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Abstract: Methylglyoxal (MG) acts as a reactive precursor of advanced glycation end products
(AGEs). This compound is often connected with pathologies such as diabetes, neurodegenerative
processes and diseases of aging. 2-iodo-4′-methoxychalcone (CHA79), a synthetic halogen-containing
chalcone derivative, has been reported its anti-diabetic activity. This study aims to investigate the
potential protective capability of CHA79 against MG-mediated neurotoxicity in SH-SY5Y cells. Results
indicated CHA79 increased viability of cells and attenuated the rate of apoptosis in MG-exposed
SH-SY5Y. CHA79 up-regulated expression of anti-apoptotic protein (Bcl-2) and down-regulated
apoptotic proteins (Bax, cytochrome c, caspase-3, caspase-9). Moreover, CHA79 significantly
up-regulated expression of neurotrophic factors, including glucagon-like peptide-1 receptor (GLP-1R),
brain derived neurotrophic factor (BDNF), p75NTR, p-TrkB, p-Akt, p-GK-3β and p-CREB. CHA79
attenuated MG-induced ROS production and enhanced the antioxidant defense including nuclear
factor erythroid 2-related factor 2 (Nrf2), HO-1, SOD and GSH. Furthermore, CHA79 attenuated
MG-induced reduction of glyoxalase-1 (GLO-1), a vital enzyme on removing AGE precursors.
In conclusion, CHA79 is the first novel synthetic chalcone possessing the GLP-1R and GLO-1
activating properties. CHA 79 also exhibits neuroprotective effects against MG toxicity by enhancing
neurotrophic signal, antioxidant defense and anti-apoptosis pathway.

Keywords: halogen-containing chalcones; methylglyoxal; neurotrophic effect; antioxidant defense;
glyoxalase pathway; neuroprotection

1. Introduction

Methylglyoxal (MG) is a potent glycating agent that accumulates in chronic hyperglycemic state
such as diabetes mellitus (DM) [1]. This compound also has gained research attention due to its ability
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to induce neurotoxicity [2–4]. MG can impair cellular redox homeostasis by inhibiting antioxidant
defense and glyoxalases, as well as inducing reactive oxygen species (ROS) [5,6]. Therefore, improving
antioxidant defense such as nuclear factor erythroid 2-related factor 2 (Nrf2) mediated signaling and
up-regulating glyoxalase system are deeply involved in detoxifying MG [7–9].

In addition to antioxidant defense and glyoxalase system, there are still several pathways that
have been suggested for their potential on defense against MG toxicity. For example, the enhancing
glucagon-like peptide-1 receptor (GLP-1R) pathway, a pharmacological management of DM, has
been reported to attenuate MG-caused apoptosis in SH-SY5Y cells [10]. Moreover, lower levels
of brain derived neurotrophic factor (BDNF) and tyrosine kinase B receptor (TrkB) are found in
hippocampal neurons of MG-accumulated rats [11]. As well as protein kinase B (Akt) and cAMP
response element binding (CREB), their involvement in attenuating MG-related learning and memory
impairment of aging rats have also been studied [12]. Recently, MG is considered to have a probable
linkage to Parkinson’s disease (PD) by making dopaminergic neurons more vulnerable due to its
structural similarity and chemical reactivity with dopamine oxidation products [1,4,13]. Therefore,
a pharmacological method of detoxifying MG may assist in the development of novel drugs targeted
at improving PD or other neurodegenerative diseases (NDs).

Chalcones (1,3-diaryl-2-propen-1-ones) are a class of aromatic enones classified into the flavonoid
family. They are open-chain flavonoid compounds that possess a basic skeleton of A, B rings linked with
α, β-unsaturated carbonyl system [14,15]. Different plant-derived types of chalcones have been isolated
containing a variety of substituted elements, including methyl, methoxy and hydroxy substituents on
both of the aromatic rings [16]. The most advantageous and attractive factor in producing chalcones
and their derivatives are that they can be reacted via a one-step protocol using an aldol condensation
between a benzaldehyde and an acetophenone in the presence of a base. Derivatives can be easily and
directly recrystallized to reach purity, with yield usually up to 80% [17].

According to the study on chalcone’s structure-activity relationship (SAR) in our previous
study, the presence of a methoxy group on ring B and the halogen substituents on ring A on
chalcone seem to be most effect in DM-related disorders. In particular, a chalcone derivative
with iodo substitution at position 2 on A-ring, which never occurred in natural resources and
named 2-iodo-4′-methoxychalcone (CHA79, Figure 1), has been shown to be more potent than other
anti-diabetic drugs. It is noteworthy that halogen-containing chalcone derivatives are very rare in
the plant kingdom, but can easily be scaled up synthetically as mentioned above [15,16]. CHA79 is
suggested to act as a 5′-adenosine-monophosphate-activated protein kinase (AMPK) activator and
possesses anti-diabetic activity in the literature [16]. However, whether CHA79 potentially possesses
benefits in MG-induced neurotoxicity has not yet been studied. This paper is the first to reveal the
dopaminergic neuronal protection of CHA79 against MG toxicity in SH-SY5Y cells and investigate the
underlying mechanisms.
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Figure 1. Chemical structure of 2-iodo-4′-methoxychalcone (CHA79).

2. Results

2.1. CHA79 Mitigates Neuronal Apoptosis Accompany with Modulation of Anti-Apoptotic and Apoptotic
Signals in MG-Treated SH-SY5Y Dopaminergic Neurons

We first confirmed that CHA79 did not cause cytotoxicity under concentration of 0.1 to 1 µM
in SH-SY5Y cells (as shown in the supplemental materials, Figure S1), and we performed the study
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within this dose range. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay
was used to examine whether CHA79 possesses protection against MG caused neurotoxicity. Result
from MTT data demonstrated that MG decreased cell viability to 60.61 ± 2.70% of control group,
while pretreatment of 0.5 and 1 µM of CHA79 improved cell viability to 78.59 ± 3.68 and 85.50 ±
2.22% of the control group in under MG exposure (Figure 2A). The anti-apoptotic effects of CHA79
on MG-treated SH-SY5Y dopaminergic neurons were also examined by using Hoechst 33342 and
Annexin-V staining, respectively. The Hoechst 33342 staining result showed that CHA79 (0.5 and 1 µM)
attenuated MG-induced nuclear condensation (indicated by white arrows) in SH-SY5Y cells (Figure 2B).
Pretreatment of 0.5 and 1 µM of CHA79 attenuated numbers of Annexin V-positive cell from 21.46 ±
1.78% (MG group) to 12.49 ± 0.82 and 8.05 ± 0.80% respectively (Figure 2C). Similar results were also
found in related proteins evaluation. Results indicated that MG decreased B-cell lymphoma 2 (Bcl-2),
which is known as anti-apoptotic protein; however, CHA79 (0.5 and 1 µM) improved Bcl-2 protein
level in MG-treated SH-SY5Y cells (Figure 3A). CHA79 (0.5 and 1 µM) also attenuated MG-induced
pro-apoptotic BCL2 associated X (Bax) (Figure 3B) protein level in SH-SY5Y cells. MG-induced cytosolic
cytochrome c increase was also down-regulated by CHA79 (Figure 3C). While MG induced cleavage
of caspase-9 and caspase-3, western blot results showed CHA79 (0.5 and 1 µM) could significantly
attenuate protein expressions of cleaved caspase-9 (Figure 3D) and cleaved caspase-3 (Figure 3E) in
MG-treated SH-SY5Y cells.
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Figure 2. Effects of CHA79 on cell viability (A), nuclear condensation (B), and Annexin V-positive
cell numbers (C) in MG-treated SH-SY5Y dopaminergic neurons. Cells were pre-treated with CHA79
(0.1–1 µM) for 1 h, and MG (500 µM) was then treated for 24 h. Cell viability was determined by
MTT assay. Nuclear condensation (white arrow) was determined by Hoechst 33342 and observed by
a fluorescent microscope. Scale bar = 50 µM. Annexin V-positive cell numbers were counted by flow
cytometer and were represented as the percentage of total cell numbers. # p < 0.05 versus the control
group (vehicle control: 0.1% DMSO). * p < 0.05 versus the MG group.
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Figure 3. Effects of CHA79 on expressions of Bcl-2 (A), Bax (B), cytosolic cytochrome c (c-cyt c) (C),
cleaved caspase-9 (D), and cleaved caspase-3 (E) in MG-treated SH-SY5Y dopaminergic neurons.
Cells were pre-treated with CHA79 (0.1–1 µM) for 1 h, and MG (500 µM) was then treated for 24 h.
Densitometry analyses are presented as the relative ratio of protein/β-actin protein, and are represented
as percentages of control group (vehicle control: 0.1% DMSO). Bars represent the mean ± SEM (n = 6).
# p < 0.05 versus the control group (vehicle control: 0.1% DMSO). * p < 0.05 versus the MG group.

2.2. CHA79 Enhances GLP-1R, BDNF, and Related Neurotrophic Signals in MG-Treated SH-SY5Y
Dopaminergic Neurons

We investigated whether CHA79 has an effect on an important anti-diabetic target with
neuroprotective potential, GLP-1R. The results indicated that CHA79 (0.5 and 1 µM) attenuated
the down-regulation of GLP-1R caused by MG in SH-SY5Y cells (Figure 4). Investigations into BDNF
were also carried out, as reduced BDNF has been postulated as an important cause on dopaminergic
neurons loss in PD by causing a lack of trophic support. Our tests showed CHA79 could up-regulate
BDNF and related neurotrophic pathways in MG-treated SH-SY5Y dopaminergic neurons. Reduced
BDNF level was found in MG-treated SH-SY5Y cells, whileCHA79 (0.5 and 1µM) led to an improvement
of BDNF level (Figure 5A). The expressions of two common neurotrophin receptors that bind BDNF,
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p75NTR (Figure 5B) and p-TrkB (Figure 5C), were also down-regulated in MG-treated SH-SY5Y
cells. CHA79 (0.5 and 1 µM) showed up-regulation on p75NTR (Figure 5B) and p-TrkB (Figure 5C)
expressions in MG-treated SH-SY5Y cells. Moreover, in SH-SY5Y cells, CHA79 (0.5 and 1 µM)
attenuated MG-induced down-regulation on phosphorylation of Akt (Figure 5D), glycogen synthase
kinase-3 beta (GSK-3β) (Figure 5E) and CREB (Figure 5F).

2.3. CHA79 Relieves Oxidative Stress via Regulation of Antioxidant Defense and Glyoxalase Pathway in
MG-Treated SH-SY5Y Dopaminergic Neurons

Next, we evaluated the anti-oxidative ability of CHA79 in MG-treated SH-SY5Y dopaminergic
neurons. As shown in our results, MG significantly increased ROS production to 172.60 ± 8.80%
of control group in SH-SY5Y cells, while pretreatment of CHA79 (0.5 and 1 µM) could attenuate
MG-induced ROS overproduction to 142.80 ± 5.08 and 121.54 ± 7.75% of control group respectively
(Figure 6A). The important anti-oxidant defense Nrf2/heme oxygenase-1 (HO-1) pathway, superoxide
dismutase (SOD) activity, and total glutathione (GSH) level were also examined in the present study.
Results indicated that CHA79 up-regulated both nuclear Nrf2 (n-Nrf2) expression (Figure 6B) and
HO-1 expression (Figure 6C) in MG-treated SH-SY5Y cells, confirming the improvement of Nrf2/HO-1
pathway by CHA79. Additionally, there was decreased SOD activity by MG treatment from 50.93 ±
1.38 to 25.34 ± 1.69 U/mg protein, while 0.5 and 1 µM of CHA79 pretreatment improved SOD activity
to 39.38 ± 2.49 and 48.95 ± 3.55 U/mg protein in MG-treated SH-SY5Y cells (Figure 6D). Similarly,
total GSH level was attenuated by MG from 64.57 ± 2.71 to 38.84 ± 1.89 nmol/mg protein in SH-SY5Y
cells, however, CHA79 (0.5 and 1 µM) leveled it up to 52.90 ± 1.25 and 59.96 ± 1.16 nmol/mg protein
respectively (Figure 6E). Moreover, we also examined the effects of CHA79 on glyoxalase pathway,
an important mechanism for MG detoxification with glyoxalase-1 (GLO-1) as the key enzyme in the
defense system. In MG-treated SH-SY5Y cells, a reduced expression of GLO-1 was found. Pretreatment
of CHA79 (0.5 and 1 µM) showed significant improvement on GLO-1 protein level in MG-treated
neurons (Figure 7).
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Figure 4. CHA79 up-regulated the expression of GLP-1R in MG-treated SH-SY5Y dopaminergic
neurons. One-hour pre-treatment with CHA79 (0.1–1 µM) followed by 24 h MG (500 µM) exposure
was carried out. WB data are presented as % of control follow by normalization with internal standard
(β-actin). Data are shown as mean ± SEM (n = 6). # p < 0.05 versus the control group (vehicle control:
0.1% DMSO). * p < 0.05 versus the MG group.
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Figure 5. CHA79 up-regulated BDNF (A), p75NTR (B), p-TrkB (C), p-Akt (D), p-GSK-3β (E), and
p-CREM (F) expression in MG-treated SH-SY5Y dopaminergic neurons. One-hour pre-treatment with
CHA79 (0.1–1 µM) followed by 24 h MG (500 µM) exposure was carried out. WB data are presented
as % of control follow by normalization with internal standard (β-actin or Lamin B). Data are shown
as mean ± SEM (n = 6). # p < 0.05 versus the control group (vehicle control: 0.1% DMSO). * p < 0.05
versus the MG group.
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Figure 6. CHA79 down-regulated ROS production (A), up-regulated nuclear-Nrf2 (n-Nrf2) expression
(B), HO-1 expression (C), SOD activity (D), total GSH level (E) in MG-treated SH-SY5Y dopaminergic
neurons. One-hour pre-treatment with CHA79 (0.1–1 µM) followed by 24 h MG (500 µM) exposure was
carried out. Fluorescent DCF was measured a by flow cytometer as the indicator of ROS production.
WB data are presented as % of control follow by normalization with internal standard (β-actin or Lamin
B). Commercial kits were used for detecting GSH and SOD. Data are shown as mean ± SEM (n = 6).
# p < 0.05 versus the control group (vehicle control: 0.1% DMSO). * p < 0.05 versus the MG group.
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Figure 7. CHA79 up-regulated expression of GLO-1 in MG-treated SH-SY5Y dopaminergic neurons.
One-hour pre-treatment with CHA79 (0.1–1 µM) followed by 24 h MG (500 µM) exposure was carried
out. WB data are presented as % of control follow by normalization with internal standard (β-actin).
Data are shown as mean ± SEM (n = 6). # p < 0.05 versus the control group (vehicle control: 0.1%
DMSO). * p < 0.05 versus the MG group.

3. Discussion

DM is a common metabolic disorder with multi-system clinical and pathological manifestations.
MG accumulation is a well-recognized pathologic feature of DM, and studies have reported its
importance in various DM complications and age-related diseases [18–21]. MG is known to be a potent
compound derived primarily from the metabolism of glucose. As glucose is the main energy source
of brain, neuronal cells in brain are more exposed to higher levels of MG than other cell types. MG
has been suggested to have a role in NDs including PD and Alzheimer’s diseases (AD). MG shares
similar structure and reactivity with dopamine oxidation products [1,4,13] and has been reported to
interact with PD-associated α-synuclein [22]. These findings support that MG exposure is probably
an important risk factor of PD. In addition, MG has been reported to exacerbate the neurotoxicity of
AD-associated β-amyloid (Aβ) by glycation in primary hippocampal neurons and Tg2576 mice [23].
Accordingly, we set out to explore compounds targeting MG detoxication in this study. The present
study demonstrated a novel therapeutic approach of CHA79 on neuroprotection against MG in
SH-SY5Y dopaminergic neurons. We also revealed the capabilities of CHA79 on enhancing GLP-1R,
neurotrophic signal, antioxidant defense and glyoxalase pathway under MG exposure.

CHA79 is a chalcone derivative able to be synthesized using a one-step protocol with high purity
and yield in our previous study [15]. In this prior study, chalcones with hydroxy, chloro, bromo, and
iodo substitutions substitution at position 2 of the A-ring show better antidiabetic activity. Their
improvement on glucose consumption is superior to pioglitazone and rosiglitazone, two clinically
used antidiabetic drugs [15]. CHA79 (with iodo substitution) is also reported to lower glucose
level in adipocytes (3T3-L1 cells), myotubes (differentiated C2C12 cells) and high-fat-diet-treated
animals [15,16].

Recent literature reveals a GLP-1R agonist, liraglutide, attenuates hippocampal neuronal
death in intracerebroventricular streptozotocin (STZ)-injected rats; the effect is accompanied with
hyperphosphorylation of AMPK [24]. We understand that CHA79 is capable of inducing AMPK
activation [16]; however, in our knowledge, this study is the first to investigate and demonstrate the
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ability of CHA79 to enhance GLP-1R in MG-treated SH-SY5Y cells. This study also appears to be the
first to discover GLP-1R activating effects of chalcones.

Increasing studies have characterized the neuroprotective role of GLP-1R in cellular and animal
models of PD using pharmacological management [25,26]. Activation of GLP-1R also has been reviewed
as a novel treatment strategy for PD recently for its neuroprotective and neurotrophic roles [27]. From
this background of literature, we hypothesize that CHA79 should be able to promote neurotrophic
support in MG-treated SH-SY5Y dopaminergic neurons.

BDNF is a neurotrophic major factor in synaptic plasticity, neuronal differentiation and neuronal
survival. This neurotrophin is also an important molecular target for PD treatment [28]. The present
results revealed that CHA79 could up-regulate protein levels of BDNF as well as p75NTR and p-TrkB,
two receptors with high affinity to BDNF, in neuronal SH-SY5Y exposed to MG. p75NTR is a receptor for
all mature neurotrophins and immature proneurotropins, and therefore, plays diverse roles in regulating
neuronal survival and degeneration [29,30]. However, when co-expressed with TrkB, p75NTR tends to
potentiate the survival pathway. p75NTR can also enhance TrkB autophosphorylation in response to its
preferred ligands such as BDNF [31]. Binding of BDNF to TrkB induces receptor autophosphorylation
and activates TrkB signaling pathway. The p-TrkB provides phosphorylation-dependent recruitment
sites for initiation of downstream signaling that mediates neuronal survival and outgrowth [32]. Such
as Akt, GSK-3β and CREB are all characterized phosphorylation-dependent downstream signaling
contributes to neuronal survival or neurite outgrowth in prior studies [26,33–35]. As shown in our
results, CHA79 up-regulated expressions of phosphorylated form Akt, GSK-3β, as well as CREB in
neuronal SH-SY5Y under MG exposure. These results suggest the capability of CHA79 on enhancing
BDNF and BDNF-activated neurotrophic signal.

In additional to the neurotrophic effects of CHA79, its anti-oxidative ability has also been
determined in the present study. As we know, chalcones are a type of open-chain flavonoids;
compounds that belong to the group of polyphenols. Polyphenols are well-known for their effective
anti-oxidative ability. Therefore, flavonoids receive great attention in this regard for decades, and
their antioxidant capability has been reviewed [36,37]. Our results demonstrated this chalcone
derivative, CHA79, also exhibited anti-oxidative property via down-regulating ROS production under
MG exposure in SH-SY5Y cells. Nrf2-activated pathway is a widely recognized antioxidant and
cytoprotective regulation. Nrf2 can be activated and translocated to nucleus whereas redox state is
changed. Activation of Nrf2 is capable of restoring the redox homeostasis by improving antioxidant
or other cytoprotective enzymes [38]. HO-1 is one of the important antioxidant enzymes regulated
transcriptionally via Nrf2. Many compounds possess Nrf2/HO-1 improvement is reported to be
effective against inflammation and oxidative stress-associated diseases [39–41]. Moreover, enzymatic
SOD and non-enzymatic GSH can also be produced by Nrf2 transcription. They are reported to be
responsible for protecting neuronal cells from oxidative stress [39,42–44]. In this study, we were able to
demonstrate that CHA79 is capable of up-regulating n-Nrf2 and HO-1 expressions, SOD activity and
total GSH level in MG-exposed SH-SY5Y.

Recently, the effects of flavonoids on MG detoxification through modulation of glyoxalase pathway
have gained some research interest [37,45]. The glyoxalase pathway is an important pathway that
contributes to MG detoxification with GLO-1 as the key enzyme in regulating the rate-limiting step of
MG metabolism [46]. With the existence of cofactor GSH, GLO-1 is able to attenuate AGEs formation
by promoting MG clearance. The important role of GLO-1 in MG clearance are also been suggested
in diabetic encephalopathy and nephropathy models of animal [47,48]. Therefore, GLO-1-based
therapeutic approach is also suggested to be a valuable target for MG-related aging and diseases [9].
Our results showed improvement of CHA79 on protein expression of GLO-1 in MG-treated SH-SY5Y
cells. As discussed above, CHA79 could up-regulate the GSH level. Moreover, the intracellular pool of
GSH is also reported as an important co-factor for GLO-1 in glyoxalase pathway [46]. Accordingly, our
results revealed the antioxidative capability of CHA79 accompany with regulation on Nrf2 associated
antioxidant defense and glyoxalase pathway.
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As MG-induced loss of neurotrophic support and increase of oxidative stress can eventually lead
to neuronal apoptosis, our results further confirmed CHA79 mediated anti-apoptotic activity against
MG toxicity in this study. MG is reported to induce apoptosis accompany with down-regulation of Bcl-2
and up-regulation of Bax in hippocampal neurons [2]. This effect is known to influence mitochondrial
outer membrane permeabilization, allowing cytochrome c redistributes from mitochondria to cytosol.
The outcome is that downstream effectors such as caspase-9 and caspase-3 are further cleaved and
activated [49]. Our results showed that CHA79 attenuated expressions of Bax, cytosolic cytochrome c,
cleaved caspase-9, and cleaved caspase-3 in MG-treated SH-SY5Y cells; whereas Bcl-2 was increased
by CHA79 treatment. MG leads an increase in apoptotic cell numbers but was able to be attenuated by
CHA79 treatment. According to our results, CHA79 could protect dopaminergic SH-SY5Y against
apoptotic damage caused by MG.

In conclusion, we identified CHA79 as a GLP-1R-activating compound, effective in attenuating
MG neurotoxicity with neurotrophic, antioxidant and glyoxalase pathway-improving capabilities.
This study is the first to reveal the capacity of chalcone derivative on GLP-1R improvement. Most
importantly, the simple synthetic method and high purity and yield of CHA79 support its feasibility
for commercial production. This study opens perspectives for using CHA79 as a novel drug candidate
in suppressing MG toxicity in the context of PD or other NDs.

4. Materials and Methods

4.1. Chemicals and Reagents

2-iodo-4′-methoxychalcone (CHA79) was synthesized as previously described [15]. Chemical
reagents, such as MG, hoechst 33342, 2′,7′-dichloro-dihydrofluorescein diacetate (H2DCF-DA),
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), etc., were obtained from
Sigma-Aldrich (St. Louis, MO, USA). Cell culture used materials were from Thermo Fisher Scientific
(Waltham, MA, USA). Annexin V-FITC assay kit was from BD Bioscience (San Jose, CA, USA). SOD
activity and GSH quantitation kit were from Enzo Life Sciences (Farmingdale, NY, USA). SDS-PAGE
used materials were from Bio-Rad (Hercules, CA, USA). All primary and secondary antibodies used in
Western blots (WB) are listed in supplemental material (Table S1).

4.2. Cell Cultures and Procedure of Drugs Management

ATCC (Rockville, MD, USA) is the source of the present used culture cells (SH-SY5Y human
neuroblastoma), and these cells were used as models of dopaminergic neuronal cells after differentiation.
Incubation condition of cells is 37 ◦C in 5% CO2. Culture medium used for SH-SY5Y cells was FBS
(10%)-containing DMEM (also contains 4 mM glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin,
and 0.25 µg/mL amphotericin B). Experiments were carried out within cell passes five to ten. For further
experiments, SH-SY5Y cells were differentiated by 6 days incubation with serum-free defined DMEM
medium (containing 4 mM glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL
amphotericin B) [35]. Dopaminergic toxicity was induced by MG at 500 µM according to our
supplemental data (Figure S2) and previous studies [50,51]. One-hour pre-treatment with 0.1% DMSO
(vehicle) or 0.1–1 µM CHA79 followed by 24 h MG (500 µM) exposure was carried out.

4.3. Evaluation of Cell Viability and Neuronal Apoptosis

MTT assay was carried out for evaluating cell viability. MTT contains a tetrazolium ring, which can
be cleaved by dehydrogenases of living cells. Upon cleavage, it forms formazan crystals, which can be
solved in organic solvent such as DMSO, and can be detected by microplate reader (Thermo Scientific,
Waltham, MA, USA) at absorbance of 560 nm. Briefly, culture medium was removed after indicated
drug treatment. Cells were then incubated with 0.5 mg/mL MTT for 3 h in 37 ◦C. The formazan crystals
were dissolved with 100 µL DMSO, and absorbance was read (Thermo Scientific, Waltham, MA, USA).
Apoptosis was assessed by fluorescence staining with Hoechst 33342 and AnnexinV-FITC. While
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DNA condensation/nuclear fragmentation as indicator of cell apoptosis, Hoechst 33342 staining is able
to assess apoptosis under fluorescence microscopy (Nikon, Melville, NY, USA). In AnnexinV-FITC
experiment, neurons were collected, resuspended in binding buffer and incubated with AnnexinV-FITC
for staining. Coulter CyFlow Cytometer (Partec, Canterbury, Kent, UK) was then used to count
Annexin V-positive cells as indicator of apoptosis.

4.4. Evaluation of Oxidative Stress

ROS production was determined as an indicator of oxidative stress. H2DCF-DA staining was
used, and ROS production was determined by analyzing DCF (fluorescent product, Enzo Life Sciences
Inc., Farmingdale, NY, USA) by Coulter CyFlow Cytometer. After incubation with H2DCF-DA (10 µM),
neurons were collected. DCF fluorescence was detected within a hundred thousand cells using
Cytometer (excitation: 495 nm, emission: 520 nm).

4.5. Evaluation of Antioxidant Defense

SOD activity kit and GSH quantitation kit (Enzo Life Sciences Inc., Farmingdale, NY, USA)
were used for evaluating antioxidant capability, according to manufacturer’s instructions. Briefly, to
determine SOD activity, Master mix and xanthine solution were added to each well that containing
protein extract or SOD buffer (control). SOD activity was determined by detecting WST-1 formazan
(OD 450 nm; every one-min for ten times), which is conversed from WST-1 with xanthine oxidase.
The activity was expressed as units per milligram of protein (U/mg protein). Total GSH level was
quantitated by measuring the production of 5-thio-2-nitrobenzoic acid (yellow color) (OD 405 nm;
every one-min for ten times) from GSH and DTNB. Briefly, samples were homogenized in 0.5 M
perchloric acid and centrifuged at 12,000× g for 5 min. The supernatant was collected and neutralized
(with 0.1 M phosphate buffer, pH 7.0, and 1 mM EDTA) for detection. Data were calculated by means
of a calibration curve and normalized to the protein concentration.

4.6. Western Blots (WB)

WB was used for detecting protein expressions. Protein extraction reagent (Cat. No. 78510,
Thermo Fisher Scientific) supplemented with protease inhibitor cocktail (Cat. No. 04693132001, Roche)
and nuclear protein extraction kit (Cat. No. 78833, Thermo Fisher Scientific) were used for isolating
cytosolic and nuclear protein extracts. Proteins (20 µg) were separated on gels (SDS polyacrylamide)
and then transferred to membranes (PVDF). TBST that contains non-fat milk (5%) was then used for
blocking non-specific binding sites of proteins. Specific primary antibodies that shown in chemical
and reagent section and appropriate secondary antibodies were then used for membrane incubation.
Quantification on levels of protein was calculated by Image J (NIH, Bethesda, MD, USA).

4.7. Statistical Analysis

Mean ± SEM was used for data presentation. All Statistical analyses were performed with InStat
version 3.0 (GraphPad Software, San Diego, CA, USA). All pair comparisons were analyzed by ANOVA
followed by Dunnett’s test. Differences with p < 0.05 were considered statistically significant.

Supplementary Materials: The following are available online. Figure S1: Effect of CHA79 on cell viability in
SH-SY5Y dopaminergic neurons. Figure S2: Effect of MG on cell viability in SH-SY5Y dopaminergic neurons.
Table S1: Antibodies used in Western blots.
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