), and leaves (4140 variables), respectively.
After comparing original attributes’ importance with importance achievable at random, 200 variables
of rhizome data set, 305 variables of stem data set, and 359 of variables for leaf data set were retained
as relevant features variables for sample discrimination (Figures S9–S11). Subsequently, those feature
subsets were combined as a new data block and the fused data set (505 variables for RS, 559 variables
for RL, 664 variables for SL, and 864 variables for RSL) was used to establish final classification models.
The optimum ntree and mtry values of RS_RF, RL_RF, SL_RF, and RSL_RF model could be found in
Figure S12.

Table 7 lists the statistical results for the classification ability of the four RF models based on
mid-level data fusion. The average accuracies of the calibration set and validation set were achieved
for 96.44% and 97.21% by using RF algorithm. It is notable that the RL_RF model had accuracies that
ranged from 94.09% to 99.46% in the calibration set and accuracy ranging from 96.81% to 100% in the
validation set. In addition, parameters of SE (0.87–1.00), SP (0.94–1.00), MCC (0.87–1.00), and EFF
(0.92–1.00) for each class of RL_RF model were higher than most RF classification models. As a result,
mid-level data fusion strategy could eliminate the unnecessary variables, enhance model classification
ability, and improve the phenomenon of imbalance category recognition in the RF model relative to
low-level data fusion strategy.

For the OPLS-DA model, in front of all, three independent classification models were built while
using original data sets of rhizome, stem, and leaf, respectively. Subsequently, the VIP value of variables
in different classification models was calculated by SIMCA software. The results showed (Figure S12)
that a total of 4486 variables (1309 variables selected from rhizome data set, 1538 variables selected
from stem data set and 1639 variables selected from leaf data set) VIP values were greater than 1.
Those variables with large importance for the geographical traceability of samples were combined into
a new data set (2847 variables for RS, 2948 variables for RL, 3177 variables for SL, and 4486 variables
for RSL) for final classification model building. The R2 and Q2 values and the permutation plot of
RS_OPLS-DA, RL_OPLS-DA, SL_OPLS-DA, and RSL_OPLS-DA model were shown in Table S2 and
Figures S21–S24.
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Table 7. The major parameters of RF models based on mid-level data fusion strategy.

Model Class
Calibration Set Validation Set

I II III IV I II III IV

RS_RF

ACC (%) 99.46 99.46 94.09 95.16 98.94 100.00 96.81 97.87
SE 0.98 0.97 0.95 0.87 1.00 1.00 0.97 0.91
SP 1.00 1.00 0.94 0.98 0.99 1.00 0.97 1.00

MCC 0.99 0.98 0.87 0.87 0.97 1.00 0.93 0.94
EFF 0.99 0.98 0.94 0.92 0.99 1.00 0.97 0.96

RL_RF

ACC (%) 95.70 96.77 96.24 97.31 91.49 98.94 91.49 94.68
SE 0.92 0.88 0.97 0.93 0.92 1.00 0.86 0.78
SP 0.97 0.99 0.96 0.99 0.91 0.99 0.94 1.00

MCC 0.89 0.88 0.91 0.93 0.80 0.96 0.80 0.86
EFF 0.94 0.93 0.96 0.96 0.92 0.99 0.90 0.88

SL_RF

ACC (%) 95.16 96.77 93.55 96.24 97.87 100.00 98.94 96.81
SE 0.94 0.81 0.95 0.89 0.96 1.00 1.00 0.91
SP 0.96 1.00 0.93 0.99 0.99 1.00 0.98 0.99

MCC 0.88 0.88 0.86 0.90 0.95 1.00 0.98 0.91
EFF 0.95 0.90 0.94 0.94 0.97 1.00 0.99 0.95

RSL_RF

ACC (%) 97.85 99.46 94.09 95.70 96.81 100.00 95.74 98.94
SE 0.94 0.97 0.93 0.91 0.96 1.00 0.93 0.96
SP 0.99 1.00 0.95 0.97 0.97 1.00 0.97 1.00

MCC 0.94 0.98 0.86 0.88 0.92 1.00 0.90 0.97
EFF 0.97 0.98 0.94 0.94 0.97 1.00 0.95 0.98

The classification results showed that average accuracies of calibration and validation sets were
achieved for 99.66% and 96.81%, respectively (Table 8). The four models exhibit good performances
(MCC values ranged from 0.96 to 1.00 and EFF values ranged from 0.92 to 1.00 (Table 8). OPLS-DA
models based on mid-level data fusion and low-level data fusion showed similar accuracy and
model performance although feature selection was useful for reducing irrelevant variable when
classifying samples.

Table 8. The major parameters of OPLS-DA models based on mid-level data fusion strategy.

Model Class
Calibration Set Validation Set

I II III IV I II III IV

RS_OPLS-DA

ACC (%) 100.00 100.00 99.46 99.46 93.62 97.87 94.68 98.94
SE 1.00 1.00 1.00 0.98 0.88 1.00 0.90 0.96
SP 1.00 1.00 0.99 1.00 0.96 0.97 0.97 1.00

MCC 1.00 1.00 0.99 0.99 0.84 0.93 0.87 0.97
EFF 1.00 1.00 1.00 0.99 0.92 0.99 0.93 0.98

RL_OPLS-DA

ACC (%) 100.00 100.00 99.46 99.46 96.81 97.87 97.87 98.94
SE 1.00 1.00 1.00 0.98 0.92 1.00 0.97 0.96
SP 1.00 1.00 0.99 1.00 0.99 0.97 0.98 1.00

MCC 1.00 1.00 0.99 0.99 0.92 0.93 0.95 0.97
EFF 1.00 1.00 1.00 0.99 0.95 0.99 0.98 0.98

SL_OPLS-DA

ACC (%) 100.00 100.00 98.92 98.92 93.62 97.87 94.68 96.81
SE 1.00 1.00 0.98 0.98 0.92 0.94 0.90 0.91
SP 1.00 1.00 0.99 0.99 0.94 0.99 0.97 0.99

MCC 1.00 1.00 0.97 0.97 0.85 0.92 0.87 0.91
EFF 1.00 1.00 0.99 0.99 0.93 0.96 0.93 0.95

RSL_OPLS-DA

ACC (%) 100.00 100.00 99.46 99.46 95.74 98.94 96.81 97.87
SE 1.00 1.00 1.00 0.98 0.92 1.00 0.93 0.96
SP 1.00 1.00 0.99 1.00 0.97 0.99 0.98 0.99

MCC 1.00 1.00 0.99 0.99 0.89 0.96 0.92 0.94
EFF 1.00 1.00 1.00 0.99 0.95 0.99 0.96 0.97
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Overall, it can be seen that there is an improvement in the results that were provided by data fusion
when compared with performances of models based on independent data sets. When considering the
similar accuracy and a higher SE, SP, MCC, and EFF values between calibration set and validation set,
the RS_OPLS-DA models that were based on low-level data fusion strategy was the best performance.

3. Materials and Methods

3.1. Plant Material Collection

Plant materials (29 population and 280 individuals) of G. rigescens were collected in the fall of 2012
and 2013 at the time of local traditional harvest period, at the different location of Yunnan, Guizhou,
and Sichuan (Figure 12). Four producing areas were divided according to the location of population.
(I) low latitudes area, with latitudes ranging from 23.92–23.66◦ N, South of Yunnan (eight population
and 76 individuals), (II) mid-latitude area, with latitudes ranges from 24.95–25.06◦ N, Middle of
Yunnan (five population and 48 individuals), (III) mid-high latitude area, with latitudes ranges from
26.49–26.64◦ N, Northwest of Yunnan and West of Guizhou (nine population and 76 individuals
87), and (IV) high latitude area, with latitudes ranges from 27.34–28.52◦ N, Hengduan Mountains
Region of Yunnan and mountainous regions of Southwest of Sichuan (seven population and 69
individuals). The fresh materials were authenticated and transported to the laboratory of Yuxi normal
University. Subsequently, samples were wash cleaning and dried at 50 ◦C as soon as possible. At last,
all samples (rhizomes, stems and leaves) were stored in a relatively dry environment prior to the
extraction procedure.Molecules 2019, 24, x 17 of 23 
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3.2. Chemicals and Reagents

HPLC-grade acetonitrile, methanol (MeOH) were supplied by Thermo Fisher Scientific (Waltham,
MA, USA). HPLC-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany).
Deionized water was obtained from Wahaha Group Co., Ltd. (Hangzhou, Zhejiang, China). The primary
grade reference standards loganin (purity: ≥98%), 6′-O-β-d-glucopyranosylgentiopicroside (purity:
≥98%), swertiamarine (purity: ≥98%), gentiopicroside (purity: ≥98%), and sweroside (purity: ≥98%)
were purchased from the Chinese National Institute for Food and Drug Control (Beijing, China),
Shanghai Shifeng Biological Technology (Shanghai, China), respectively.

3.3. Sample Preparation

The dried samples (rhizomes, stems, and leaves) were ground and then passed through a 100 mesh
sieves. Each sample powder (25 mg) was accurately weighed and extracted while using 1.5 mL 80%
methanol-water solution, at 25 ◦C. The samples were extracted while using an Ultrasonic extractor for
40 min. The final extract was filtered with a 0.22 µm syringe filter into an HPLC vial and then subjected
to HPLC analysis [16,58].

3.4. Instrumentation and HPLC Analysis

Chromatographic analyses were performed with an Agilent 1260 Infinity LC system
(Agilent Technologies, Santa Clara, CA, USA), which was equipped with a G1315D diode-array
detector, a G1329B ALS autosampler, and a thermostated column compartment. The HPLC fingerprint
was recorded by Chemstation software (Agilent Technologies, Waldbron, Germany).

The analytical separation was adopted from a published method for chemical fingerprinting
analysis [16]. The separation was achieved on a reversed phase C18 (Agilent Intersil, 5 µm,
4.6 × 150 mm) column (Agilent, Santa Clara, CA, USA). The composition of the mobile phase was: (A)
0.1% phosphoric acid in water and (B) 100% acetonitrile. The separation was as follows: 0.00–2.50 min:
7–10% B, 2.50–20.00 min: 10–26% B, 20.00–29.02 min: 26–58.3% B, 29.02–30.00 min: 58.3–90% B.
The column was subsequently washed with 90% B and re-equilibrated with 7% B prior to injection of
the next sample. The flow rate was 1.0 mL/min and the column temperature was 30 ◦C. The injection
volume was 5 µL and the detective wavelength of UV spectra was set at 241 nm. Chromatographic
data was processed while using OpenLab software (Agilent Technologies) [16,58].

3.5. Data Analysis

HPLC fingerprints from the 280 rhizome samples, 280 stem samples, and 280 leaf samples,
a total of 840 fingerprint data was exported in CSV format and imported to MATLAB R2018b
(The MathWorks, Inc., Natick, MA, USA), which was used for correlation optimized warping (COW)
alignment preprocessing of chromatographic fingerprint. MATLAB code of COW is freely available
from www.models.kvl.dk. The preprocessing fingerprint was analyzed in the following work [59].

Exploratory data analysis (EDA) is necessary for building predictive models [60,61]. It can
help in determining interesting correlations among all of the samples or variables and summarize
data sets main characteristics [60]. Principal component analysis (PCA) is a popular primary tool in
EDA [61,62]. It is often used to visualize the relatedness between samples and explains the variance in
the data. Hence, PCA, as an unsupervised pattern recognition technique, was widely used to extract
key information from chemical fingerprint for geographical origin or Modelling Research [61].

Unlike PCA, orthogonal partial least squares discriminant analysis (OPLS-DA) is a supervised
pattern recognition technique. As an extension of PLS, an inbuilt orthogonal signal correction filter
was incorporated in the OPLS-DA model [56]. This algorithm effectively divides the X variable into
two parts: one part that is related to class information (Y-predictive) and the other is orthogonal or
unrelated to class information (Y-uncorrelated). Therefore, interpretability and prediction performance
of the model was enhanced [56].

www.models.kvl.dk
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Random forest (RF) is another supervised pattern recognition technique utilized in the study.
RF is an ensemble learning method [55]. A large number of trees were produced by RF algorithm in
order to improve model predictive ability, and trees’ decision results were combined as final decision
results. In other words, the more trees built in the random forest classifier, the higher accuracy could be
achieved. However, many researches showed that an optimum tree number was of great importance
in modeling classification performance [33,46].

In this work, exploratory data analysis of HPLC fingerprints of G. rigescens grown in four different
latitudes was finished with PCA. Two supervised pattern recognition techniques, OPLS-DA and RF,
were applied to build classification models for G. rigescens producing areas. SIMCA 14.1 software
managed PCA and OPLS-DA (Umetrics AB, Umea, Sweden). RF classification models were established
with R 3.5.1 program and package randomForest (Version 4.6-14) [63].

Data Fusion Strategy

In the case of low-level fusion strategy (Figure 11), different subsets HPLC fingerprint data
matrix of rhizomes, stems, and leaves) are straightforwardly concatenated and compiled into a new
chromatographic data matrix for subsequent classification model construction [45,46]. Furthermore,
each subset must be totally aligned and keep all the variables on the same scale before subsets
reconnection [45,46].

In the case of mid-level fusion (Figure 11), the first step of data treatment is feature selection that
is based on rhizomes, stems, or leaves classification models. When compared with the raw data sets,
feature selection of subsets minimizes the data content and reduces data dimensions. Subsequently,
new subsets of rhizomes, stems, and leaves were rebuilt while using variables of feature selection [45].
At last, those subsets are concatenated and compiled into a final data matrix for model construction [45].

In the research, relevant variables of RF classification models were determined by the R software
package Boruta [64], and VIP was used for important variables selection of OPLS-DA [65].

3.6. Model Evaluation

Five parameters, including accuracy (ACC), sensitivity (SE), specificity (SP), efficiency (EFF),
and Matthews correlation coefficient (MCC) were applied to evaluate the identification ability of
RF and OPLS-DA models. The ruggedness of OPLS-DA model was investigated through 200 times
permutation tests. Furthermore, cumulative prediction ability (Q2), cumulative interpretation ability
(R2), root mean square error of estimation (RMSEE), root mean square error of cross-validation
(RMSECV), and root mean square error of prediction (RMSEP) were important evaluation indexes for
the predictive power of OPLS-DA model [33,66].

Values of TP (Correctly identified samples of positive class), TN (correctly identified samples of
negative class), FN (incorrectly identified samples of positive class), and FP (incorrectly identified
samples of negative class) were calculated according to confusion matrixes of classification models.
Subsequently, ACC, SE, SP, EFF, and MCC were calculated while using Equations (1)–(5) and values of
Q2, R2, RMSEE, RMSECV, and RMSEP computed by software SIMCA 14.1.

ACC =
(TN + TP)

(TP + TN + FP + FN)
(1)

SE =
TP

(TP + FN)
(2)

SP =
TN

(TN + FP)
(3)

EFF =
√

SE× SP (4)

MCC =
(TP× TN− FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)



Molecules 2019, 24, 2562 19 of 23

For model performance, lower values of RMSEE, RMSECV, and RMSEP mean better predictive
ability for the models. Conversely, the closer that values of ACC, SE, SP, EFF, MCC, and Q2, R2 are to 1,
the more well performance the model is.

4. Conclusions

The findings in this study showed that G. rigescens chemical profiles were influenced by the latitude
gradients of producing areas and lower latitudes and higher latitudes samples seemed to be clearly
distinguishable. According to the score plots of PCA and OPLS-DA, the phytochemical geographic
variation of the overground and underground part along the latitude gradients was visualized.
Subsequently, the potential of fingerprint data obtained while using HPLC-DAD to discriminate and
classify G. rigescens grown in four different latitudes was investigated. Additionally, RF and OPLS-DA
models were used to develop an effective way for geographical traceability of the G. rigescens that were
grown in four different latitudes. When using independent data sets to build models, rhizomes data set
combined with OPLS-DA presented the best performance with a classification accuracy of calibration
and validation set varied from 94.68% to 98.94%. In a further step, the feasibility of combining the
chromatographic fingerprint data from overground and underground organs was investigated based
on two kinds of data fusion strategies in order to improve the performance of classification models:
low-level and mid-level. Notably, classification performances of OPLS-DA models were efficiently
improved by low-level data fusion strategy and better performances of RF models appeared to be
achieved by mid-level data fusion strategy. Although satisfactory results were obtained with both RF
and OPLS-DA based on two kinds of data fusion strategies, OPLS-DA combined with rhizome-stem
fusion data set was the optimum model for discriminating G. rigescens samples according to their
grown latitudes, with an accuracy of (97.87–100.00%), SE of (0.96–1.00), SP of (0.98–1.00), MCC of
(0.95–1.00), and EFF of (0.97–1.00).

Supplementary Materials: The following are available online. Figure S1: Variation of stems score plots along
the latitude gradients, Figure S2: Variation of stems score plots between the adjacent latitudes, Figure S3:
Variation of leaves score plots along the latitude gradients, Figure S4: Variation of leaves score plots between
the adjacent latitudes, Figure S5: Permutation plot of the OPLS-DA of rhizome samples, Figure S6: Permutation
plot of the OPLS-DA of stem samples, Figure S7: Permutation plot of the OPLS-DA of leaf samples, Figure S8:
The ntree and mtry screening of RF models based on low-level data fusion strategy, Figure S9: Result of variables
selection of rhizome fingerprint data based on “Boruta” algorithm, Figure S10. Result of variables selection of
stem fingerprint data based on “Boruta” algorithm, Figure S11: Result of variables selection of leaf fingerprint
data based on “Boruta” algorithm, Figure S12: The ntree and mtry screening of RF models based on mid-level
data fusion strategy, Figure S13: The importance variables of OPLS-DA models of rhizomes, stems and leaves
fingerprints data, Figure S14: Permutation testing (200 times) of the R_OPLS-DA model, Figure S15: Permutation
testing (200 times) of the S_OPLS-DA model, Figure S16: Permutation testing (200 times) of the L_OPLS-DA
model, Figure S17: Permutation testing (200 times) of the RS_OPLS-DA model based on low-level data fusion,
Figure S18: Permutation testing (200 times) of the RL_OPLS-DA model based on low-level data fusion, Figure S19:
Permutation testing (200 times) of the SL_OPLS-DA model based on low-level data fusion, Figure S20: Permutation
testing (200 times) of the RSL_OPLS-DA model based on low-level data fusion, Figure S21: Permutation testing
(200 times) of the RS_OPLS-DA model based on mid-level data fusion, Figure S22: Permutation testing (200 times)
of the RL_OPLS-DA model based on mid-level data fusion, Figure S23: Permutation testing (200 times) of
the SL_OPLS-DA model based on mid-level data fusion, Figure S24: Permutation testing (200 times) of the
RSL_OPLS-DA model based on mid-level data fusion, Table S1: The evaluation indexes for predictive power of
OPLS-DA model of rhizome, stem and leaf, Table S2: The evaluation indexes for predictive power of OPLS-DA
models based on low-level and mid-level data fusion strategies.
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Secoiridoid glycosides as a marker system in chemical variability estimation and chemotype assignment of
Centaurium erythraea Rafn from the Balkan Peninsula. Ind. Crop. Prod. 2012, 40, 336–344.

18. Yang, Y.M.; Tian, K.; Hao, J.M.; Pei, S.J.; Yang, Y.X. Biodiversity and biodiversity conservation in Yunnan,
China. Biodivers. Conserv. 2004, 13, 813–826. [CrossRef]

19. Fan, Z.X.; Thomas, A. Spatiotemporal variability of reference evapotranspiration and its contributing climatic
factors in Yunnan Province, SW China, 1961–2004. Clim. Chang. 2013, 116, 309–325. [CrossRef]

20. Liu, M.X.; Xu, X.L.; Sun, A.Y.; Wang, K.L.; Yue, Y.M.; Tong, X.W.; Liu, W. Evaluation of high-resolution
satellite rainfall products using rain gauge data over complex terrain in southwest China. Theor. Appl.
Climatol. 2015, 119, 203–219. [CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2014.11.089
http://www.ncbi.nlm.nih.gov/pubmed/25529701
http://dx.doi.org/10.1002/cbdv.201500333
http://www.ncbi.nlm.nih.gov/pubmed/26880427
http://dx.doi.org/10.1016/j.phytochem.2005.09.028
http://www.ncbi.nlm.nih.gov/pubmed/16289148
http://dx.doi.org/10.3390/molecules22122080
http://www.ncbi.nlm.nih.gov/pubmed/29182593
http://dx.doi.org/10.1007/s12161-013-9727-0
http://dx.doi.org/10.1016/j.jtcme.2016.12.013
http://www.ncbi.nlm.nih.gov/pubmed/29034186
http://dx.doi.org/10.1016/j.bmc.2010.02.004
http://dx.doi.org/10.1016/j.bmc.2010.08.020
http://dx.doi.org/10.1016/j.jep.2016.08.001
http://dx.doi.org/10.1016/j.jff.2015.09.018
http://dx.doi.org/10.1002/bmc.3540
http://www.ncbi.nlm.nih.gov/pubmed/26094855
http://dx.doi.org/10.3389/fchem.2017.00125
http://www.ncbi.nlm.nih.gov/pubmed/29312929
http://dx.doi.org/10.3390/molecules22071238
http://www.ncbi.nlm.nih.gov/pubmed/28737713
http://dx.doi.org/10.1080/00032719.2017.1416622
http://dx.doi.org/10.1023/B:BIOC.0000011728.46362.3c
http://dx.doi.org/10.1007/s10584-012-0479-4
http://dx.doi.org/10.1007/s00704-014-1092-4


Molecules 2019, 24, 2562 21 of 23

21. Tang, Q.H.; Ge, Q.S. Atlas of Environmental Risks Facing China under Climate Change; Springer Verlag: Berlin,
Germany, 2018.

22. Zhao, Z.Z.; Guo, P.; Brand, E. The formation of daodi medicinal materials. J. Ethnopharmacol. 2012, 140,
476–481. [CrossRef]

23. Sun, M.M.; Li, L.; Wang, M.; van Wijk, E.; He, M.; van Wijk, R.; Koval, S.; Hankemeier, T.; van der Greef, J.;
Wei, S.L. Effects of growth altitude on chemical constituents and delayed luminescence properties in medicinal
rhubarb. J. Photoch. Photobio. B 2016, 162, 24–33. [CrossRef]

24. Song, X.Y.; Jin, L.; Shi, Y.P.; Li, Y.D.; Chen, J. Multivariate statistical analysis based on a chromatographic
fingerprint for the evaluation of important environmental factors that affect the quality of Angelica sinensis.
Anal. Methods 2014, 6, 8268–8276. [CrossRef]

25. Yao, R.Y.; Heinrich, M.; Zou, Y.F.; Reich, E.; Zhang, X.L.; Chen, Y.; Weckerle, C.S. Quality variation of Goji
(fruits of Lycium spp.) in China: A comparative morphological and metabolomic analysis. Front. Pharmacol.
2018, 9, 151. [CrossRef] [PubMed]

26. Huang, Y.P.; Wu, Z.W.; Su, R.H.; Ruan, G.H.; Du, F.Y.; Li, G.K. Current application of chemometrics in
traditional Chinese herbal medicine research. J. Chromatogr. B 2016, 1026, 27–35. [CrossRef] [PubMed]

27. Zhang, C.; Zheng, X.; Ni, H.; Li, P.; Li, H.J. Discovery of quality control markers from traditional Chinese
medicines by fingerprint-efficacy modeling: Current status and future perspectives. J. Pharmaceut. Biomed.
2018, 159, 296–304. [CrossRef] [PubMed]

28. Chen, D.D.; Xie, X.F.; Ao, H.; Liu, J.L.; Peng, C. Raman spectroscopy in quality control of Chinese herbal
medicine. J. Chin. Med. Assoc. 2017, 80, 288–296. [CrossRef] [PubMed]

29. Wang, P.; Yu, Z.G. Species authentication and geographical origin discrimination of herbal medicines by near
infrared spectroscopy: A review. J. Pharm. Anal. 2015, 5, 277–284. [CrossRef] [PubMed]

30. Qi, L.M.; Zhang, J.; Zhao, Y.L.; Zuo, Z.T.; Wang, Y.Z.; Jin, H. Characterization of Gentiana rigescens by
ultraviolet-visible and infrared spectroscopies with chemometrics. Anal. Lett. 2017, 50, 1497–1511. [CrossRef]

31. Zhao, Y.L.; Zhang, J.; Jin, H.; Zhang, J.Y.; Shen, T.; Wang, Y.Z. Discrimination of Gentiana rigescens from
different origins by fourier transform infrared spectroscopy combined with chemometric methods. J. Aoac
Int. 2015, 98, 22–26. [CrossRef]

32. Lee, D.Y.; Kang, K.B.; Kim, J.; Kim, H.J.; Sung, S.H. Classficiation of bupleuri radix according to geographical
origins using near infrared spectroscopy (NIRS) combined with supervised pattern recognition. Nat. Prod.
Sci. 2018, 24, 164. [CrossRef]

33. Pei, Y.F.; Wu, L.H.; Zhang, Q.Z.; Wang, Y.Z. Geographical traceability of cultivated Paris polyphylla
var.yunnanensis using ATR-FTMIR spectroscopy with three mathematical algorithms. Anal. Methods
2019, 11, 113–122. [CrossRef]

34. Chen, H.; Lin, Z.; Tan, C. Fast discrimination of the geographical origins of notoginseng by near-infrared
spectroscopy and chemometrics. J. Pharmaceut. Biomed. 2018, 161, 239–245. [CrossRef] [PubMed]

35. Wang, Q.Q.; Huang, H.Y.; Wang, Y.Z. Geographical authentication of Macrohyporia cocos by a data fusion
method combining ultra-fast liquid chromatography and fourier transform infrared spectroscopy. Molecules
2019, 24, 1320. [CrossRef] [PubMed]

36. Ma, X.D.; Fan, Y.X.; Jin, C.C.; Wang, F.; Xin, G.Z.; Li, P.; Li, H.J. Specific targeted quantification combined with
non-targeted metabolite profiling for quality evaluation of Gastrodia elata tubers from different geographical
origins and cultivars. J. Chromatogr. A 2016, 1450, 53–63. [CrossRef] [PubMed]

37. Tang, J.F.; Li, W.X.; Zhang, F.; Li, Y.H.; Cao, Y.J.; Zhao, Y.; Li, X.L.; Ma, Z.J. Discrimination of radix polygoni
multiflori from different geographical areas by UPLC-QTOF/MS combined with chemometrics. Chin. Med.
2017, 12, 1–12. [CrossRef] [PubMed]

38. Zhu, L.X.; Xu, J.; Wang, R.J.; Li, H.X.; Tan, Y.Z.; Chen, H.B.; Dong, X.P.; Zhao, Z.Z. Correlation between
quality and geographical origins of Poria cocos revealed by qualitative fingerprint profiling and quantitative
determination of triterpenoid acids. Molecules 2018, 23, 2200. [CrossRef] [PubMed]

39. Sun, L.L.; Wang, M.; Zhang, H.J.; Liu, Y.N.; Ren, X.L.; Deng, Y.R.; Qi, A.D. Comprehensive analysis of polygoni
multiflori radix of different geographical origins using ultra-high-performance liquid chromatography
fingerprints and multivariate chemometric methods. J. Food Drug Anal. 2018, 26, 90–99. [CrossRef] [PubMed]

40. Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A.
Chromatographic fingerprinting: An innovative approach for food ‘identitation’ and food authentication—A
tutorial. Anal. Chim. Acta 2016, 909, 9–23. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jep.2012.01.048
http://dx.doi.org/10.1016/j.jphotobiol.2016.06.018
http://dx.doi.org/10.1039/C4AY01438C
http://dx.doi.org/10.3389/fphar.2018.00151
http://www.ncbi.nlm.nih.gov/pubmed/29535631
http://dx.doi.org/10.1016/j.jchromb.2015.12.050
http://www.ncbi.nlm.nih.gov/pubmed/26795190
http://dx.doi.org/10.1016/j.jpba.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30007179
http://dx.doi.org/10.1016/j.jcma.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/28325576
http://dx.doi.org/10.1016/j.jpha.2015.04.001
http://www.ncbi.nlm.nih.gov/pubmed/29403941
http://dx.doi.org/10.1080/00032719.2016.1225751
http://dx.doi.org/10.5740/jaoacint.13-395
http://dx.doi.org/10.20307/nps.2018.24.3.164
http://dx.doi.org/10.1039/C8AY02363H
http://dx.doi.org/10.1016/j.jpba.2018.08.052
http://www.ncbi.nlm.nih.gov/pubmed/30172878
http://dx.doi.org/10.3390/molecules24071320
http://www.ncbi.nlm.nih.gov/pubmed/30987245
http://dx.doi.org/10.1016/j.chroma.2016.04.077
http://www.ncbi.nlm.nih.gov/pubmed/27157425
http://dx.doi.org/10.1186/s13020-017-0155-8
http://www.ncbi.nlm.nih.gov/pubmed/29234461
http://dx.doi.org/10.3390/molecules23092200
http://www.ncbi.nlm.nih.gov/pubmed/30200284
http://dx.doi.org/10.1016/j.jfda.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29389593
http://dx.doi.org/10.1016/j.aca.2015.12.042
http://www.ncbi.nlm.nih.gov/pubmed/26851080


Molecules 2019, 24, 2562 22 of 23

41. Lucio-Gutiérrez, J.R.; Coello, J.; Maspoch, S. Enhanced chromatographic fingerprinting of herb materials by
multi-wavelength selection and chemometrics. Anal. Chim. Acta 2012, 710, 40–49. [CrossRef]

42. Zhang, L.L.; Liu, Y.Y.; Liu, Z.L.; Wang, C.; Song, Z.Q.; Liu, Y.X.; Dong, Y.Z.; Ning, Z.C.; Lu, A.P. Comparison of
the roots of Salvia miltiorrhiza bunge (danshen) and its variety S. miltiorrhiza Bge f. Alba (baihua danshen)
based on multi-wavelength HPLC-fingerprinting and contents of nine active components. Anal. Methods
2016, 8, 3171–3182. [CrossRef]

43. Wang, X.; Li, B.Q.; Xu, M.L.; Liu, J.J.; Zhai, H.L. Quality assessment of traditional Chinese medicine using
HPLC-PAD combined with tchebichef image moments. J. Chromatogr. B 2017, 1040, 8–13. [CrossRef]

44. Jiménez-Carvelo, A.M.; Cruz, C.M.; Olivieri, A.C.; González-Casado, A.; Cuadros-Rodríguez, L. Classification of
olive oils according to their cultivars based on second-order data using LC-DAD. Talanta 2019, 195, 69–76.
[CrossRef] [PubMed]

45. Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and
beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [CrossRef]
[PubMed]

46. Li, Y.; Zhang, J.Y.; Wang, Y.Z. FT-MIR and NIR spectral data fusion: A synergetic strategy for the geographical
traceability of Panax notoginseng. Anal. Bioanal. Chem. 2018, 410, 91–103. [CrossRef] [PubMed]

47. Wu, X.M.; Zuo, Z.T.; Zhang, Q.Z.; Wang, Y.Z. FT-MIR and UV–vis data fusion strategy for origins
discrimination of wild Paris polyphylla Smith var. yunnanensis. Vib. Spectrosc. 2018, 96, 125–136. [CrossRef]

48. Wang, H.Y.; Song, C.; Sha, M.; Liu, J.; Li, L.P.; Zhang, Z.Y. Discrimination of medicine radix astragali from
different geographic origins using multiple spectroscopies combined with data fusion methods. J. Appl.
Spectrosc. 2018, 85, 313–319. [CrossRef]

49. Pei, Y.F.; Zhang, Q.Z.; Zuo, Z.T.; Wang, Y.Z. Comparison and Identification for rhizomes and leaves of
Paris yunnanensis based on Fourier transform mid-Infrared spectroscopy combined with chemometrics.
Molecules 2018, 23, 3343. [CrossRef] [PubMed]

50. Yang, H.; Liu, J.; Chen, S.; Hu, F.; Zhou, D. Spatial variation profiling of four phytochemical constituents in
Gentiana straminea (Gentianaceae). J. Nat. Med. 2014, 68, 38–45. [CrossRef]

51. Lei, M.; Yu, X.H.; Li, M.; Zhu, W.X. Geographic origin identification of coal using near-infrared spectroscopy
combined with improved random forest method. Infrared Phys. Technol. 2018, 92, 177–182. [CrossRef]

52. Sayago, A.; González-Domínguez, R.; Beltrán, R.; Fernández-Recamales, Á. Combination of complementary
data mining methods for geographical characterization of extra virgin olive oils based on mineral composition.
Food Chem. 2018, 261, 42–50. [CrossRef]
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