Supplementary Information (SI)

Pressurized hot water extraction and capillary electrophoresis for green and fast analysis of useful metabolites in plants

Kurt Debruille^{1,2}, Jason Smith³, and Joselito P. Quirino^{1,*}

¹Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia

²Department of Chemistry, Faculty of Science, University of Mons, 20 Place du Parc, Mons 7000, Belgium

³School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia

* corresponding author: jquirino@utas.edu.au

- Table S1. Quantities of plant sample extracted by PHWE. (page 2)
- Table S2. Concentration range, linearity, and repeatability of the CE methods for the analysis of the targeted metabolites. (page 3)
- Figure S1. MEKC profiles of the successive PHWE extracts 1, 2, and 3 (E1, E2, and

E3, respectively) using 20, 30, and 35% EtOH of Tasmannia lanceolata leaf.

(page 4)

Sample (dried)	quantities	targeted	
Sumple (artea)	quantities	metabolite/s	
	(<u>g +</u> 0.01 g)	ine tab onter 5	
Tasmannia lanceolata (leaf)	15	polygodial	
Cinnamomum cassia (bark)	20	cinnamaldehyde	
		and coumarin	
<i>Illicium verum</i> (fruit and seed)	20	shikimic acid	
Correa backhouseana (leaf)	8	shikimic acid	
Tasmannia lanceolata (pepperberry)	18.3	shikimic acid	
Tasmannia lanceolata (leaf)	20	shikimic acid	
Backhousia citriodora (leaf)	13.4	shikimic acid	
Ducknousiu curiouoru (lear)	10.4	SHIKIIIIC acid	
Dodonea viscosa (leaf)	8.4	shikimic acid	
	1 -	1.1	
<i>Glycyrrhiza glabra</i> (root)	15	shikimic acid	
		L	

Table S1. Quantities of plant sample extracted by PHWE

Table S2. Concentration range, linearity, and repeatability of the CE methods for the analysis of the targeted metabolites.

	linear range (µg/mL)	linear equation y= ax + b	linearity (R²) corrected peak area	LOD (µg/mL)
polygodial	10 - 250	y = 0.048x + 0.722	0.990	3
shikimic acid	5 - 100	y = 0.254x + 6.534	0.996	2
cinnamaldehyde	1 - 100	y = 0.129x - 0.012	0.997	0.3
coumarin	1 - 50	y = 0.062x + 0.142	0.998	2

	intraday %RSD (n=8) migration / retention corrected time peak area		interday %RSD (n=8) migration / corrected retention time peak area	
		Peureneu		P current current
polygodial	1.3	13.2	3.5	10.5
shikimic acid	0.7	8.9	0.6	8.6
cinnamaldehyde	2.3	4.2	2.3	5.6
coumarin	0.9	1.7	1.8	10.3

MEKC and CZE methods are described in the main text.



Figure S1. MEKC profiles of the successive PHWE extracts 1, 2, and 3 (E1, E2, and E3, respectively) using 20, 30, and 35% EtOH of *Tasmannia lanceolata* leaf. The intensity of the baseline shift that started <4.3 min was highest with the first extract (E1) using all extraction solutions. The intensity of polygodial peak was higher in the second and third extracts using \geq 30% EtOH, indicating the improved extraction of polygodial after the first extraction using higher concentrations of EtOH. Analysis was by MEKC as described in the Materials and methods section.