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Abstract: In this study, a novel dual-emission ratiometric fluorescent nanoprobe (RFN) was
synthesized and ultilized for highly sensitive determination of mercury ions. In this nanoprobe,
fluorescein isothiocyanate (FITC) doped silica (SiO2) served as a reference signal, FITC–SiO2

microspheres were synthesized and modified with amino groups, and then Au Nanoclusters
(AuNCs) were combined with the amino groups on the surface of the FITC–SiO2 microspheres
to obtain the RFN. The selectivity, stability, and pH of the RFN were then optimized, and the
determination of mercury ions was performed under optimal conditions. The probe fluorescence
intensity ratio (F520 nm/F680 nm) and Hg2+ concentration (1.0 × 10−10 mol/L to 1.0 × 10−8 mol/L)
showed a good linear relationship, with a correlation coefficient of R2 = 0.98802 and a detection limit
of 1.0 × 10−10 mol/L, respectively. The probe was used for the determination of trace mercury ion in
water samples, and the recovery rate was 98.15~100.45%, suggesting a wide range of applications in
monitoring pollutants, such as heavy metal ion and in the area of environmental protection.

Keywords: ratiometric fluorescent nanoprobe; dual-emission; mercury ions; determination

1. Introduction

Mercury is commonly found in the environment and is one of the most toxic elements [1]. It cannot
be degraded by microorganisms in water. Mercury and some of its salts are volatile, thus possessing
high mobility, corrosivity, and carcinogenicity. It can cause cell division damage and permanent
damage to the central nervous system through skin and respiratory system, and it is one of the most
common environmental pollutants [2–4]. According to the United States Environmental Protection
Agency, the maximum concentration of mercury ions in human daily drinking water should not exceed
10 nmol/L (ppb). Therefore, it is of great significance to establish a method with high sensitivity and
selectivity for detecting mercury ions in the environment.

At present, the effective methods for determining mercury ions include atomic absorption
spectroscopy, inductively coupled plasma mass spectrometry, inductively coupled plasma-atomic
emission spectrometry, and so on [5–7]. However, to perform these with a high accuracy, these
methods are time-consuming, expensive, and require professional operation. To overcome these
shortcomings, the fluorescence (FL) method is often employed, as it has high sensitivity and selectivity,
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and is relatively easy to handle [8,9]. In recent years, the determination of mercury ions based on the
establishment of fluorescence sensors has attracted much attention, including probes such as organic
dyes [10,11], complexes [12], quantum dots [13], and peptides [14]. Compared with a single quencher,
the dual-emission ratiometric fluorescent probe has the characteristics of large molar absorbance,
good stability, strong anti-interference, and long emission wavelength, which proved to be an effective
method for complex sample matrices, and it is the current direction for the research in mercury ion
detection [15–17].

In this study, FITC–SiO2 was synthesized, and modified with amino groups, and then AuNCs was
combined with the amino compounds on the surface of FITC–SiO2 microspheres to generate the RFN.
By optimizing the interference, stability, and pH conditions of the RFN, The detection performance of
the RFN on mercury ions was further explored and applied to the determination of water samples.

2. Results and Discussion

2.1. Fluorescence Spectra of RFN

Figure 1a shows the photographs of FITC–SiO2 (I), RFN (II) and AuNCs (III) under white
light, and Figure 1b exhibits the corresponding photographs under ultraviolet light. As shown in
these figures, the nanoparticles in various synthetic stages all exhibited excellent optical properties.
The solutions of AuNCs and FITC–SiO2 showed red and green emissions, respectively, while the
synthesized RFN (II) exhibited the complexed orange color. When the fluorescence spectra were
subsequently measured by excitation wavelength of 380 nm, the maximum emission wavelengths of
AuNCs and FITC–SiO2 were 698 nm and 520 nm, and the dual-emission peaks of the RFN were 520 nm
and 680 nm, respectively. This indicated that the fluorescence wavelength of the AuNCs coupled to the
FITC–SiO2 microspheres had undergone a blue shift, which might be due to the fact that the binding of
amino compounds on the surface changed as a result of the activation effect of EDC.
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2.2. Transmission Electron Microscopy (TEM) of RFN

To prove that AuNCs were successfully attached to the surface of FITC–SiO2 nanoparticles, the
synthesized ratiometric fluorescent nanomaterials were characterized by TEM (Figure 2). Figure 2a
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shows the electron micrograph of SiO2–FITC, and Figure 2b shows the electron micrograph of RFN.
As seen in the figures, the prepared FITC–SiO2 nanoparticles had a dimension of about 100 nm, while
the particle size of RFN are 120 nm. It shows that the RFN had a very good dispersity. According to
the literature [18,19], the particle size of the Au NCs was only about 1–2 nm, it was difficult to observe
the AuNCs on the outer layer of FITC–SiO2 (Figure 2c) due to the aggregation of silica layer during the
linking of AuNCs.
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(HRTEM) image of the outer surface of the RFN (c).

2.3. Energy Dispersive X-Ray Spectroscopy (EDS) of RFN

To further prove the AuNCs were successfully coupled with FITC–SiO2, the synthesized material
was analyzed by electron scattering spectroscopy. Figure S1 shows the elements including oxygen,
silicon, and gold on the RFN, confirming the AuNCs have been successfully link to the suface of
FITC-SiO2.

2.4. Fluorescence Stability of RFN

To demonstrate the stability of the RFN, 150 µL of RFN and 500 µL of 2.5 × 10−9 moL/L Hg2+

were placed in a 4 mL cuvette, and 3.35 mL of water was added to adjust the volume. Under the same
conditions, one group was measured every three minutes, and ten other groups were measured in
parallel. As shown in Figure 3, the fluorescence intensity of the RFN varied only slightly at 520 or
680 nm, demonstrating the good stability of the RFN.
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2.5. Effect of Buffer Solutions at Different pH Value on the RFN

To study the effect of pH on the recognition of metal ions by RFN, we investigated the effect of
buffer solutions at different pH values on the maximum fluorescence emission intensity of the RFN
in the pH range of 6–11, with and without Hg2+. We selected the Britton-Robinson buffer system
as the buffer solution and prepared various buffer solutions with different pH values in advance.
The experiment was divided into two groups. For the first group, 100 µL of RFN was added directly
to 3.4 mL of buffer solution at various pH values, and then 500 µL of 2.5 × 10−9 mol/L Hg2+ solution
was added; for the other group, 100 µL of RFN was directly added to 3.4 mL of buffer solutions at
various pH values without the addition of Hg2+ solution. The results are shown in Figure 4. The black
square points represented the fluorescence intensity ratio of F520nm/F680nm in the solutions of RFN
with different pH values without the addition of Hg2+ solution, and the red dot represented the
fluorescence intensity ratio of F520nm/F680nm of the RFN after the addition of Hg2+ solutions. It can be
seen from the figure that when Hg2+ was not added, the fluorescence intensity ratio decreased at pH =

6.37–7.24 and fluctuated slightly between pH = 7.24–10.38, having the highest intensity ratio and the
best quenching effect at pH = 6.37. When Hg2+ was added, the fluorescence intensity ratio decreased
between pH = 6.37–7.24 and pH = 9.15–10.38, increased with fluctuations between pH = 7.24–9.15,
and the highest intensity was at pH = 9.15 with the best quenching effect.
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2.6. Selectivity of the RFN to Hg2+

To demonstrate the selectivity of the RFN for the detection of mercury ions, 100 µL of the RFN was
added to a 4 mL cuvette, followed by the addition of 500 µL of different types of common metal ions
and amino acids, which were detected at room temperature for 5 min. As shown in Figure 5, among
the interfering substance tested including K+, Na+, Cd2+,Cr3+, Zn2+,Pb2+,Ti3+, Sn2+,Fe3+, Cu2+, Ag+,
Fe2+,Glu, Gly, L-As, L-Gl, only Hg2+ caused a significant decrease in fluorescence intensity, while other
metal ions had almost no effect on the fluorescence spectra of the RFN. The dual-emission fluorescence
ratio (F520nm/F680nm) was around 1, and only when Hg2+ was added, the F520nm/F680nm reached 7.71.
Under the same conditions, even if the concentration of other ions was much higher than that of
Hg2+, the RFN could not be interfered, which could be used for selectively identify Hg2+ with low
concentrations, resulting in quenching of the red fluorescence. That is, Hg2+ could quench the second
peak of the fluorescence spectrum of the fluorescent probe, while other ions had no obvious quenching
effect. This result indicated that the RFN has good selectivity and specificity.
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2.7. Determination of Mercury Ions

To test the feasibility of the RFN for detecting Hg2+, different concentrations of Hg2+ were
added to the RFN and the change in fluorescence intensity was examined. Figure 6 is the change
in fluorescence spectrum of 100 µL ratio fluorescent probe and 3.4 mL high purity water with the
addition of 500 µL of variously concentrated Hg2+ solution. The double emission peaks of RFN were
at 520 nm and 680 nm, respectively, and the maximum emission wavelength was 680 nm. With the
increase of Hg2+ concentration, the fluorescence intensity of the second peak of RFN gradually
weakened. The fluorescence intensity was completely quenched when the Hg2+ concentration reached
1 × 10−8 mol/L. The fluorescence intensity was highly sensitive at 680 nm Hg2+, and decreased with
the increase of Hg2+ concentration. The mechanism of fluorescence quenching caused the metallophilic
Hg2+–Au+ interactions in our experiment, because the surface of AuNCs with a small amount of Au+

should have strong and specific interactions with Hg2+, which leads to a serious quenching of the
AuNCs fluorescence [19]. Moreover, there was no significant change in the peak at 520 nm throughout
the experiment, indicating that the 520 nm emission peak could be used as an internal reference.
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5 × 10−10, 7.5 × 10−10, 1 × 10−9, 2 × 10−9, 2.5 × 10−9, 3.5 × 10−9, 5 × 10−9,7.5 × 10−9, 1 × 10−8 mol/L)
(λex = 380 nm).

Figure 7 suggested that the Hg2+ exhibited a good linear relationship within the concentration
range of 1.0 × 10−10 mol/L to 1.8 × 10−8 mol/L. The linear correlation coefficient was R2 = 0.98802,
the linear regression equation was Y = 1.11368 + 0.04431X, and the detection limit was 1.0 × 10−10 mol/L.
The quantitative analysis of Hg2+ concentration in samples based on this linear relationship indicated
that this probe had a good application prospect in detecting Hg2+ in water samples.
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2.8. Detection of Water Samples

Based on the superior electivity and sensitivity of the RFN in the buffer solutions, we further
applied it to the detection of actual water samples. The water samples in this experiment were taken
from Tiannan Lake and the tap water. Before the experiment, the water sample was centrifuged and its
supernatant was taken for the experiment. A 500 µL of Tiannan Lake water sample or tap water sample
were mixed with 500 µL of a certain concentration of mercury ion solution, and then mixed with a
150 µL of the RFN to make the total volume of 4 mL. As shown in Table 1, the standard recovery rate
of mercury ions were detected at room temperature, and the recovery was calculated to be between
98.15% and 100.45% by linear regression equation, indicating that the method had good accuracy.



Molecules 2019, 24, 2278 7 of 9

Table 1. The RFN for the detection of Hg2+ in Tiannan lake water and tap water.

Sample
Hg2+ Concentration (10−10 mol/L)

Present Method Added Total Recovery

Tiannan lake 4.88
5 9.84 99.2%

20 24.51 98.15%

Tap water 1.49
5 6.46 99.4%

20 21.58 100.45%

3. Materials and Methods

3.1. Reagents and Materials

All the starting materials were used without further purification. AgNO3, HAuCl4, NH3·H2O were
obtained from Sinopharm Chemical Regent Co. Ltd. (Shanghai, China). Tetraethyl orthosilicate (TEOS),
1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide (EDC), 3-aminopropyl-trimethylsilane (APTES),
and fluorescein isothiocyanate (FITC) were purchased from Aladdin Chemicals Co. Ltd (Shanghai,
China). For all aqueous solutions, high-purity ultrapure water from a Millipore (18.2 MΩ·cm) system
was used throughout the experiments.

3.2. Measurements

FRN were characterized by using high-resolution transmission electron microscopy (Hitachi,
Japan). Ultraviolet–visible (UV–Vis) absorption spectra were acquired on a Cary 5000 spectrophotometer
(Agilent, Palo Alto, CA, USA) coupled with a 1.00 cm quartz cell. All Fluorescence spectra were
performed under λex = 380 nm with FluoroMax-4 (Horiba, Japan).

3.3. Synthesis of FITC–SiO2 Microspheres

The FITC–SiO2 microspheres was prepared according to a modified method that was previously
reported [20], 1 mg of FITC was weighed then dissolved in 5 mL of 1-hexanol, and 100 µL of APTES
was added in a small bottle. After that, the resulting mixture was stirred at medium speed for 12 h
in the dark to obtain the FITC–APTES conjugate. Following this, 7.5 mL of cyclohexane, 1.4 mL of
1-hexanol, and 1.77 mL of TX-100 were added to a small bottle sequentially under low-speed stirring
and stirred for 15 min; 60 µL of concentrated ammonia was added and stirred at medium speed for
15 min; 400 µL of FITC–APTES conjugate and 92 µL of TEOS were added and stirred for 12 h in the
dark; the product was centrifuged at 8000 rpm for 8 min and washed twice with absolute ethanol to
obtain FITC–SiO2 microspheres.

3.4. Synthesis of AuNCs

AuNCs were prepared following previous method and minor modified [18]. 10 mL of 10 mmol/L
aqueous HAuCl4 solution was added to 10 mL of 50 mg/mL BSA solution under vigorous stirring;
1 mL of NaOH solution (1 mol/L) was then introduced to adjust pH, and the mixture was incubated
at 37 ◦C for 12 H. The solution was then dialyzed in double distilled water for 48 H to remove the
unreacted HAuCl4 and NaOH. The final solution was stored at 4 ◦C for further use.

3.5. Synthesis of Amino-Modified FITC–SiO2 Microspheres

1 mL of the above synthetic FITC–SiO2, 6 mL of ethanol, 100 µL of concentrated ammonia,
and 15 µL of TEOS and APTES were added to a small glass bottle, stirred for 2 h, and washed twice
with high purity water (8000 rpm, 8 min) to obtain amino-modified FITC–SiO2 microspheres.
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3.6. Synthesis of RFN

Consequently, 20 mg of EDC was weighed and dissolved in 1 mL of high-purity water, 4 mL of
AuNCs was added, and the pH value of the reaction system was adjusted to 5.7 with 0.01 mol/L HCl.
After stirring for 30 min, 1 mL of NH2–FITC–SiO2 was added to the system, the pH value of which
was adjusted to 9.0 with 0.01 mol/L NaOH. The reaction system was stirred for 12 h in the dark,
then centrifuged twice with high-purity water to remove unreacted materials and collected with 1 mL
of high-purity water to obtain RFN, as shown in Scheme 1.
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4. Conclusions

In this study, the RFN was successfully synthesized and applied to the detection of mercury ions in
water samples. The RFN had a simple synthesis procedure, high sensitivity, good stability, and strong
anti-interference. The fluorescence intensity ratio of the RFN achieved the best effect at a pH value
of 9.15. The RFN could detect Hg2+ in water simply and quickly, and the detection concentration
ranged from 1.0 × 10−10 mol/L to 1.0 × 10−8 mol/L, with the detection limit of 1.0 × 10−10 mol/L.
The advantages of good stability and high selectivity make the RFN suitable for monitoring heavy
metal in waters. This method has a good application prospect for environmental protection.
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