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Abstract: Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1
reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on
the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing
strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt
product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base
for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that
the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA),
and then offloaded with a tetramic acid moiety. Similar to tenellin biosynthesis, the tetramic acid is
then converted to pyridone by a putative P450, IliC. The decalin portion is most possibly constructed
by a S-adenosyl-l-methionine (SAM)-dependent Diels-Alderase (IliD).
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1. Introduction

Nature is a great resource to produce natural products as tools to investigate biological problems,
and many natural products or their derivatives have been developed into pharmaceutical agents [1].
Filamentous fungi produce many bioactive metabolites that have been used as medicine, such as
penicillin, cyclosporine, and lovastatin [2]. Ilicicolin H is a fungal natural product that was first isolated
from Cylindrocladium ilicicola MFC-870 [3]. It displays potent and broad-spectrum antifungal activities
with a novel mechanism of action, by inhibiting the yeast cytochrome bc1 complex at the Qn site
(IC50 3–5 nM) [4]. However, because of its strong tendency to bind with plasma protein, ilicicolin H
shows marked reduced potency in vivo [5]. Merck Research Lab had dedicated considerable effort to
improve its biological activities by chemical and enzymatic derivatization of ilicicolin H, but these
efforts met with limited success [5–8].

Ilicicolin H contains two interesting structural motifs—2-pyridone and decalin (Figure 1).
The 2-pyridone motif renders it structurally related to natural products tenellin [9–11],
desmethylbassianin [12], aspyridone [13,14], and leporine [15,16]. Its decalin moiety resembles
that of lovastatin [17,18], solanapyrone [19], myceliothermophin [20], and varicidin [21], thus likely
derived from an intramolecular Diels–Alder reaction. The biosynthesis of ilicicolin H has been
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investigated by stable-isotope labeling, suggesting that it is a polyketide-nonribosomal peptide-type
natural product: the backbone is derived from acetyl CoA and tyrosine, while the two methyl groups
are from methionine [22]. With the advancement of genomic sequencing and molecular biology, the
biosynthetic gene cluster (BGC) of many natural products has been uncovered, and their biosynthesis
has been investigated by heterologous production [2,23], and derivatives have been generated by
combinatorial biosynthesis [14]. Here, we report our effort on the identification of BGC of ilicicolin H
in Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a new shunt,
ilicicolin J, was isolated during the heterologous expression of the BGC. During the course of our study,
the ilicicolin H BGC from Penicillium variabile was uncovered [24].Those efforts provide a base for
future combinatorial biosynthesis of ilicicolin analogs that might solve the plasmid-binding problems.
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Figure 1. (A) Structure of ilicicolin H, ilicicolin J, and 8-epi-ilicicolin H. (B) Natural products containing
2-pyridone moiety. (C) Natural products containing decalin moiety.

2. Results and Discussion

Neonectria sp. DH2 is an endophytic fungus that was isolated from Meconopsis grandis Prain in
Tibet, and it produces a series of secondary metabolites including ilicicolin H (unpublished results).
To identify ilicicolin H BGC, we sequenced the whole genome of Neonectria sp. DH2 (accession
number: RQWH00000000). AntiSMASH [25] analysis of the genomic sequences reveals six BGCs
containing polyketide-nonribosomal peptide synthetase (PKS-NRPS), with one BGC shows overall
60% similarity with desmethylbassianin and tenellin BGC. Five genes (iliA, iliB, iliC, iliD and iliE) are
potentially directly involved in ilicicolin H biosynthesis (Figure 2). IliA is predicated as a PKS-NRPS
with a 66% identity to tenellin PKS (TenS) and 68% identity to desmethylbassianin PKS (DmbS). IliA has
a typical PKS-NRPS domain arrangement: Ketosynthase (KS), acyl transferase (AT), dehydratase
(DH), C-methyl transferase (CMeT), ketoreductase (KR), enoyl reductase (ER), and acyl carrier protein
(ACP) domains, typical of a highly reducing (HR) PKS; followed by condensation (C), adenylation
(A), thiolation (T) domains, and dieckmann cyclase domain (DKC), characteristic of a NRPS module.
The ER domain of IliA is probably inactive because it is more related to TenS (containing an inactive ER
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domain) than mFAS and squalestain tetraketide synthase (containing an active ER domain) (Figure S1).
Similar to tenellin and desmethylbassianin biosynthesis [26], a trans-acting ER enzyme, IliB is present
in the gene cluster, showing 52% identity to TenC and 53% identity to DmbC, respectively. IliC is
predicted as a cytochrome P450, and displays 62% identity to both TenA and DmbA. TenA has been
shown to be involved in the ring-expansion of tetramic acid group to pyridones group during tenellin
biosynthesis [10], which suggests that IliC might be involved in the formation of pyridone moiety
of ilicicolin H. IliD is predicted as a methyltransferase and no homologous gene is found in either
tenellin or desmethylbassianin BGCs. Since methyl groups of tenellin and desmethylbassianin are
both introduced during the chain elongation stage by CMeT domain of IliA, it is reasonable to assume
that this is also true for ilicicolin H. There are at least two S-adenosyl-l-methionine (SAM)-dependent
enzymes, SpnF [19,27] and LepI [16,28], that have been shown to be involved in Diels–Alder reactions.
Therefore, IliD, a putative methyltransferase, might catalyze an intramolecular Diels–Alder reaction to
construct the decline moiety of ilicicolin H.
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Figure 2. Putative biosynthetic gene cluster of ilicicolin H.

A. nidulans is a very successful model organism to identify fungal natural products and their gene
clusters [23,29]. Therefore, heterologous expression of the putative ilicicolin H BGC in A. nidulans
was first attempted. PCR amplification of all the 5 genes, iliA, iliB, iliC, iliD, and iliE from genomic
DNA, followed by Gibson assembly in E. coli furnished the expression plasmid pDH1. The plasmid
was then transformed into A. nidulans and the resulting strain was cultured for 10 days. The organic
extract was analyzed by HPLC, and two new peaks were identified compared to strain with an empty
plasmid (Figure 3a). The peak at 29 min contains compound 1 (0.55 mg/L) with same molecular formula
(C27H31NO4) as ilicicolin H, and co-injection suggested that it is ilicicolin H. The mass spectra of the
compound 2 (0.21 mg/L) at 23 min is [M + H]+ of 432.2264 m/z, suggesting that it is a ilicicolin derivative
with one extra degree of unsaturation. To confirm the structure of both compounds, we fermented 5 L
of the stain, and detailed NMR analysis confirmed that compound 1 is indeed ilicicolin H. Compound
2 and ilicicolin H have very similar 1H- and 13C-NMR spectra (Table S4), except for the absence of two
methine groups (C-8 and C-9), which were replaced by two olefinic carbons. The additional double
bound could be adjacent to the keto carbonyl (C-7) to form a conjugated system, which led to the
noticeable change of the carbon chemical shift on the keto carbonyl from 209.0 ppm for ilicicolin H
to 195.7 ppm for 2. The gross structure of 2 was further established by the two-dimensional NMR
data. Thus, compound 2 was elucidated as ilicicolin J. Previous efforts on derivatization of ilicicolin H
always preserved the C8-stereochemistry, probably assuming it is important for the biological activities.
Indeed, 8-epi-ilicicolin H (Figure 1A) with an opposite stereoconfiguration shows 100-fold reduction
in antifungal activities. Surprisingly, we found that ilicicolin J, with C8-position stereochemistry
eliminated, displays comparable antifungal activity with ilicicolin H (MIC 6.3 µg/mL). Our result
indicates that future structure-activity relationship (SAR) studies of this class of antifungal reagents
can be based on a simpler structure, ilicicolin J.
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To investigate the individual function of the five biosynthesis-related genes, another four plasmids,
pDH2 (harboring iliA and iliB gene), pDH3 (harboring iliA, iliB and iliC gene), pDH4 (harboring iliA,
iliB, iliD gene) and pDH5 (harboring iliA, iliB, iliC and iliD gene) were constructed. Both ilicicolin H
and J were produced by A. nidulans strain containing plasmid pDH5, suggesting that the putative
oxidoreductase IliE is not directly involved in ilicicolin biosynthesis. During the preparation of this
manuscript, Zhuan Zhang et al. reported that a BGC from Penicillium variabile, is also responsible
for ilicicolin H biosynthesis [24]. Interesting, they showed that without IccE (67% identity with IliE),
an epimerase, 8-epi-ilicicolin H was produced. Our results indicated that the two fungi might employ
different mechanism to form antifungal agent ilicicolin H.

Surprisingly, the strains containing plasmids pDH2, pDH3, pDH4 did not produce any detectable
amount of ilicicolin derivatives or biosynthetic intermediates (more than 20 transformants of each
construct were screened), which is in contrast to the previous biosynthetic study of tenellin. The iliC
homolog in tenellin BGC in Beauveria bassiana, TenA, has been knockout to test its function [10].
The Knockout B. bassiana strain produced a tenellin biosynthetic intermediates, pretenellin-A,
and cell-free extracts containing TenA successfully converted the tetramic acid moiety to pyridones.
Therefore, we had expected some “preilicicolin” to be produced by either A. nidulans strain containing
pDH2, pDH3, and pDH4. Similar experiments were performed by Zhuan Zhang et al. and ilicicolin H
biosynthetic intermediates were indeed isolated [24]. In their constructs, strong promoters such as
PglaA and Pgpda, were placed in front of each biosynthetic genes. However, we have only relied on
the ilicicolin H BGC native promoters, therefore, the yield of biosynthetic intermediates might too low
to be detected.

Many biosynthetic pericyclases have been uncovered recently [30]. The first enzyme catalyze
a solely Diels–Alder reaction is SpnF, which is involved in the spinosyn A biosynthesis, although it
was originally annotated as a methyltransferase [19]. Another pericyclases is the recently discovered
multifunctional LepI, which was also annotated as a methyltransferase [16]. It catalyzes a cascade
of reaction include an intramolecular Diels–Alder reaction, a hetero-Diels–Alder reaction and
a retro-Claisen rearrangement. A number of stand-alone decalin forming Diels–Alderases have
been reported, such as MycB [20], Fsa2 [31], and PvhB [21]. In the ilicicolin H biosynthesis, IliD is the
most possible candidate to catalyze a Diels–Alder reaction to form the decalin moiety. Phylogenetic
analysis suggesting that IliD is related to the newly identified Diels–Alderase IccD (Figure 3b).
IccD catalyzed the Diels–Alder reaction to form 8-epi-ilicicolin H. IliD only show 52% identity with



Molecules 2019, 24, 2267 5 of 10

IccD, so it is still possible that IliD directly forms ilicicolin H instead. Expression of IliD in E. coli was
successful (Figure S2), however, being unable to obtain linear biosynthetic intermediates hindered our
effort toward in vitro characterization of IliD function. Sequence alignment shows that IliD displays
low sequence homology with SpnF (24% identity) and LepI (19% identity), and most of the homology
sequence are located around the SAM-binding site DXGXGXG. Interestingly, we find the SAM-binding
site of IliD and SpnF are both located close to N-terminus, while that of LepI is close to its C-terminus.

Based on the above information, we propose the following biosynthetic pathway for ilicicolin H
(Figure 4). First, IliA, the PKS-NRPS, assembles the backbone of ilicicolin H. The PKS portion and
trans-acting ER domain (IliB) work together to construct an octaketide, and two methyl group is
introduced by CMeT domain during the chain assembly. The nascent chain is then condensed with
tyrosine, catalyzed by the C domain, and the resulting PKS-NRPS hybrid is offloaded by the DKC
domain to form an advanced biosynthetic intermediate 3 with a tetramic acid group. However, we
were unable to detect 3 by co-expression of iliA and iliB, suggesting that IliC might be involve in the
chain assembly or offloading processes. Intermediate 3 undergoes a ring expansion process, catalyzed
by IliC to furnish intermediate 4, which subsequence cyclizes to form ilicicolin H, possibly catalyzed
by the putative Diels–Alderase IliD. We found expression host cannot convert H to J (Figure S3),
thus, the formation of ilicicolin J is still unclear. It is possible the ilicicolin J is a shunt product of the
Diels–Alder reaction.
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3. Materials and Methods

3.1. General Experimental Procedure

NMR spectra were obtained on a Bruker AVANCE 400 MHz (Bruker, Switzerland). HR-ESIMS data
were measured on a Thermos LCQ DECA XP plus mass spectrometer (Thermos Scientific, Waltham,
MA, USA). LC-MS analyses were done in maXis impact spectrometer (Bruker, Germany). HPLC was
performed on a Waters 1525 system equipped with a Waters 2998 photodiode array detector.
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3.2. Strains, Plasmids, and Culture Conditions

Neonectria sp. DH2 (Taxonomy ID:1735992), an endophytic fungus, was isolated from Meconopsis
grandis Prain in Tibet. Neonectria sp. DH2 was grown on the PDB medium (300 g/L potato, 20 g/L
glucose) or agar plates at 20 ◦C. To isolated ilicicolin H, Neonectria sp. DH2 was incubated in 120 of 1 L
flask containing solid rice medium at 20 ◦C for 28 days. The resulting culture was extracted three times
with MeOH to give a crude extract. Then crude extract was then purified by reversed-phase HPLC to
get 30 mg of ilicicolin H. Escherichia coli strain DH5α were used for routine cloning, which were grown
in liquid LB medium or solid medium with 2% agar at 37 ◦C. Aspergillus nidulans, the heterologous
host, was grown in GMM medium (10 g/L glucose, 5% 20x nitrate salts, 1% 1000x trace elements,
0.05% uridine, and 0.05% uracil). The antibiotics apramycin were supplemented when required.
Fermentation medium consists of 1% glucose, 5% 20x nitrate salts, 1% 1000x trace elements and 1%
yeast extract. All the primers and plasmids used in this work are listed in Tables S1 and S2.

3.3. Isolation and Manipulation of DNA

Mycelia were collected from the medium for DH2, and lyophilized on FreeZone Freeze Dry
Systems (Labconco) for overnight. After grinding the mycelia in liquid nitrogen with a mortar, gDNA
was extracted by QIAGEN® Genomic DNA extraction kit (Transgen, Germany) according to the
standard operating procedure provided by the manufacturer. Restriction endonucleases were used
according to manufacturer’s recommendations (Takara, Japan). The genome of Neonectria sp. DH2,
was sequenced on Sequel Sequencing Kit 2.1 (Pacific Biosciences, Menlo Park, CA, USA). The assembly
genome is approximately 45.8 Mbp, including 43 contigs. The longest contig is 5.08 Mbp and the N50
length is 189,989 bp.

3.4. Construction of Recombinant Plasmids

To construct plasmid pDH1, iliA-E were amplified by PCR by premier ABCDE-1F, ABCDE-1R,
ABCDE-2F, ABCDE-2R, ABCDE-3F, and ABCDE-3R. The three overlapping DNA fragments and
NotI/KpnI-digested pRG-AMA1 expression vector were assembled by NEBuiler 173® HiFi DNA
Assembly Kit (NEB, UK) and then transformed into E. coli DH5α. The correct colonies were checked
by PCR and minipreped to get pDH1. The plasmid pDH2, pDH3, pDH4 and pDH5 were generated
following the same protocol of pDH1.

3.5. Transformation of A. nidulans

PEG-mediated protoplast transformation was employed to construct the A. nidulans transformant
strain. Spore suspension (100 µL) of the parent strain was inoculated in 10 mL GMM medium for 8 h.
The cell wall was then removed using the Yatalase enzyme system (2% Yatalase, 5% lysing enzyme from
Trichoderma harzianum) at 30 ◦C for 3–4 h. The protoplasts were collected and washed with trapping
buffer (0.6 M sorbitol, 50 mM CaCl2·2H2O, 35 mM NaCl, 10 mM Tris-HCl, pH 7.5). Plasmids (10 µg)
and 200 µL protoplast suspension were gently mixed and placed on ice for 30 min. Subsequently,
1.35 mL PEG solution (60% PEG4000, 50 mM CaCl2·2H2O, 10 mM Tris-HCl, pH 7.5) was added. After
20 min at the room temperature, 5 mL STC buffer was added, and spread on the under-layer medium,
which was covered with the upper-layer medium. The selective medium, SMM medium, contains 1%
glucose, 5% 20x nitrate salts, 0.1% 1000x trace elements, 1.2 M sorbitol, and 0.1% stock pyridoxin HCl.
And the transformants could be obtained after incubation at 28 ◦C for 3–5 days and confirmed via PCR
(Figure S1). About 20 transformants were screened for new compound production, and at least one
transformants were sequenced with sanger sequencing to confirm no mutations in the sequences.

3.6. Isolation and Purification

The supernatant of the fermentation broth (300 mL) was extracted with ethyl acetate, and the
mycelia was extract with methanol. The combined crude extract was analyzed by HPLC with a Ultimate
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XB-C18 column (5 µm, 4.6 mm × 250 mm; Welch, Shanghai, China) with a linear gradient from 75% to
25% B/A in 20 min (phase A: H2O; phase B: ACN). The culture broth of a scaled-up culture (5 L) was
extracted with ethyl acetate and mycelia was extract with methanol. The combined crude extract was
fractionated by normal phase chromatography on a prepacked silica cartridge (Haiyang Chemical,
Qingdao, China, 200–300 mesh) using petroleum ether, ethyl acetate and methanol as mobile phase.
The fractions were then purified by Semi-preparative HPLC on Ultimate XB-C18 column (5 µm,
4.6 × 250 mm; Welch) to get Ilicicolin J (3 mg) and Ilicicolin H (1 mg). The HPLC analysis of ilicicolin
H and ilicicolin J transformation was done with slightly different conditions, with isocratic elution of
90% B/A (phase A: H2O; phase B: ACN).

3.7. Overproduction of iliD in E. coli

The PCR fragment containing the entire coding sequence of iliD was amplified from cDNA.
Each PCR fragment was cloned into vector pET28a, which was subsequently digested by appropriate
restriction enzymes. The NdeI-Bg1 II fragment for iliD was ligated into the NdeI-Bg1 II linearized
pET28a to yield the E. coli expression vector pDH06. E. coli BL21 harboring the plasmid pDH06
were cultivated in 500 mL Erlenmeyer flasks containing 100 mL liquid LB medium supplemented
with appropriate antibiotics and grown at 37 ◦C to an absorption at 600 nm OD of 0.6. Isopropyl
thiogalactoside (IPTG) was added to a final concentration of 0.1 mM and the cells were cultivated for
further 16 h at 16 ◦C for induction. Pellets were collected by using centrifuge and resuspended in lysis
buffer (10 mM imidazole, 50 mM NaH2PO4, 300 mM NaCl, pH 8.0) and lysed on ice by sonication.
The lysate was centrifuged at 13,000× g for 30 min at 4 ◦C to remove the cellular debris. The purification
of the recombinant His-tagged fusion protein by affinity chromatography with Ni-NTA agarose resin
was carried out according to the manufacturer’s instructions.

3.8. Antifungal Test of Compounds towards Candida Albicans ATCC10231

The antifungal activities of ilicicolin H and ilicicolin J against Candida albicans fungal strains were
tested by the minimum inhibitory concentration (MIC) method [32] The Candida albicans ATCC10231
strains were seeded in PDB medium and then incubated at 28 ◦C for 18 h. After dilution with PDB
broth to 5 × 104 cells/mL, the 200 µL of cell suspension was dispensed into 96-well plates. Different
concentrations of sample solutions in DMSO were dispensed into 96-well plates. The PDB broth
was used as a blank, and the DMSO and fluconazole were used as a negative and a positive control,
respectively. The growth of Candida albicans strains was measured after 12–18 h of incubation at 28 ◦C
on a microplate reader at the wavelength of 600 nm. Each assay was performed in triplicate. The MIC
of ilicicolin H and ilicicolin J are both 6.3 µg/mL (positive control fluconazole is 3.13 µg/mL).

4. Conclusions

In summary, we successfully identified the BGC of ilicicolin H, a potent and broad-spectrum
antifungal agent, by genomic sequencing a producing strain. We have shown that four genes are
directly involved in ilicicolin H biosynthesis by heterologous expression in A. nidulans. IliD, which
harbors a SAM-binding site in the N-terminus, similar as SnpF, is proposed to catalyze a Diels–Alder
reaction to generate the decline moiety. A new natural product, ilicicolin J was isolated and it displays
comparable antifungal activity with ilicicolin H, suggesting future SAR studies toward better in vivo
antifungal biological activities could be based on a simpler structure.

Supplementary Materials: The following are available online. Figure S1. Phylogenetic analysis of ER domain;
Figure S2. The sequence alignment of ER domain between iccA and iliA; Figure S3. SDS-PAGE analysis of iliD
protein expression; Figure S4. The transformation of ilicicolin H and ilicicolin J; Figure S5. Schematic diagram
of Gibson assembly; Table S1. Primers used for constructing recombinant plasmids; Table S2. Strains used in
this work [23,33]; Table S3. ilicicolin H gene cluster in Neonectria sp. DH2 comparinging with gene cluster in
Penicillium variabile; Figure S6. Synteny map of ilicicolin H gene clusters in Neonectria sp. DH2 and Penicillium
variabile; Figure S7. The antifungal activities of ilicicolin H and ilicicolin J against Candida albicans fungal strains;
Table S4. 1H and 13C-NMR spectroscopic data of Ilicicolin J (400 and 100 MHz, DMSO-d6) and Ilicicolin H (400 and
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100 MHz, DMSO-d6); Table S5. NMR chemical shifts of Ilicicolin H in DMSO-d6 and reported [34] Ilicicolin H in
Acetonitrile-d3; Figure S8. The 1H-NMR (400 MHz, DMSO-d6) and 13C-NMR (100 MHz, DMSO-d6) spectrum
of the Ilicicolin J; Figure S9. The 1H-NMR (400 MHz, DMSO-d6) and 13C-NMR (100 MHz, DMSO-d6) spectrum
of the Ilicicolin H; Figure S10. The HMBC spectrum of the Ilicicolin J; Figure S11. The HSQC spectrum of the
Ilicicolin J; Figure S12. The HMBC spectrum of the Ilicicolin H; Figure S13. The HSQC spectrum of the Ilicicolin H;
Figure S14. The HRESIMS spectrum of the Ilicicolin J; Figure S15. The HRESIMS spectrum of the Ilicicolin H.
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