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Abstract: The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic
roles in Alzheimer’s disease (AD). Both Aβ and tau self-assemble to form the two major pathological
hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we
show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea
possess the ability to target pathways associated with the formation of assemblies of Aβ and tau.
Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic
Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer–monomer
interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate
tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and
anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic
agents against AD, a complex disease that involves many pathological mechanisms.

Keywords: Alzheimer′s disease; amyloid-β self-assembly; tau self-assembly; tau hyperphosphorylation;
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia worldwide. According to the World
Alzheimer Report 2018, about 50,000,000 people in the world have dementia, and about two thirds, or
more than 30,000,000, have AD. Clinically, AD is characterized by progressive cognitive impairment
that inevitably leads to severe dementia, a stage marked by acute loss of almost all cognitive functions.
Biochemically and biophysically at the cellular level, AD is characterized by extracellular amyloid
plaques and intraneuronal neurofibrillary tangles (NFTs).

Amyloid plaques, found mostly in the isocortex, are composed primarily of amyloid-β (Aβ)
peptides, which are produced from the sequential cleavage of the amyloid-β precursor protein (AβPP)
by β- and γ-secretases [1]. The predominant forms of Aβ contain 40 or 42 amino acids, commonly
identified as Aβ40 and Aβ42, respectively. Aβ42 is more hydrophobic, has a higher propensity to
form insoluble fibrils, and thus, is more abundant in plaques than Aβ40. The formation of fibrils is
hierarchical in nature, indicated schematically as follows (Scheme 1):

Aβ monomers→ Aβ oligomers→ Aβ Protofibrils→ Aβ Fibrils

Scheme 1. Hierarchical self-assembly of Aβ monomers to fibrils.
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Biophysical studies have demonstrated that the oligomers, protofibrils and fibrils of Aβ, contain
increasing β-sheet contents [2]. In vitro toxicity studies have demonstrated that the Aβ assemblies are
neurotoxic, but there is now general agreement that oligomers, Aβ42 oligomers to be precise, are the
most pathogenic form of Aβ [3,4].

NFTs, found in the cytosol of neurons, are composed of paired helical filaments (PHFs), which
are twisted, fibrous, β-sheet-containing assemblies of the tau protein. Tau is a microtubule-associated
protein that plays a role in the stabilization of neuronal microtubules and in the regulation of axonal
transport and outgrowth [5]. It is a soluble, predominantly disordered protein [6] that self-assembles to
form oligomers and fibrils. The latter assembly aggregates further to form PHFs and NFTs (Scheme 2).

Unstructured tau monomers→ tau oligomers→ tau fibrils→ PHFs→ NFTs

Scheme 2. Hierarchical self-assembly of tau monomers to NFTs.

Given that the common characteristic of Aβ and tau in AD is abnormal self-assembly, we
hypothesize that molecules that inhibit the self-assembly of Aβ and tau are attractive therapeutics
against AD. Naturally occurring molecules called polyphenols have been shown to significantly
modulate the self-assembly of Aβ and tau. This article identifies such molecules and discusses the
proposed mechanisms behind the inhibition of self-assembly.

2. Chemical Properties of Polyphenols of Relevance to This Review

Polyphenols are small molecules that contain one or more phenolic rings. They are classified
into curcuminoids, flavonoids, lignans, phenolic acids, stilbenes, and tannins [7]. Table 1 presents the
chemical structures and common sources of the polyphenols included in this review.

Resveratrol (RES) is a stilbene that has anticancer [8], antioxidant [9] and neuroprotective [10]
properties. RES has two isomers, cis- and trans-resveratrol (Figure 1), but the latter is more stable and
responsible for the properties of the polyphenol [11]. RES is rapidly metabolized and therefore has low
bioavailability [12]. Nonetheless, both RES and its major metabolites are able to cross the blood-brain
barrier (BBB) [13] and thus, these molecules possess the potential to accumulate at pharmacologically
relevant concentrations in the brain.
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Table 1. Structures, common sources and water solubility of polyphenols in this review.

Molecule Common Source/s
Solubility in H2O Chemical Structure

Resveratrol
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Rosmarinic acid (RA), a phenolic acid, is an ester of caffeic acid and 3,4-dihydroxyphenyllactic
acid. RA has neuroprotective, antioxidant and anti-inflammatory effects, as discussed in a recent
review [14]. It is quite soluble in water, and thus organic solvents are not required for in vitro studies
of the effects of the polyphenol (e.g., [15]). However, the high solubility of RA in aqueous solvents
means that its ability to cross the BBB is low. If true and if in vitro and in vivo studies indicate that the
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potential of RA for the prevention and/or cure of AD is high, then addressing the delivery of RA across
the BBB will be important.

Epigallocatechin-3-gallate (EGCG) is a flavonoid and is the most abundant catechin in green tea
made from the leaves of Camellia sinensis. A recent review highlights the anticancer, anticardiovascular,
neuroprotective, anti-oxidant, anti-obesity, antidiabetic and anti-allergic effects of EGCG [16]. However,
EGCG has low bioavailability and thus, efforts are underway to develop nanoformulations of EGCG
designed to prevent the rapid metabolism of the molecule (e.g., [17]). EGCG is slightly soluble in
water but becomes more soluble in ethanol and similar solvents. Under cell culture conditions, EGCG
undergoes oxidation to form digallate dimers, theasinensin A and P2, and epimerization to form
gallocatechin-3-gallate (GCG) (Figure 2) [18]. Reaction rates are affected by concentration of EGCG,
pH, temperature, and the partial pressure of O2. Thus, mechanistic studies of the biological effects of
EGCG should take into consideration its stability.
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Figure 2. Under common experimental conditions, epigallocatechin-3-gallate (EGCG) forms gallocatechin
-3-gallate (GCG) through epimerization, and theasinensin A and P2 through oxidation-induced dimerization.

Curcumin (CUR) is a curcuminoid that possesses antioxidant, anti-inflammatory, anticarcinogenic
and neuroprotective effects as reviewed recently [19]. It is a linear diphenylheptanoid containing two
o-methoxy phenolic rings linked by a seven-carbon chain (Table 1). Because it is lipophilic, CUR is
able to cross the BBB, as shown in a number of studies using laboratory rodents (e.g., [20]). At 37 ◦C,
CUR degrades in solutions with pH ≥ 7; however, in acidic pH, its half-life increases by two orders of
magnitude [21].

Gallic acid (GA), aka 3,4,5-trihydroxybenzoic acid, is a phenolic acid that has strong anticancer
properties [22]. In humans, GA is absorbed more compared to other polyphenols [23]. It is converted
into other molecules primarily by glucuronidation and methylation, with 4-O-methylgallic acid being
one of the key methyl derivatives in the body [24].

Quercetin (QUE), a flavonoid, is a potent antioxidant found in many fruits, vegetables and food
products such as apples, onions, spinach, broccoli, kale, and tea. As such, it is routinely consumed in the
diet. The bioavailability of QUE in humans is subject to significant variation between individuals [25].

RES, CUR, GA and QUE are sparingly soluble in water (Table 1) but in our studies using RES
and CUR, we prepared concentrated stock solutions in ethanol followed by dilution with the desired
buffer [26–28]. A caveat of this approach is that it can lead to precipitation of the polyphenol. However,
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this was not observed in our studies and more importantly, we were able to ascribe differences in
outcomes of test and control experiments to the effect of the polyphenol on the biophysical properties
of either Aβ42 [26] or amylin [27,28].

3. Polyphenols Inhibit Aβ Self-Assembly

3.1. Modulation of Aβ Production

Because Aβ self-assembly is driven by an increase in the concentration of Aβ monomer, reducing
Aβ monomer levels is an attractive strategy for inhibition. One way to accomplish this is through
modulation of Aβ production by increasing the activity of α-secretase and inhibiting β-secretase.

The processing of AβPP is divided into two pathways: non-amyloidogenic and amyloidogenic.
The non-amyloidogenic pathway, which precludes Aβ production, starts with the cleavage of the
Lys16–Leu17 peptide bond within the Aβ domain (Figure 3a) by α-secretase, releasing AβPPs to the
extracellular space (Figure 3b). The C-terminal fragment C83 is processed by γ-secretase, releasing
p3 to the extracellular space and the amyloid-β precursor protein intracellular domain (AICD) to
the cytoplasm. The amyloidogenic pathway begins with the β-secretase cleavage of the Met–Asp1
peptide bond (Figure 3a), releasing AβPPsβ into the extracellular space (Figure 3b). Processing of
the C-terminal fragment C99 by γ-secretase releases Aβ to the extracellular space and AICD to the
cytoplasm. Several studies have shown that polyphenols modulate the production of Aβ in two ways:
enhancement of the α-secretase mediated cleavage of the Lys16–Leu17 peptide bond by EGCG and
CUR, and inhibition of β-secretase by CUR (Figure 3b).
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Figure 3. Enzymatic processing of amyloid-β precursor protein (AβPP). (a) Cleavage within the
amyloid-β (Aβ) sequence (i.e., at the peptide bond between Lys16 and Leu17) by α-secretase precludes
Aβ production while sequential cleavages first by β-secretase, and then by γ-secretase at the sites
indicated produce Aβ40 and Aβ42. (b) Amyloidogenic and non-amyloidogenic pathways and their
products. Curcumin modulates the amyloidogenic pathway by inhibiting β-secretase. EGCG and
curcumin facilitate the non-amyloidogenic pathway by enhancing the activity of α-secretase.
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3.1.1. Enhancement of α-Secretase Activity

Rezai-Zadeh et al. demonstrated that EGCG treatment of murine N2a cells transfected with
human AβPP modified by the Swedish mutation (K670N/M671L), and primary neuronal cells derived
from AD Tg2576 mice results in a significant decrease in Aβ production [29]. Additionally, they
found that the production of C83 and AβPPs are increased in these cells after EGCG treatment,
consistent with the enhancement of α-secretase activity. To validate their findings in vivo, Rezai-Zadeh
et al. intraperitoneally or intracerebroventricularly injected EGCG into AD Tg2576 mice and found
reduced Aβ levels associated with the enhancement of the nonamyloidogenic α-secretase mediated
pathway [29]. Subsequently, Obregon et al. showed that activation of ADAM10, one of several
members of the a disintegrin and metalloprotease (ADAM) family implicated as putative α-secretase
candidates, is required for EGCG promotion of α-secretase cleavage of AβPP [30]. This result led to
the conclusion that ADAM10 is an attractive pharmacotherapeutic target for the treatment of cerebral
amyloidosis in AD. However, ADAM10 has a wide range of substrates, and enhancing its activity
may lead to unwanted side effects [31]. We surmise, however, that the health benefits of EGCG [16],
including anti-oxidant and neuroprotective effects, coupled with its effect on α-secretase activity, are
worth consideration in the development of therapeutic approaches for AD.

Narasingapa et al. treated HEK293 cells overexpressing AβPP with CUR and its derivatives [32].
They reported that CUR enhances the activity of α-secretase but when CUR is conjugated at the two
phenolic positions with hydrophobic amino acids including isoleucine, phenylalanine or valine, the
activity of α-secretase is increased even more. The mechanism behind this effect is not known.

3.1.2. Inhibition of β-Secretase

The β-secretase BACE (β-site amyloid-precursor-protein-cleaving enzyme) is the rate-limiting
enzyme in the production of Aβ [33]. Several studies have shown that BACE inhibition is a potential
strategy for AD therapeutics. For example, Keskin et al. applied histochemistry, in vivo Ca2+ imaging
and behavioral analyses in APP23xPS45 transgenic mice, and demonstrated that BACE inhibition is
beneficial to all levels of impairment in the AD mouse model, i.e., inhibition rescued hyperactivity
of neurons, impairment of long-range circuitry, and memory defects [34]. However, clinical trials of
verubecestat, an orally administered BACE-1 inhibitor, have failed [35].

Wang et al. used a FRET-based enzyme assay to show that curcuminoids present in turmeric
inhibit the activity of β-secretase [36]. The curcuminoids arranged in the order of increasing IC50′s are:
bisdemethoxycurcumin < demethoxycurcumin < curcumin. This result indicates that the absence of
methoxy groups in the phenyl rings of CUR (Table 1) increases the inhibition of β-secretase. The abilities
of EGCG [37] and resveratrol [38] to inhibit β-secretase have been investigated, and it was shown that
neither one modulate the activity of the enzyme.

Because EGCG does not modulate the activity ofβ-secretase [37], Mori et al. tested the combination
of EGCG and ferulic acid (FA), a β-secretase modulator [39], in APP/PS1 mice [40] which express
human AβPP bearing the Swedish mutation, and PSEN1 with the L166P mutation that increase the
Aβ42/Aβ40 concentration ratio [41]. They showed that the combination had consequential advantages
over single treatment with either EGCG or FA. In particular, reversal of cognitive impairment in tests
of learning and memory, amelioration of cerebral amyloidosis, and reduction of Aβ production were
observed [41]. We hypothesize that other combinations of naturally occuring compounds (e.g., EGCG
and CUR) may lead to similar or even better results.

3.2. Polyphenols Inhibit Toxic Aβ Oligomerization

Figure 4 presents three ways by which polyphenols target the pathway of toxic Aβ oligomerization.
RES enhances the clearance of Aβ monomer, CUR and RA inhibit Aβ oligomerization, and RES and
EGCG remodel Aβ oligomers to nontoxic forms.
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Figure 4. Modulation of the formation of toxic Aβ oligomers by polyphenols. Resveratrol enhances
the clearance of Aβ monomer. Rosmarinic acid and curcumin directly inhibit oligomerization by
interfering with peptide–peptide interactions while resveratrol and EGCG remodel toxic Aβ oligomers
to nontoxic assemblies.

3.2.1. Enhancement of Aβ Monomer Clearance

Several laboratories have shown that RES facilitates the clearance of Aβ in neuronal cells [38,42].
The mechanism for the clearance of Aβ is not well understood but several mechanisms have been
proposed. Vingtdeux and coworkers hypothesized that the clearance may involve the activation of
AMP-activated protein kinase which in turn inhibits the mammalian target of rapamycin (mTOR)
resulting in the initiation of autophagy and lysosomal clearance of Aβ [42]. Marambaud and coworkers
proposed that RES promotes the clearance of Aβ40 and Aβ42 by the proteasome [38]. Others have
shown that RES upregulates the expression of insulin-degrading enzyme (IDE) in the hippocampus [43].
More recently, we showed that RES sustains the activity of IDE towards Aβ42 monomer in two ways [26].
First, the number of initial cleavage sites is increased. Using limited proteolysis monitored by mass
spectrometry, we showed that the initial cleavages in the absence of RES occur in the central hydrophobic
cluster (CHC), i.e., at the peptide bonds between Phe19 and Phe20 and between Phe20 and Ala21.
In the presence of RES, a third initial cleavage site occurs at the peptide bond between Lys28 and
Gly29, which is found in the putative turn region of Aβ [44]. This has biophysical significance in that
hydrophobic interactions between the CHC and the AIIGL segment of Aβ, which are hypothesized
to stabilize in part the structure of a disease-relevant Aβ42 fibril [45], are prevented. Second, RES
facilitates further IDE-dependent degradation of the primary fragments of Aβ42 to smaller fragments.
This is important because primary C-terminal fragments can aggregate and seed self-assembly of
Aβ peptides. Together, our results suggest that the combination of RES and IDE holds promise for
therapeutic and/or preventive strategies for AD.

3.2.2. Modulation of Aβ Monomer–Aβ Monomer Contacts

Hamaguchi et al. [46] showed that oral administration of RA prevented the development of Aβ

neuropathology in AD Tg2576 mice which express human AβPP modified by the Swedish mutation
(K670N/M671L) associated with increased production of Aβ [47]. Analysis of Aβ in the soluble
fractions of the brain indicated that RA inhibits the formation of A11-positive Aβ oligomers [46].
This result appears to be relevant because A11-positive oligomers correlate with cognitive deficits in
AD transgenic mice models [48]. Ono et al. used several biophysical techniques including atomic force
microscopy, circular dichroism, nuclear magnetic resonance (NMR), and photo-induced cross-linking
of unmodified proteins and showed that RA inhibits the oligomerization of Aβ40 and Aβ42 [49].
This suggests that the polyphenol modulates contacts between Aβ monomers. Because Aβ oligomers
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impair synaptic plasticity and memory by inhibiting long term potentiation (LTP) and enhancing long
term depression (LTD) [50], Ono et al. used LTP and LTD assays of hippocampal slices from C57BL/6
mice and showed that RA diminished Aβ oligomer-induced synaptic toxicities [49].

Recently, we used a combination of solution-state NMR and molecular docking to elucidate the
mechanism of the inhibition of insulin amyloid formation by RA [15]. Insulin is an attractive model
protein for amyloid self-assembly because the 3D structures of insulin oligomers are known. Our results
show that RA binds to a hydrophobic pocket in insulin dimer and in doing so, the polyphenol undergoes
a conformational change from an extended structure to a bent conformation (Figure 5). Importantly, the
aromatic moieties of the polyphenol form π-π interactions with aromatic residues in the pocket to form
an extended aromatic network, resulting in inhibition of amyloid formation [15]. Our work suggests
that polyphenols that have the ability to form extended aromatic clusters with aromatic residues on
the surface of an amyloidogenic protein has a high potential to be an effective inhibitor.
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Figure 5. Rosmarinic acid undergoes conformational change from extended to bent conformation in
binding to the hydrophobic pocket in insulin dimer. The formation of an aromatic cluster between bent
rosmarinic acid and aromatic residues on the surface stabilizes the dimer, precluding amyloid formation.

CUR is a potent inhibitor of Aβ42 oligomerization [51,52]. Yang and coworkers dissolved Aβ42
in hexafluoroisopropanol (HFIP) to prepare seedless Aβ42 monomers. After removal of HFIP, they
then used the oligomer preparation protocol reported by Kayed et al. [53] to test the ability of CUR to
inhibit oligomerization. Dot blots indicated dose-dependent inhibition of Aβ42 oligomerization [51].
Subsequent work by Reinke and Gestwicki identified the contribution of each structural module in
CUR to inhibition of Aβ42 oligomerization [52]. CUR contains two relatively polar aromatic groups
joined by a rigid linker (Table 1). Both polar groups at each end of the molecule and the hydroxy
substitutions on them are required for inhibition. The optimal length of the linker lies between 8 Å and
16 Å [52]. We noted that RA meets these requirements, providing support to the structure-activity
relationships obtained by Reinke and Gestwicki.

3.2.3. Remodeling of Aβ Oligomers to Nontoxic Forms

Ehrnhoefer et al. used biochemical and cell biological methods to study the effect of
EGCG on the oligomerization of Aβ42 [54]. EGCG does not inhibit oligomerization but
the oligomers formed are off-pathway (i.e., they are structurally distinct from Aβ42 amyloid
oligomers), seeding incompetent, and are nontoxic to mammalian cells by the standardized
3-(4,6-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide reduction assay. The EGCG-induced
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amelioration of toxicity was also observed in larger assemblies of Aβ42. Using cell-free and cell-based
assays, Bieschke et al. showed that EGCG binds to large oligomers and preformed fibrils and
remodels them into less toxic off-pathway assemblies [55]. These results have led to experimental
and computational studies of the structure of the complexes formed by EGCG and Aβ [54,56–59].
Ehrnhoefer et al. showed that EGCG induces formation of spherical Aβ42 assemblies that are
nonamyloidogenic [54]. Analysis of two-dimensional magic-angle spinning solid-state NMR correlation
spectra of EGCG-induced Aβ40 oligomers indicated that the polyphenol interferes with the aromatic
core region (i.e., residues 10–20) of Aβ40 [56]. More recently, Ahmed et al. used solution-state
NMR, dynamic light scattering and electron microscopy to investigate how EGCG remodels Aβ40
oligomers in solution [57]. They showed that the remodeling adheres to a Hill-Scatchard model, i.e.,
EGCG binds to equivalent and independent sites within Aβ40 oligomers. Upon binding EGCG, the
oligomers become less exposed to solvent and the Aβ monomer-Aβ oligomer contacts become less
engaged. The authors concluded that EGCG inhibits the secondary nucleation events that generate
toxic Aβ oligomers [57]. An all-atom molecular dynamics simulation by Zhang et al. showed that
Aβ42 dimers in the presence of EGCG adopt new conformations characterized by increased α-helix
and unstructured contents at the expense of β-sheet, reduced intra- and interchain contacts, and
increased inter-center-of-mass distances [59]. However, Nguyen and Derreumaux in a recent overview
of Aβ oligomer—drug interactions from computer simulations noted that simulations of Aβ42–EGCG
complexes show that there is room for a more potent inhibitor that would bind more tightly and
sequester Aβ42 dimers from Aβ42 monomer more efficiently [58].

RES does not inhibit Aβ42 oligomerization [60–62], presumably because it lacks the structural
features common to CUR and RA (vide supra). Nonetheless, Feng et al. showed that RES attenuates the
cytotoxicity of Aβ42 oligomers presumably by remodeling the oligomers into nontoxic conformers [60].
The capacity of RES to remodel Aβ42 assemblies was also reported by Ladiwala and coworkers [61].
They noted that RES remodels Aβ42 soluble oligomers, fibrillar intermediates and amyloid fibrils
into aggregates that are negative for multiple conformational probes (e.g., conformation-specific
antibodies and ThT) and nontoxic. Structural details of the interaction of RES with Aβ42 oligomers
were investigated by Fu and coworkers using solution-state NMR and atomic force microscopy [62].
RES binds to the N-terminus of Aβ42 and limits oligomer formation to low molecular weight oligomers.
This result suggests that the N-terminus of Aβ42 plays a key role in the formation of high molecular
weight oligomers.

4. Polyphenols Inhibit Tau Self-Assembly

4.1. Polyphenols Modulate Tau Hyperphosphorylation

The human brain contains six major tau isoforms: 2N4R, 1N4R, 0N4R, 2N3R, 1N3R, AND 0N3R
(Figure 6). These isoforms differ in the number of inserts N near the N-terminus, which can be 0, 1, or
2, and in the number of microtubule-binding repeats R, which can be 3 (i.e., R2 is missing) or 4. Each
isoform contains two domains: a projection domain that extends from the surface of microtubules and a
microtubule-binding domain. Calculated pI’s indicate that the tau isoforms with the exception of 2N3R,
are basic proteins (Figure 6). The dominance of repulsive positive charges may account for the absence
of tau self-assembly in pure buffer. A common posttranslational modification that may facilitate tau
self-assembly is phosphorylation. Because tau in NFTs is hyperphosphorylated [63], phosphorylation
has been assumed to trigger self-assembly. This makes sense because abnormal hyperphosphorylation
at several sites may compensate for the repulsive positive charges in tau [64]. However, because in vitro
studies have shown that tau aggregation can be induced by the presence of polyanionic cofactors [65],
some of which could be present in vivo, the importance of phosphorylation in tau self-assembly remains
a matter of debate. This is complicated by the large number of potential phosphorylation sites in tau,
which ranges from 67 in 0N3R, the shortest tau isoform, to 85 in 2N4R, the longest tau isoform (Figure 6),
and by the diversity in their locations in the molecule. Nonetheless, hyperphosphorylation of tau may
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lead to disease through other mechanisms. Dissociation of hyperphosphorylated tau from mictrobules
may result in the breakdown of the microtubular cytoskeleton [66]. Hyperphosphorylation of tau may
induce tau mislocalization, which in turn can lead to synaptic dysfunction [67]. Phosphorylation at
specific sites may diminish the degradation of tau [68], which can then lead to increased levels of tau
favoring self-assembly.
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Figure 6. Tau isoforms in the human brain. Tau consists of a projection domain and a
microtubule-assembly domain. The six tau isoforms (2N4R, 1N4R, 0N4R, 2N3R, 1N3R, AND 0N3R)
are designated by the number of N inserts in the former and by the number of repeats R in the latter.
Calculated pI’s indicate that the isoforms except 2N3R are basic proteins. The number of potential
phosphorylation sites in each isoform is indicated.

The degree of phosphorylation of tau in neuronal cells is regulated by the balancing act of
phosphatases and serine/threonine kinases. The major phosphatase and kinase for neuronal tau are
phosphatase 2A (PP2A) [69] and glycogen synthase kinase 3β (GSK-3β) [70,71], respectively. Figure 7
presents four ways by which polyphenols modulate tau hyperphosphorylation: (1) inhibition of the
activity of GSK-3β towards tau; (2) remodeling tau to tau*, i.e., tau resistant to kinase action; (3)
increasing the activity of PP2A towards hyperphosphorylated tau; and (4) enhancing the clearance of
hyperphosphorylated tau.
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Figure 7. Polyphenols modulate levels of hyperphosphorylated tau by inhibiting GSK-3β activity
towards tau, remodeling tau to kinase-resistant tau (tau*), increasing the activity of PP2A towards
hyperphosphorylated tau, and enhancing the clearance of hyperphosphorylated tau.
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4.1.1. Inhibition of GSK-3β and Other Kinases

He et al. showed that RES inhibits the formaldehyde-induced hyperphosphorylation of tau
at Thr181 in a dose-dependent manner [72]. Additional experiments showed that the inhibition
results from the suppression of the catalytic activities of GSK-3β and calmodulin-dependent protein
kinase II (CaMKII), another kinase implicated in tau hyperphosphorylation. In senescence accelerated
mice P8 (SAMP8), a neuropathological model of accelerated brain aging and dementia [73], RES
inhibits the activity of cyclin-dependent kinase 5 and GSK-3β, preventing tau phosphorylation at
Ser396 [74]. Wang et al. showed that exosomes derived from CUR-treated cells (Exo-cur) inhibit the
hyperphosphorylation of tau through the AKT/GSK-3βpathway in an animal model of AD generated by
injecting okadaic acid in the brain of C57BL/6 mice [75]. Okadaic acid induces the hyperphosphorylation
of tau [76,77] by inhibiting PP2A [75]. Jiang et al. investigated the neuroprotective effects of QUE against
okadaic acid-induced toxicity in HT22 cells obtained from mouse hippocampal tissue [78]. Okadaic
acid induced tau hyperphosphorylation at Ser199, Ser396, Thr205 and Thr231 and oxidative stress in the
HT22 cells. However, treatment with QUE prevented oxidative stress and tau hyperphosphorylation
by inhibition of the PI3K/AKT/GSK-3β signaling pathway. Together, these studies indicate that
polyphenols have the potential of inhibiting kinases implicated in the hyperphosphorylation of tau.
While it could be true that the modulation of kinases is likely to affect other key pathways, we surmise
that if modulation of kinase activity is to be targeted, then the use of polyphenols would be an attractive
approach due in part to other additional health benefits these molecules provide.

4.1.2. Remodeling of Tau to Tau*

Guo et al. reported that long-term oral consumption of EGCG ameliorated the impaired working
memory and spatial learning memory in SAMP8 mice, determined by Y-maze and Morris water maze
tests, respectively [79]. In addition to a reduction of Aβ42 levels, EGCG treatment also prevented
tau hyperphosphorylation. To obtain molecular and structural insights into the inhibition of tau
phosphorylation by EGCG, Guéroux et al. studied the proline-rich region (PRR) of 2N4R tau where
most of the phosphorylation sites are located [80]. Two peptides were synthesized, one corresponds to
Ile171–Lys190, the first PRR of tau, and the other corresponds to Ile171–Thr220, which contains more
than 50% of the PRR of tau. Using a combination of NMR and molecular modeling, they showed that
EGCG modifies the 3D structures of the peptides and binds to the putative phosphorylation sites such
that access by kinases is diminished [80].

4.1.3. Enhancement of PP2A Activity

Another mechanism that has been proposed for RES also modulates the levels of
hyperphosphorylated tau by increasing tau dephosphorylatation. Schweiger et al. showed that
the polyphenol significantly increases the activity of PP2A [81]. The enhancement of the activity of
PP2A is caused by decreased expression of MID1 ubiquitin ligase that facilitates the degradation of the
catalytic subunit of PP2A. Intriguingly, Schweiger et al. also showed that MID1 expression is increased
in AD tissue [81].

4.1.4. Increased Clearance of Phosphorylated Tau

EGCG and CUR have been shown to facilitate the clearance of hyperphosphorylated tau. Chesser
et al. demonstrated that EGCG has the ability to enhance the clearance of phosphorylated tau [82] by
increasing mRNA expression of two key autophagy adaptor proteins, NDP52 and p62. Ma et al. [83]
used wild-type human tau transgenic mice, which exhibits established tau pathology and neuron
loss [84], to determine the effect of CUR on tau-induced synaptic and cognitive deficits. Mice were
fed PMI 5015 with 500 ppm CUR, a formulation that has shown to increased levels of bioavailable
free CUR in the brain [85]. Behavioral and cognitive tests on the mice showed that the polyphenol
corrected tau-dependent behavioral and synaptic deficits. To elucidate the mechanism behind these
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results, Ma et al. examined hippocampal tissue and found that CUR elevated levels of heat shock
proteins involved in the clearance of phosphorylated tau dimers [83], which have been hypothesized
to play a critical role in cognitive and synaptic dysfunction [86].

4.2. Polyphenols Inhibit Tau β-Sheet Formation

The self-assembly of tau shares three common features with the self-assembly of Aβ. First,
tau undergoes a random coil → β-sheet conformational rearrangement [87,88]. Tau in solution is
predominantly unstructured as revealed primarily by circular dichroism (CD) spectroscopy [89].
As noted above, tau in pure buffer does not self-assemble but in the presence of polyanionic species,
self-assembly takes place. Goedert et al. showed that incubation of tau with heparin at 37 ◦C leads
to the formation of Alzheimer-like tau filaments [90]. Other negatively charged molecules including
RNA [91] and free fatty acids such as arachidonic acid [92] also facilitate tau self-assembly to filaments.
Together, these studies indicate that tau self-assembly to filaments is driven primarily by electrostatics
rather than by the precise structure of the negatively charged species. Berriman et al. used X-ray
diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to show that tau filaments
contain cross-β structure [93]. Solid-state NMR [94], XRD and solution-state spectroscopic analysis by
CD and FTIR [95] of filaments formed by tau peptides (vide infra) also reveal the presence of β-sheet.

Second, fragments of tau also self-assemble to form filaments. When tau self-assembles to PHFs,
the repeat regions (R1 to R4) form the core, while the long N-terminal and shorter C-terminal domains
surround the core [96]. The dominant secondary structure present in the core of PHFs is β-sheet while
the N- and C-terminal domains projecting from the core are predominantly random coil [97]. Together,
these results suggest that peptides corresponding to the repeat regions of tau will self-assemble to
filaments similar to those formed by full-length tau. Indeed, K18, which corresponds to R1-R4 in 2N4R,
and K19, which corresponds to R1, R3 and R4 in 0N3R (Figure 8), form filaments similar to those
formed by full-length tau isoforms but self-assemble more aggressively presumably because they do
not contain the N- and C-terminal domains that modulate intermolecular interactions involving the
repeat regions [98,99].

Last, tau self-assembly is also inhibited by polyphenols. Santa-Maria et al. tested the effect of
treating JNPL3 transgenic mice with grape seed polyphenolic extract (GSPE) [100]. JNPL3 mice express
human tau containing the P301L mutation [101]. NFTs develop in the brain and spinal cord of the mice,
leading to motor and movement abnormalities. Santa-Maria et al. found that GSPE treatment reduced
the levels of hyperphosphorylated and sarcosyl-insoluble tau and improved the motor function of the
treated mice [100]. The mechanism/s for the effect of GSPE is not well understood. Nonetheless, a
polyphenol combination strategy for anti-tau-self-assembly seems to be an attractive approach [13].
Other combinations are possible (e.g., bioactive dietary polyphenol extract [102]) and thus studies that
will identify the polyphenol combination that works the best could prove to be useful.
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Figure 8. Tau constructs that form filaments. K18 and K19 correspond to the repeat domains of 2N4R
and 0N3R, respectively. The relative locations of the hexapeptide motifs (PHF6* (VQIINK) and PHF6
(VQIVYK)), which are thought to act as nucleating segments for tau self-assembly are indicated.

Biophysical studies of the self-assembly of full-length tau and model peptides in the presence of
polyphenols (Figure 9) provide insights into mechanisms of inhibition. Rane et al. showed that 0N4R
tau in the presence of arachidonic acid self-assembles to form β-sheet containing filaments [103]. In the
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presence of CUR, filament formation is abolished. Binding experiments indicated that CUR binds more
strongly to 0N4R (Kd = 3 µM) than to 0N3R (Kd = 8 µM), which lacks R2 (Figure 6). Molecular docking
showed that CUR interacts with several residues in the R1–R4 region of 0N4R, including Asp194 and
Leu195 in R1, Asp225 in R2, Val255 and Ser258 in R3, and Lys285, Val292 and Val305 in R4, providing a
mechanism for the inhibition of β-sheet formation by the polyphenol. Bijari et al. showed through
ThT fluorescence, which is sensitive to β-sheet-containing amyloid assemblies [104–106], that CUR
inhibits the self-assembly of 1N4R tau [107]. Molecular docking revealed that CUR binds to a region
close to the nucleating hexapeptide motif designated as PHF6 (V306QIVYK311) [108] found in R3 of
1N4R [107]. Other naturally occurring polyphenols such as epicatechin 3-gallate and myricetin inhibit
the heparin-induced filament formation by 1N4R [109]. Cornejo et al. showed that RA inhibits β-sheet
formation by a peptide containing K18 (Figure 8) in a dose-dependent manner [110]. Wobst et al.
investigated the ability of EGCG to inhibit the aggregation of His-tagged K18∆K280, a K18 construct
that contains a mutation in R2 linked to frontotemporal dementia (i.e., deletion of Lys280) [111].
Through the use of ThT fluorescence, dot blot analysis using the anti-oligomer antibody A11, and CD
spectroscopy, they showed that EGCG inhibits the aggregation of His-tagged K18∆K280 into toxic
oligomers at substoichiometric concentrations. Yao et al. showed that GA inhibits the aggregation
of the R3 domain of 2N4R [112]. R3 is a suitable model peptide for the aggregation of full-length
tau because its N-terminus contains PHF6 (Figure 9). Interestingly, tannic acid, which is a naturally
occurring polymer of GA, is a more potent inhibitor of R3 aggregation [112]. Molecular docking showed
that three aromatic rings of tannic acid bind to the PHF6 region. CUR inhibits amyloid formation
by the heptapeptide FVQIVYH, which contains the segment VQIVY found in PHF6 [107]. Overall,
mechanistic studies of the inhibition of tau self-assembly by polyphenols validate the hypothesis that
PHF6 nucleates β-sheet formation in tau.
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5. Conclusions and Future Directions

The mechanisms presented in this review show that polyphenols inhibit Aβ self-assembly to
oligomers, and tau self-assembly to β-sheet assemblies, by affecting both the biochemistry and
biophysical chemistry associated with each process. In the case of Aβ self-assembly, polyphenols
inhibit oligomerization biochemically by modulating Aβ monomer levels in two ways, i.e., through
modification of the activity of secretases associated with the processing of AβPP and enhancement of
the clearance of Aβ monomer. Polyphenols inhibit Aβ oligomerization biophysically by interfering
with physical contacts between Aβ monomers, which are driven primarily by hydrophobic interactions.
In the case of tau self-assembly, polyphenols inhibit this process biochemically through modulation of
tau hyperphosphorylation, which is hypothesized to drive aggregation to NFTs. Polyphenols inhibit tau
self-assembly biophysically by interfering with the nucleation of β-sheet formation hypothesized to be
facilitated by PHF6. Together, the mechanisms presented here underscore the potency of polyphenols
to inhibit abnormal self-assembly.

Recent progress in the pathobiology of AD suggests future directions. Self-propagating Aβ

species (aka Aβ prions) may play an initiating role in sporadic AD [113]. Can these species be targeted
pharmacologically? If so, will polyphenols inhibit their formation and their ability to self-propagate, i.e.,
to convert a “normal” Aβ species into an additional copy of the Aβ prion? The spread of tau pathology
may also occur through prion-like propagation [114]. Can the interneuronal tau propagation be
blocked by polyphenols? Finally, cross-seeding of tau self-assembly by aggregated Aβ may account for
Aβ-induced propagation of tau pathology [115,116]. Can polyphenols block cross-seeding interactions
between Aβ and tau?

AD is a complex disease because many pathological mechanisms are involved including
neurodegeneration induced by Aβ self-assembly and neurodegeneration induced by tau self-assembly.
Finding a cure for the disease has been elusive. All of the recent therapeutic strategies have targeted Aβ

self-assembly and have continued to fail in clinical trials. Therapeutic strategies that simultaneously
target Aβ self-assembly and tau self-assembly may lead to better outcomes. Because polyphenols
inhibit Aβ self-assembly and tau self-assembly in a number of ways and possess antioxidant and
anti-inflammatory properties, the use of naturally occurring polyphenols is an attractive therapeutic
approach that should be developed further.
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