

Supplementary Materials

Spectra–Structure Correlations in Isotopomers of Ethanol (CX₃CX₂OX; X = H, D): Combined Near-Infrared and Anharmonic Computational Study

Krzysztof B. Beć^{1,2,*}, Justyna Grabska¹, Christian W. Huck¹, and Mirosław A. Czarnecki²

- ¹ Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020-Innsbruck, Austria; Justyna.Grabska@ uibk.ac.at (J.G.); Christian.W.Huck@uibk.ac.at (C.W.H.)
- ² Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland; miroslaw.czarnecki@chem.uni.wroc.pl
- * Correspondence: Krzysztof.Bec@uibk.ac.at; Tel.: +43-512-507-5783

<u>I. Figures</u>

Figure S1. NIR spectra of CH₃CD₂OH calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM. Experimental spectrum (exp.) of CH₃CD₂OH in CCl₄ (0.1 M).

Figure S2. NIR spectra of CD₃CH₂OH calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM. Experimental spectrum (exp.) of CD₃CH₂OH in CCl₄ (0.1 M).

Figure S3. NIR spectra of CD₃CD₂OH calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM. Experimental spectrum (exp.) of CD₃CD₂OH in CCl₄ (0.1 M).

Figure S4. NIR spectra of CD₃CD₂OD calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM. Experimental spectrum (exp.) of CD₃CD₂OD in CCl₄ (0.1 M).

Figure S5. NIR spectra of CH₃CD₂OD calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM.

Figure S6. NIR spectra of CD₃CH₂OD calculated with GVPT2 method at different levels of electronic theory; (a) B3LYP-GD3BJ /6-31G(d,p); (b) B3LYP-GD3BJ /6-31G(d,p)//CPCM; (c) B2PLYP-GD3BJ/6-31G(d,p)//CPCM; (d) MP2/6-31G(d,p)//CPCM; (e) B3LYP-GD3BJ/SNST//CPCM; (f) B2PLYP-GD3BJ/def2-TZVP//CPCM; (g) MP2/aug-cc-pVTZ//CPCM.

Figure S7. The details of NIR spectra of (A) CH₃CH₂OH; (B) CH₃CD₂OH; (C) CD₃CH₂OH in the 4550-4200 cm⁻¹. From up to bottom: experimental NIR spectrum (red line); second derivative spectrum, multiplied by -1 (blue line); theoretical (B2PLYP-GD3BJ/def2-TZVP//CPCM) spectrum (black line).

Figure S8. (Enlarged) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ/6-31G(d,p) level of electronic theory

www.mdpi.com/journal/molecules

Figure S9. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

calc. sum 2v + vv +Absorbance / a.u. 6000 5500 7500 7000 6500 5000 4500 4000 Wavenumber / cm⁻¹

Figure S10. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B2PLYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

#

calc. sum v + v2v + v2v3vAbsorbance / a.u. 7500 7000 6500 6000 5500 5000 4500 4000 Wavenumber / cm⁻¹

Figure S11. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at MP2/6-31G(d,p)//CPCM level of electronic theory.

calc. sum 2v + v31 v +v +Absorbance / a.u. 6000 5500 7500 7000 6500 5000 4500 4000 Wavenumber / cm⁻¹

Figure S12. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ/SNST//CPCM level of electronic theory.

calc. sum 2v + vAbsorbance / a.u. 7500 7000 6500 6000 5500 5000 4500 4000 Wavenumber / cm⁻¹

Figure S13. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B2PLYP-GD3BJ/def2-TZVP//CPCM level of electronic theory.

Figure S14. (High-resolution copy of Figure 1) NIR spectra of CH₃CH₂OH calculated with GVPT2 method at MP2/aug-cc-pVTZ//CPCM level of electronic theory.

calc. sum 3v 2v + vv + v + vAbsorbance / a.u. 7500 7000 6500 6000 5500 5000 4500 4000 Wavenumber / cm⁻¹

Figure S15. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ/6-31G(d,p) level of electronic theory.

Figure S16. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

Figure S17. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B2PLYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

Figure S18. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at MP2/6-31G(d,p)//CPCM t level of electronic theory.

Figure S19. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ/SNST//CPCM level of electronic theory.

Figure S20. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B2PLYP-GD3BJ/def2-TZVP//CPCM level of electronic theory.

Figure S21. (High-resolution copy of Figure 2) NIR spectra of CH₃CH₂OD calculated with GVPT2 method at MP2/aug-cc-pVTZ//CPCM level of electronic theory.

Figure S22. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ /6-31G(d,p) level of electronic theory.

Figure S23. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ /6-31G(d,p)//CPCM level of electronic theory.

Figure S24. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B2PLYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

Figure S25. (High-resolution copy of Figure 2) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at MP2/6-31G(d,p)//CPCM level of electronic theory.

Figure S26. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B3LYP-GD3BJ/SNST//CPCM level of electronic theory.

Figure S27. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at B2PLYP-GD3BJ/def2-TZVP//CPCM level of electronic theory.

Figure S28. (High-resolution copy of Figure 3) Contributions from minor bands in NIR spectra of CH₃CH₂OH calculated with GVPT2 method at MP2/aug-cc-pVTZ//CPCM level of electronic theory.

Figure S29. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ /6-31G(d,p) level of electronic theory.

Figure S30. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ /6-31G(d,p)//CPCM level of electronic theory.

Figure S31. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B2PLYP-GD3BJ/6-31G(d,p)//CPCM level of electronic theory.

Figure S32. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at MP2/6-31G(d,p)//CPCM level of electronic theory.

Figure S33. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B3LYP-GD3BJ/SNST//CPCM level of electronic theory.

Figure S34. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at B2PLYP-GD3BJ/def2-TZVP//CPCM level of electronic theory.

Figure S35. (High-resolution copy of Figure 4) Contributions from minor bands in NIR spectra of CH₃CH₂OD calculated with GVPT2 method at MP2/aug-cc-pVTZ//CPCM level of electronic theory.

<u>II. Tables</u>

Table S1. The relative abundances of gauche (g) and trans (t) conformers for ethanol isotopomers calculated by different methods.

		Calculated abundance									
	Conf	MP2	B2PLYP-GD3BJ	B2PLYP-GD3BJ	MP2	B2PLYP-	B3LYP-	B3LYP-			
	Cont.	/aVTZ	/def2-TZVP	/SNST	/6-31G(d,p)	GD3BJ	GD3BJ	GD3BJ			
		+CPCM	+CPCM	+CPCM	+CPCM	/6-31G(d,p)	/6-31G(d,p)	/6-31G(d,p)			
						+CPCM	+CPCM				
	g	45%	37%	82%	40%	87%	74%	79%			
CH ₃ CH ₂ OH	t	55%	63%	18%	60%	13%	26%	21%			
	g	48%	24%	73%	46%	78%	76%	79%			
CH ₃ CH ₂ OD	t	52%	76%	27%	54%	22%	24%	21%			
	g	47%	38%	83%	44%	87%	74%	79%			
Сп3СD2ОП	t	53%	62%	17%	56%	13%	26%	21%			
	g	60%	51%	83%	52%	88%	73%	79%			
CD3CH2OH	t	40%	49%	17%	48%	12%	27%	21%			
	g	58%	51%	84%	54%	87%	73%	79%			
СД3СД2ОП	t	42%	49%	16%	46%	13%	27%	21%			
	g	51%	37%	69%	53%	80%	77%	79%			
CD_3CD_2OD	t	49%	63%	31%	47%	20%	23%	21%			
	g	48%	24%	73%	46%	79%	76%	79%			
CH ₃ CD ₂ OD	t	52%	76%	27%	54%	21%	24%	21%			
CD.CH.OD	g	50%	35%	70%	52%	80%	77%	79%			
CD3CH2OD	t	50%	65%	30%	48%	20%	23%	21%			

Table S2. Potential energy distribution (PED) for *trans* and *gauche* conformers of ethanol (CH₃CH₂OH) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
240.08	53%	τCC	45%	$\delta_{oop}COH$						
282.43	53%	$\delta_{\text{oop}}\text{COH}$	42%	τCC						
420.77	78%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$	12%	$\delta_{\text{rock}'}\text{CH}_3$						
826.43	40%	$\delta_{rock}CH_2$	33%	$\delta_{rock}CH_3$	13%	$\delta_{\text{twist}} CH_2$	11%	$\delta_{\text{rock}'}CH_3$		
904.94	38%	vC-0	24%	vCC	21%	$\delta_{\text{rock}'}CH_3$	7%	$\delta_{\text{rock}}CH_3$	6%	$\delta_{wagg}CH_2$
1045.00	49%	vCC	21%	$\delta_{ip}COH$	14%	vC-0	8%	$\delta_{\text{rock}'}CH_3$		
1105.80	54%	νC-0	22%	$\delta_{\text{rock}'}\text{CH}_3$	8%	$\delta_{rock}CH_3$	5%	$\delta_{sciss}CH_2CO$		

trans

1188.46	55%	$\delta_{\text{rock}}\text{CH}_2$	21%	$\delta_{rock}CH_3$	11%	$\delta_{\text{twist}}\text{CH}_2$	7%	$\delta_{\text{rock}'}CH_3$	
1272.73	58%	$\delta_{ip}COH$	18%	$\delta_{wagg}CH_2$	7%	$\delta_{rock'}CH_3$			
1310.73	85%	$\delta_{\text{twist}} CH_2$	9%	$\delta_{\text{rock}}CH_3$					
1414.01	85%	δ₅CH₃	10%	$\delta_{wagg}CH_2$					
1462.36	60%	$\delta_{wagg}CH_2$	14%	$\delta_{ip}COH$	12%	vCC	8%	δ₅CH₃	
1492.43	68%	$\delta_{as}CH_{3}$	23%	$\delta_{as'}CH_{3}$	6%	$\delta_{\text{rock}}CH_3$			
1508.12	58%	$\delta_{as'}CH_{3}$	19%	$\delta_{as}CH_3$	10%	$\delta_{sciss}CH_2$			
1541.60	87%	$\delta_{\text{sciss}}\text{CH}_2$							
3016.45	100%	$\nu_s CH_2$							
3047.82	98%	$\nu_{\text{as}}CH_2$							
3058.32	99%	v₅CH₃							
3132.50	100%	$\nu_{as}CH_3$							
3134.94	98%	$\nu_{as'}CH_3$							
3821.81	100%	vOH							

v [cm ⁻¹]	%	Int coord	%	Int coord	%	Int coord	%	Int coord	%	Int.
v [ciii]	70	int. coord.	70	Int. coord.	70	int. coord.	70	int. coord.	2	coord.
267.71	89%	τCC	8%	$\delta_{\text{oop}}\text{COH}$						
292.31	84%	$\delta_{oop}COH$	9%	τCC						
425.65	76%	$\delta_{sciss} CH_2 CO$	14%	$\delta_{\text{rock}'}CH_3$						
814.37	44%	$\delta_{\text{rock}}CH_2$	31%	$\delta_{\text{rock}}\text{CH}_3$	11%	$\delta_{\text{twist}} CH_2$	9%	$\delta_{\text{rock}'}CH_3$		
892.97	33%	νC-0	30%	vCC	23%	$\delta_{\text{rock}'}CH_3$	6%	$\delta_{\text{rock}}CH_3$		
1072.09	33%	$\delta_{ip}COH$	25%	$\delta_{\text{rock}}\text{CH}_3$	9%	$\delta_{\text{rock}}\text{CH}_2$	8%	νC-0	7%	$\delta_{\text{rock}'}CH_3$
	7%	$\delta_{\text{twist}} CH_2$								
1076.14	52%	νC-0	45%	vCC						
1142.84	36%	$\delta_{\text{rock}'}CH_3$	21%	$\delta_{\text{rock}}CH_2$	12%	vC-0	9%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$	7%	$\delta_{\text{twist}}\text{CH}_2$
1291.84	38%	$\delta_{\text{twist}}CH_2$	22%	$\delta_{ip}COH$	18%	$\delta_{\text{rock}}CH_3$	12%	$\delta_{\text{rock}}CH_2$		
1381.13	37%	$\delta_{\text{twist}} CH_2$	28%	$\delta_{ip}COH$	22%	$\delta_{wagg}CH_2$				
1412.78	72%	δ₅CH₃	17%	$\delta_{wagg}CH_2$						
1429.26	54%	$\delta_{wagg}CH_2$	21%	$\delta_{s}CH_{3}$	10%	vCC	6%	$\delta_{ip} COH$		
1497.42	62%	$\delta_{as} CH_3$	27%	$\delta_{as'}CH_3$	7%	$\delta_{\text{rock}}\text{CH}_3$				
1501.59	50%	$\delta_{as'}CH_3$	24%	$\delta_{as}CH_3$	17%	$\delta_{\text{sciss}}\text{CH}_2$				
1530.40	82%	$\delta_{\text{sciss}}\text{CH}_2$	9%	$\delta_{as'}CH_3$						
3027.04	99%	$\nu_s CH_2$								
3046.71	99%	$\nu_s CH_3$								
3100.59	57%	$\nu_{as}CH_2$	39%	$\nu_{as}CH_3$						
3120.42	69%	$\nu_{as'}CH_3$	28%	$\nu_{\text{as}}CH_2$						
3132.07	90%	$\nu_{as}CH_3$	8%	$\nu_{\text{as}} CH_2$						
3808.92	100%	vOH								

Table S3. Potential energy distribution (PED) for *trans* and *gauche* conformers of ethanol-*d*₁ (CH₃CH₂OD) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

			-				-			
ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
190.45	88%	$\delta_{oop}COD$	11%	τCC			l	1		L
263.60	91%	τCC								
411.13	77%	$\delta_{sciss}CH_2CO$	11%	$\delta_{\text{rock}'}CH_3$						
826.34	40%	$\delta_{\text{rock}}CH_2$	33%	$\delta_{\text{rock}}\text{CH}_3$	13%	$\delta_{\text{twist}}\text{CH}_2$	11%	$\delta_{rock'}CH_3$		
863.78	60%	$\delta_{ip}COD$	32%	νCC	7%	vC-0				
914.47	30%	vC-0	25%	$\delta_{\text{rock}'}CH_3$	22%	$\delta_{ip}\text{COD}$	9%	$\delta_{wagg}CH_2$	8%	$\delta_{\text{rock}}CH_3$
1085.01	55%	vC-0	39%	vCC						
1167.15	27%	$\delta_{\text{rock}'}CH_3$	15%	$\delta_{ip}\text{COD}$	14%	$\delta_{sciss}CH_2CO$	14%	vCC	13%	vC-0
	9%	$\delta_{\text{rock}}CH_3$								
1188.46	55%	$\delta_{\text{rock}}CH_2$	21%	$\delta_{\text{rock}}\text{CH}_3$	11%	$\delta_{\text{twist}}\text{CH}_2$	7%	$\delta_{rock'}CH_3$		
1310.71	85%	$\delta_{\text{twist}} CH_2$	9%	$\delta_{\text{rock}}CH_3$						
1412.18	73%	$\delta_{s}CH_{3}$	23%	$\delta_{wagg}CH_2$						
1441.73	60%	$\delta_{wagg} CH_2$	19%	δ₅CH₃	13%	vCC				
1492.41	68%	$\delta_{as}CH_{3}$	23%	$\delta_{as'}CH_3$	6%	$\delta_{\text{rock}}CH_3$				
1507.94	59%	$\delta_{as}{}^{\prime}CH_{3}$	19%	$\delta_{as}CH_3$	10%	$\delta_{sciss}CH_2$				
1541.60	87%	$\delta_{\text{sciss}}\text{CH}_2$								
2782.51	100%	vOD								
3016.41	100%	$\nu_s CH_2$								
3047.82	98%	$\nu_{as}CH_2$								
3058.32	99%	$\nu_s CH_3$								
3132.50	100%	$\nu_{as}CH_3$								
3134.94	98%	$\nu_{as'}CH_3$								

trans

v [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
214.16	94%	$\delta_{\text{oop}}\text{COD}$										
269.87	90%	τCC										
418.35	76%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$	14%	$\delta_{rock'}CH_3$								
802.16	46%	$\delta_{\text{rock}}CH_2$	21%	$\delta_{\text{rock}}\text{CH}_3$	11%	$\delta_{ip}\text{COD}$	11%	$\delta_{\text{rock}'}CH_3$	7%	$\delta_{\text{twist}} CH_2$		
890.32	23%	νC-O	22%	$\delta_{\text{rock}}CH_3$	18%	vCC	17%	$\delta_{\text{rock}'}CH_3$	11%	$\delta_{ip}\text{COD}$	6%	$\delta_{wagg}CH_2$
898.75	52%	$\delta_{ip}COD$	13%	νCC	11%	νC-0	9%	$\delta_{twist}CH_2$	8%	$\delta_{rock}CH_3$	5%	$\delta_{rock'}CH_3$
1075.02	54%	νC-0	42%	νCC								
1129.02	44%	$\delta_{rock'}CH_3$	16%	νC-0	15%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$	10%	vCC				
1227.78	46%	$\delta_{\text{rock}}CH_2$	30%	$\delta_{\text{rock}}\text{CH}_3$	13%	$\delta_{ip}\text{COD}$						
1336.60	90%	$\delta_{\text{twist}} CH_2$										
1408.02	49%	$\delta_{wagg}CH_2$	47%	dsCH3								

1424.48	42%	dsCH3	40%	$\delta_{wagg}CH_2$	11%	vCC			
1496.19	61%	$\delta_{as}CH_{3}$	29%	$\delta_{as'}CH_3$	7%	$\delta_{\text{rock}}\text{CH}_3$			
1501.56	48%	$\delta_{as'}CH_{3}$	26%	$\delta_{as}CH_{3}$	16%	$\delta_{\text{sciss}}\text{CH}_2$			
1530.30	82%	$\delta_{\text{sciss}}\text{CH}_2$	9%	$\delta_{as'}CH_3$					
2772.31	100%	vOD							
3027.09	99%	$\nu_s CH_2$							
3046.76	99%	v₅CH₃							
3100.95	56%	$\nu_{as}CH_2$	41%	$\nu_{as}CH_3$					
3120.52	69%	$\nu_{as'}CH_3$	29%	$\nu_{as}CH_2$					
3132.08	90%	$\nu_{as}CH_3$	8%	$\nu_{\text{as}}CH_2$					

Table S4. Potential energy distribution (PED) for *trans* and *gauche* conformers of ethanol-*d*² (CH₃CD₂OH) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

trans		-			-		-			-
ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
238.36	57%	τCC	41%	δ_{oop} COH						
279.21	59%	δ_{oop} COH	37%	τCC						
415.53	78%	$\delta_{sciss}CD_2CO$	11%	$\delta_{\text{rock}'}CH_3$						
692.46	48%	$\delta_{\text{rock}} CD_2$	23%	$\delta_{\text{twist}} \text{CD}_2$	20%	$\delta_{\text{rock}}\text{CH}_3$	7%	$\delta_{rock'}CH_3$		
868.09	31%	vCC	26%	$\delta_{wagg}CD_2$	17%	vC-0	16%	$\delta_{rock'}CH_3$	6%	$\delta_{\text{rock}}\text{CH}_3$
929.51	71%	$\delta_{\text{twist}} \text{CD}_2$	26%	$\delta_{\text{rock}}\text{CD}_2$						
976.18	66%	vC-0	30%	$\delta_{wagg}CD_2$						
1024.92	26%	vCC	18%	$\delta_{\text{rock}'}\text{CH}_3$	16%	$\delta_{ip} \text{COH}$	16%	$\delta_{sciss}CD_2$	6%	$\delta_{sciss} CD_2 CO$
	6%	$\delta_{\text{rock}}CH_3$	6%	vC-0						
1130.99	60%	$\delta_{sciss} CD_2$	15%	vCC	13%	$\delta_{ip}\text{COH}$	7%	$\delta_{wagg}CD_2$		
1152.61	50%	$\delta_{rock}CH_3$	17%	$\delta_{\text{rock}}\text{CD}_2$	16%	$\delta_{\text{rock}'}\text{CH}_3$	9%	$\delta_{twist} \text{CD}_2$	6%	dasCH3
1191.98	28%	vC-0	23%	$\delta_{wagg}CD_2$	18%	$\delta_{\text{rock}'}\text{CH}_3$	15%	$\delta_{sciss} CD_2$	6%	$\delta_{\text{rock}}CH_3$
1339.86	61%	$\delta_{ip}COH$	15%	$\delta_{wagg}CD_2$	11%	vCC	8%	dsCH3		
1423.43	83%	δ₅CH₃	12%	vCC						
1491.00	69%	$\delta_{as}CH_3$	23%	$\delta_{as'}CH_3$	6%	$\delta_{\text{rock}}\text{CH}_3$				
1509.03	68%	$\delta_{as'}CH_3$	22%	$\delta_{as}CH_3$	6%	$\delta_{\text{rock}'}\text{CH}_3$				
2192.04	99%	$\nu_s CD_2$								
2266.52	98%	$\nu_{as}CD_2$								
3058.29	100%	v₅CH₃								
3132.15	100%	$\nu_{as}CH_3$								
3133.16	100%	$\nu_{as'}CH_3$								
3821.79	100%	vOH								

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
264.47	94%	τCC								

289.31	91%	δ_{000} COH								
420.04	76%	$\delta_{sciss}CD_2CO$	13%	$\delta_{rock'}CH_3$						
683.50	53%	$\delta_{\text{rock}}\text{CD}_2$	19%	$\delta_{\text{rock}}CH_3$	18%	$\delta_{\text{twist}}\text{CD}_2$	6%	$\delta_{rock'}CH_3$		
858.34	37%	vCC	22%	$\delta_{wagg}CD_2$	17%	$\delta_{rock'}CH_3$	15%	νC-0		
904.18	62%	$\delta_{ip}COH$	17%	$\delta_{\text{rock}} CD_2$	14%	$\delta_{ip}COH$				
979.09	67%	νC-O	24%	$\delta_{wagg}CD_2$						
1047.93	38%	$\delta_{sciss}CD_2$	21%	$\delta_{rock'}CH_3$	14%	vCC	10%	$\delta_{\text{sciss}}\text{CD}_2\text{CO}$	10%	$\delta_{\text{rock}}CH_3$
1137.78	41%	$\delta_{\text{rock}}CH_3$	22%	$\delta_{sciss}\text{CD}_2$	13%	$\delta_{ip} COH$	7%	$\delta_{ip}COH$	5%	$\delta_{\text{rock}} CD_2$
1155.43	45%	$\delta_{sciss} CD_2$	18%	vCC	16%	$\delta_{\text{rock}'}CH_3$	6%	$\delta_{\text{rock}}\text{CD}_2$		
1193.50	43%	$\delta_{wagg}CD_2$	28%	vC-0	13%	vCC	10%	$\delta_{\text{rock}'}CH_3$		
1322.11	83%	$\delta_{ip}COH$								
1417.05	90%	δ₅CH₃	8%	vCC						
1495.37	71%	$\delta_{as}CH_3$	20%	$\delta_{as'}CH_3$	6%	$\delta_{\text{rock}}\text{CH}_3$				
1504.32	70%	$\delta_{as'}CH_{3}$	21%	$\delta_{as}CH_3$	5%	$\delta_{\text{rock}'}CH_3$				
2208.01	98%	$\nu_s CD_2$								
2305.19	98%	$\nu_{as}CD_2$								
3046.67	99%	$\nu_s CH_3$								
3113.45	95%	$\nu_{as'}CH_3$								
3129.50	96%	$\nu_{as}CH_3$								
3808.77	100%	vOH								

Table S5. Potential energy distribution (PED) for *trans* and *gauche* conformers of ethanol-*d*₃ (CD₃CH₂OH) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

ν [cm⁻¹]	%	Int. coord.	%	Int.	%	Int. coord.	%	Int. coord.	%	Int. coord.
102.62	959/	7 00	10%	S COUL						
192.03	85% 05%	S COU	10%	0 _{00p} COH						
200.42	95% 70%		1.09/	S CD	69/	\$ 60				
692.12	10%	OscissCH2CU	22%	Orock ² CD ₃	1.6%	OrockCD3	0%	S (1)		
770 55	40%	OrockCD3	10%		14%	Orock ² CD ₃	3%	OtwistCH2		
024.29	40%	Orock ² CD ₃	219/	δ CD	14%		14%	δ COH	0%	δ CD
1061.00	54%	vcc	17%	o₅cD₃	10%		10% 6%	δ CD-	5%	Orock ⁷ CD ₃
1072 22	72%	δ CDr	2/1%	S (CD)	078	OscissCI12CO	076	UasCD3		
1072.32	72% E4%	S CD	19%	S CD-	16%	210.0	E%	δCD.		
1125 49	70%		15%		10%	VC-0	378	Orock'CD3		
1123.40	19%		22%	OrockCD3	110/	8 COH	69/	NC 0		
1257 45	40%	osco3 & co⊔	25%	8 . CH	£%	vcc	076	VC-0		
1297.45	55%		25%	OtwistCH2	0%	VCC				
1450.15	70%	S CU	159/	\$ cou	10%					
1639.69	05%		13/6	ΟίρΟΟΠ	10%	VCC				
2107 72	95%									
2197.73	99%									
2320.27	98%									
2016.99	100%									
2040.05	100%									
2021 01	100%	VasCH2								
3021.01	100%	VUH								
guuche	9/	Int coord	9/	Int coord	9/	Int coord	0/	Int coord	9/	Int coord
204 58	70 0/1%		70		70	int. coord.	70	Int. coord.	70	
204.38	89%	δCOH								
382.13	66%	δ _{reice} CH ₂ CO	21%	δrack/CD2						
677.65	49%	δrockCD3	25%	δrock CH ₂	13%	δrock/CD3	9%	δ _{twist} CH ₂		
761.11	40%	δ _{rock} CD ₃	20%	VCC	16%	vC-0	12%	δ _{rock} CD ₃	6%	δ _s CD ₃
950.19	33%	δ _s CD ₃	28%	vCC	13%	δ _{sciss} CH ₂ CO	11%	δrock ² CD3	6%	δrockCD3
	6%	διρCOH					-			
1038.09	42%	vC-0	21%	διρCOH	20%	δ _{rock} CH ₂	6%	δrockCD3	6%	δ _s CD ₃
1073.56	78%	$\delta_{as}CD_3$	11%	δ _{rock} CH ₂	7%	vC-0				
1076.18	69%	δ _{as'} CD ₃	9%	δ _{rock} CH ₂	7%	vC-0	5%	δ _{rock} CD ₃		
1092.43	28%	vC-O	25%	δ _{as} CD ₃	15%	δasCD3	14%	δ _{rock} CH ₂	13%	δ _{rock} CD ₃
1163.57	50%	δ₅CD₃	44%	vCC						-
1247.02	55%	$\delta_{twist}CH_2$	30%	δ _{ip} COH	7%	$\delta_{rock}CH_2$	5%	δ _{rock} CD ₃		
1378.71	33%	$\delta_{\text{twist}} CH_2$	29%	$\delta_{ip}COH$	27%	$\delta_{wagg}CH_2$	5%	$\delta_{\text{rock}}CH_2$		

1425.30	73%	$\delta_{wagg}CH_2$	13%	$\delta_{ip}\text{COH}$	6%	vCC		
1526.06	95%	$\delta_{\text{sciss}}\text{CH}_2$						
2189.67	98%	$\nu_s CD_3$						
2306.01	96%	$\nu_{as'}CD_3$						
2318.96	99%	$\nu_{as}CD_3$						
3027.99	99%	$\nu_s CH_2$						
3109.63	100%	$\nu_{\text{as}}CH_2$						
3808.90	100%	vOH						

Table S6. Potential energy distribution (PED) for *trans* and *gauche* conformers of ethanol-*d*⁵ (CD₃CD₂OH) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

trans										
ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
187.52	87%	τCC	9%	$\delta_{oop}COH$						
265.38	96%	δ_{000} COH								
372.06	70%	$\delta_{sciss} CD_2 CO$	17%	$\delta_{\text{rock}'}\text{CD}_3$	6%	$\delta_{\text{rock}}\text{CD}_3$				
601.73	35%	$\delta_{\text{rock}}\text{CD}_2$	35%	$\delta_{\text{rock}}\text{CD}_3$	16%	$\delta_{\text{twist}}\text{CD}_2$	11%	$\delta_{\text{rock}'}\text{CD}_3$		
753.55	34%	$\delta_{\text{rock}'}\text{CD}_3$	18%	vCC	14%	vC-0	13%	$\delta_{wagg}CD_2$	12%	$\delta_{\text{rock}}\text{CD}_3$
	5%	δ₅CD₃								
903.34	28%	vCC	19%	δ₅CD₃	15%	$\delta_{\text{rock}'}\text{CD}_3$	12%	$\delta_{sciss} CD_2 CO$	8%	$\delta_{sciss} CD_2$
	6%	$\delta_{ip}COH$	5%	$\delta_{\text{rock}}\text{CD}_3$						
928.30	71%	$\delta_{twist}CD_2$	25%	$\delta_{\text{rock}}\text{CD}_2$						
976.91	52%	νC-0	33%	$\delta_{wagg} CD_2$	6%	$\delta_{sciss} CD_2 CO$				
1005.34	38%	$\delta_{rock}CD_2$	33%	$\delta_{\text{rock}}\text{CD}_3$	17%	$\delta_{\text{twist}}\text{CD}_2$	11%	$\delta_{\text{rock}'}\text{CD}_3$		
1074.89	72%	$\delta_{as} CD_3$	24%	$\delta_{as'}\text{CD}_3$						
1083.27	66%	$\delta_{as'}CD_3$	22%	$\delta_{as}CD_3$	6%	$\delta_{sciss} CD_2$				
1091.17	27%	δ₅CD₃	25%	$\delta_{wagg}CD_2$	18%	$\delta_{sciss}\text{CD}_2$	14%	vC-0		
1154.70	53%	$\delta_{sciss} CD_2$	16%	$\delta_s CD_3$	15%	vCC	6%	vC-0	5%	$\delta_{ip} COH$
1163.43	23%	νC-O	17%	$\delta_s CD_3$	16%	$\delta_{ip} COH$	16%	vCC	14%	$\delta_{wagg}CD_2$
	8%	$\delta_{sciss} CD_2$								
1348.97	55%	$\delta_{ip}COH$	21%	vCC	17%	$\delta_{wagg}CD_2$				
2189.80	80%	$\nu_s CD_2$	20%	$\nu_s CD_3$						
2199.60	79%	$\nu_s CD_3$	18%	$\nu_s CD_2$						
2265.09	96%	$\nu_{as}CD_2$								
2320.38	98%	$\nu_{as}CD_3$								
2323.35	96%	$\nu_{as'}CD_3$								
3821.79	100%	vOH								

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
198.93	96%	τCC								

286.11	91%	δ_{000} COH								
377.64	66%	$\delta_{sciss}CD_2CO$	20%	$\delta_{\text{rock}'}\text{CD}_3$						
595.93	38%	$\delta_{\text{rock}}\text{CD}_2$	35%	$\delta_{\text{rock}}\text{CD}_3$	15%	$\delta_{\text{twist}}\text{CD}_2$	10%	$\delta_{\text{rock}'}\text{CD}_3$		
744.86	34%	$\delta_{\text{rock}'}\text{CD}_3$	24%	vCC	11%	νC-0	11%	dwaggCH2	11%	$\delta_{\text{rock}}\text{CD}_3$
	6%	$\delta_s CD_3$								
894.42	38%	$\delta_{twist}CD_2$	24%	$\delta_{\text{rock}}\text{CD}_2$	15%	$\delta_{ip}COH$	9%	$\delta_{\text{rock}}\text{CD}_3$		
918.78	17%	vCC	16%	$\delta_{\text{rock}'}\text{CD}_3$	14%	δ₅CD₃	11%	$\delta_{\text{twist}}\text{CD}_2$	11%	$\delta_{sciss} \text{CD}_2 \text{CO}$
	8%	$\delta_{sciss} CD_2$	7%	νC-0	6%	$\delta_{\text{rock}}\text{CD}_2$	5%	$d\delta_{wagg} CD_2$		
981.92	48%	νC-0	18%	$\delta_{wagg}CD_2$	12%	$\delta_{\text{twist}}\text{CD}_2$	7%	$\delta_{sciss} CD_2 CO$		
1000.98	29%	$\delta_{twist}CD_2$	25%	$\delta_{\text{rock}}\text{CD}_3$	22%	$\delta_{\text{rock}}\text{CD}_2$	12%	$\delta_{\text{rock}'}\text{CD}_3$	5%	vC-0
1076.06	65%	$\delta_{as}CD_3$	31%	$\delta_{as'} CD_3$						
1080.46	58%	$\delta_{as'} CD_3$	29%	$\delta_{as} CD_3$	7%	$\delta_{sciss} CD_2$				
1097.28	42%	$\delta_s CD_3$	23%	$\delta_{wagg}CD_2$	18%	$\delta_{sciss} CD_2$	7%	νC-0	6%	$\delta_{as'} CD_3$
1143.62	57%	$\delta_{sciss} CD_2$	19%	νC-0	7%	$\delta_{wagg}CD_2$	5%	$\delta_{\text{rock}'}\text{CD}_3$		
1206.44	39%	vCC	28%	$\delta_{wagg}CD_2$	16%	δ₅CD₃	14%	vC-0		
1319.55	86%	$\delta_{ip}COH$								
2189.05	96%	$\nu_s CD_3$								
2208.19	95%	$\nu_s CD_2$								
2298.37	55%	$\nu_{as}CD_2$	42%	$\nu_{as}CD_3$						
2310.52	67%	$\nu_{as'}CD_3$	29%	$\nu_{as}CD_2$						
2321.35	86%	$\nu_{as}CD_3$	9%	$\nu_{as}CD_2$						
3808.76	100%	vOH								

Table S7. Potential energy distribution (PED) for trans and gauche conformers of ethanol-d₆ (CD₃CD₂OD) based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

trans

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.						
179.69	53%	τCC	45%	$\delta_{\text{oop}}\text{COD}$						
204.12	52%	$\delta_{\text{oop}}\text{COD}$	44%	τCC						
364.00	70%	$\delta_{sciss} CD_2 CO$	17%	$\delta_{\text{rock}'}\text{CD}_3$	6%	$\delta_{\text{rock}}\text{CD}_3$				
601.58	35%	$\delta_{\text{rock}} CD_2$	35%	$\delta_{rock}CD_3$	16%	$\delta_{twist} CD_2$	11%	$\delta_{rock'}CD_3$		
751.58	35%	$\delta_{\text{rock'}}\text{CD}_3$	15%	vCC	14%	$\delta_{wagg}CD_2$	13%	νC-0	12%	$\delta_{rock}CD_3$
828.13	56%	$\delta_{ip}COD$	21%	vCC	7%	$\delta_s CD_3$				
928.30	71%	$\delta_{\text{twist}}\text{CD}_2$	25%	$\delta_{\text{rock}}\text{CD}_2$						
929.81	27%	νC-0	27%	$\delta_{wagg} CD_2$	11%	δ₅CD₃	10%	vCC	8%	$\delta_{\text{rock}'}\text{CD}_3$
	5%	$\delta_{ip}COD$								
1005.34	38%	$\delta_{\text{rock}} CD_2$	33%	$\delta_{rock}CD_3$	17%	$\delta_{twist} CD_2$	11%	$\delta_{rock'}CD_3$		
1040.69	37%	νC-0	22%	$\delta_{ip}\text{COD}$	19%	$\delta_{\text{sciss}}\text{CD}_2$	12%	$\delta_{sciss}\text{CD}_2\text{CO}$		
1074.86	72%	$\delta_{as}CD_{3}$	24%	$\delta_{as'}\text{CD}_3$						
1083.27	67%	$\delta_{as'}CD_3$	22%	$\delta_{as} CD_3$	6%	$\delta_{sciss} CD_2$				
1104.25	60%	$\delta_s CD_3$	21%	$\delta_{wagg}CD_2$	5%	$\delta_{\text{sciss}}\text{CD}_2$				

Molecules 2019, 24, 2189

1157.79	55%	$\delta_{\text{sciss}}\text{CD}_2$	24%	νC-0	10%	$\delta_{wagg}CD_2$	5%	$\delta_{\text{rock}'}\text{CD}_3$	
1256.52	44%	vCC	28%	$\delta_{wagg} CD_2$	11%	δ₅CD₃	7%	$\delta_{ip}\text{COD}$	
2189.63	80%	$\nu_s CD_2$	17%	$\nu_s CD_3$					
2199.52	79%	$\nu_s CD_3$	18%	$\nu_s CD_2$					
2265.08	96%	$\nu_{as}CD_2$							
2320.37	98%	$\nu_{as}CD_3$							
2323.35	96%	$\nu_{as'}CD_3$							
2782.50	100%	vOD							

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
193.34	79%	τCC	18%	$\delta_{oop}COD$						
215.82	73%	$\delta_{\text{oop}}\text{COD}$	20%	τCC						
371.21	68%	$\delta_{sciss} CD_2 CO$	20%	$\delta_{\text{rock}'}CD_3$						
593.24	39%	$\delta_{\text{rock}}\text{CD}_2$	32%	$\delta_{\text{rock}}\text{CD}_3$	14%	$\delta_{\text{twist}}\text{CD}_2$	11%	$\delta_{\text{rock}'}CD_3$		
739.08	32%	$\delta_{\text{rock}'}\text{CD}_3$	19%	vCC	17%	$\delta_{\text{rock}}\text{CD}_3$	11%	$\delta_{wagg}CD_2$	10%	vC-0
812.42	47%	$\delta_{ip}\text{COD}$	21%	$\delta_{\text{twist}} CD_2$	12%	$\delta_{\text{rock}}\text{CD}_2$	8%	vCC	6%	$\delta_{\text{rock}} CD_3$
918.23	19%	vCC	17%	$\delta_{\text{rock}'}CD_3$	15%	$\delta_s CD_3$	11%	$\delta_{sciss}\text{CD}_2\text{CO}$	9%	$\delta_{sciss} CD_2$
	8%	$\delta_{twist} CD_2$	7%	vC-0	6%	$\delta_{wagg}CD_2$				
980.31	44%	vC-0	19%	$\delta_{\text{twist}}\text{CD}_2$	17%	$\delta_{wagg}CD_2$	6%	$\delta_{\text{sciss}}\text{CD}_2\text{CO}$	5%	$\delta_{\text{rock}}\text{CD}_3$
995.22	40%	$\delta_{twist} CD_2$	15%	$\delta_{\text{rock}}\text{CD}_3$	13%	$\delta_{\text{rock}'} CD_3$	9%	$\delta_{\text{rock}}\text{CD}_2$	8%	vC-0
1064.16	33%	$\delta_{as}CD_3$	22%	$\delta_{ip}\text{COD}$	20%	$\delta_{\text{rock}}\text{CD}_2$	13%	$\delta_{sciss} CD_2$		
1078.79	75%	$\delta_{as'}CD_3$	10%	$\delta_{\text{sciss}}\text{CD}_2$	5%	$\delta_{s}CD_{3}$				
1084.38	62%	$\delta_{as}CD_3$	12%	$\delta_{as'}CD_3$	7%	$\delta_{ip}\text{COD}$				
1102.03	47%	δ₅CD₃	21%	$\delta_{wagg} CD_2$	8%	nC-O	7%	$\delta_{ip}\text{COD}$		
1154.46	56%	$\delta_{\text{sciss}}\text{CD}_2$	22%	vC-0	9%	$\delta_{wagg}CD_2$				
1211.74	41%	vCC	26%	$\delta_{wagg} CD_2$	15%	$\delta_s CD_3$	11%	vC-0		
2189.05	96%	$\nu_s CD_3$								
2208.15	94%	$\nu_s CD_2$								
2298.13	56%	$\nu_{as}CD_2$	40%	$\nu_{as}CD_3$						
2310.31	69%	$\nu_{as'}CD_3$	28%	$\nu_{as}CD_2$						
2321.26	86%	$\nu_{as}CD_3$	9%	$\nu_{as}CD_2$						
2772.85	100%	vOD								

iruns										
v [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord
190.00	89%	$\delta_{oop}COD$	11%	τርር						
258.77	92%	τCC								
406.06	77%	$\delta_{sciss}CD_2CO$	11%	$\delta_{\text{rock}'}CH_3$						
692.37	48%	$\delta_{rock}CD_2$	23%	$\delta_{\text{twist}}\text{CD}_2$	20%	$\delta_{\text{rock}}\text{CH}_3$	7%	$\delta_{\text{rock}'}\text{CH}_3$		
852.44	68%	$\delta_{ip}\text{COD}$	14%	$\delta_{wagg}CD_2$	10%	vCC				
867.18	30%	vCC	26%	$\delta_{wagg} CD_2$	18%	νC-0	16%	$\delta_{\text{rock}'}\text{CH}_3$	6%	$\delta_{\text{rock}}CH_3$
929.51	71%	$\delta_{twist}CD_2$	26%	$\delta_{\text{rock}}\text{CD}_2$						
988.62	61%	νC-O	12%	vCC	10%	$\delta_{ip}\text{COD}$	9%	$\delta_{wagg}CD_2$	5%	$\delta_{\text{rock}'}CH_3$
1083.26	61%	$\delta_{sciss} CD_2$	13%	$\delta_{\text{rock}'}CH_3$	11%	$\delta_{sciss} CD_2 CO$	7%	$\delta_{ip}\text{COD}$		
1152.60	50%	$\delta_{\text{rock}}CH_3$	17%	$\delta_{\text{rock}}\text{CD}_2$	16%	$\delta_{\text{rock}'}\text{CH}_3$	9%	$\delta_{\text{twist}}\text{CD}_2$	6%	$\delta_{as}CH_3$
1187.81	32%	$\delta_{sciss} CD_2$	23%	vC-0	19%	$\delta_{\text{rock}'}\text{CH}_3$	10%	$\delta_{wagg}CD_2$	7%	$\delta_{\text{rock}}CH_3$
1233.96	42%	$\delta_{wagg}CD_2$	33%	vCC	10%	$\delta_{ip}\text{COD}$	7%	vC-0	5%	$\delta_{sciss} CD_2$
1420.81	88%	δ₅CH₃	10%	vCC						
1490.98	69%	$\delta_{as}CH_3$	23%	$\delta_{as'}CH_3$	6%	$\delta_{\text{rock}}\text{CH}_3$				
1508.99	68%	$\delta_{as'}CH_3$	22%	$\delta_{as}CH_3$	6%	$\delta_{\text{rock}'}CH_3$				
2191.79	98%	$\nu_s CD_2$								
2266.51	98%	$\nu_{as}CD_2$								
2782.50	100%	vOD								
3058.30	100%	$\nu_s CH_3$								
3132.15	100%	$\nu_{as}CH_3$								
3133.16	100%	$\nu_{as'}CH_3$								

trans

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
212.69	96%	$\delta_{oop}COD$								
264.92	93%	τCC								
412.62	76%	$\delta_{\text{sciss}}\text{CD}_2\text{2CO}$	13%	$\delta_{rock'}CH_3$						
675.84	56%	$\delta_{\text{rock}} CD_2$	16%	$\delta_{\text{rock}}\text{CH}_3$	14%	$\delta_{\text{twist}}\text{CD}_2$	7%	$\delta_{rock'}CH_3$		
828.91	44%	$\delta_{ip}\text{COD}$	38%	$\delta_{\text{twist}} CD_2$	11%	$\delta_{rock}CH_3$				
858.49	37%	vCC	20%	$\delta_{wagg} CD_2$	17%	$\delta_{\text{rock}'}\text{CH}_3$	16%	νC-0		
976.66	69%	νC-0	25%	$\delta_{wagg}CD_2$						
1021.81	28%	$\delta_{\text{twist}}\text{CD}_2$	22%	$\delta_{ip}\text{COD}$	12%	vCC	9%	$\delta_{rock'}CH_3$	9%	$\delta_{rock}CH_3$
	8%	$\delta_{\text{rock}} CD_2$	7%	$\delta_{sciss}\text{CD}_2$						
1068.48	49%	$\delta_{\text{sciss}}\text{CD}_2$	14%	$\delta_{rock'}CH_3$	12%	$\delta_{ip}\text{COD}$	9%	$\delta_{\text{twist}}\text{CD}_2$	8%	$\delta_{\text{sciss}}\text{CD}_2\text{CO}$
1151.99	30%	$\delta_{\text{rock}}CH_3$	19%	$\delta_{\text{rock}'}CH_3$	15%	$\delta_{\text{sciss}}\text{CD}_2$	14%	$\delta_{\text{rock}} CD_2$	7%	vCC
	5%	$\delta_{\text{twist}}\text{CD}_2$	5%	$\delta_{as}CH_3$						

1183.07	37%	$\delta_{\text{sciss}}\text{CD}_2$	18%	$\delta_{rock}CH_3$	18%	vCC	10%	$\delta_{ip}\text{COD}$	
1193.39	43%	$\delta_{wagg}CD_2$	28%	vC-0	13%	vCC	10%	$\delta_{rock'}CH_3$	
1417.04	90%	δ₅CH₃	8%	vCC					
1494.71	68%	$\delta_{as}CH_3$	23%	$\delta_{as'}CH_3$	6%	$\delta_{rock}CH_3$			
1504.11	67%	$\delta_{as'}CH_{3}$	24%	$\delta_{as}CH_3$	5%	$\delta_{rock'}CH_3$			
2207.97	98%	$\nu_s CD_2$							
2304.66	97%	$\nu_{as}CD_2$							
2772.81	100%	vOD							
3046.70	99%	$\nu_s CH_3$							
3113.44	95%	$\nu_{as'}CH_3$							
3129.51	96%	$\nu_{as}CH_3$							

Table S9. Potential energy distribution (PED) for *trans* and *gauche* conformers of CD₃CH₂OD based on B2PLYP-GD3BJ/def2-TZVP//CPCM calculations.

trans										
ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
181.66	54%	$\delta_{\text{oop}}\text{COD}$	44%	τCC						
208.61	54%	τCC	39%	$\delta_{\text{oop}}\text{COD}$						
368.12	70%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$	17%	$\delta_{\text{rock}'}CD_3$	6%	$\delta_{\text{rock}} CD_3$				
682.97	48%	$\delta_{\text{rock}}CD_3$	23%	$\delta_{\text{rock}}CH_2$	16%	$\delta_{\text{rock}'}\text{CD}_3$	10%	$\delta_{\text{twist}} CH_2$		
769.04	40%	$\delta_{\text{rock}'} CD_3$	19%	vC-0	14%	vCC	14%	$\delta_{\text{rock}}\text{CD}_3$		
838.77	61%	$\delta_{ip}\text{COD}$	20%	vCC	6%	$\delta_s CD_3$	6%	$\delta_{\text{rock}'}\text{CD}_3$		
1011.50	46%	$\delta_s CD_3$	20%	vC-0	19%	$\delta_{ip}\text{COD}$	8%	vCC		
1072.29	72%	$\delta_{as}CD_3$	24%	$\delta_{as'}CD_3$						
1073.79	37%	$\delta_{as'}CD_3$	31%	vC-0	12%	$\delta_{as}CD_3$	7%	$\delta_{ip}\text{COD}$	7%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$
1098.25	38%	vC-0	28%	$\delta_{as'}CD_3$	10%	$\delta_{\text{rock}'}\text{CD}_3$	9%	$\delta_{as} CD_3$	7%	$\delta_{ip}\text{COD}$
1125.47	79%	$\delta_{\text{rock}}CH_2$	15%	$\delta_{\text{rock}}\text{CD}_3$						
1180.18	46%	vCC	44%	$\delta_s CD_3$						
1284.69	96%	$\delta_{\text{twist}} CH_2$								
1434.91	85%	$\delta_{wagg}CH_2$	9%	vCC						
1538.67	95%	$\delta_{\text{sciss}}\text{CH}_2$								
2197.72	99%	$\nu_s CD_3$								
2320.26	98%	$\nu_{as}CD_3$								
2322.02	98%	$\nu_{as'}CD_3$								
2782.52	100%	vOD								
3016.84	100%	$\nu_s CH_2$								
3049.94	100%	$\nu_{\text{as}}\text{CH}_2$								

gauche

ν [cm ⁻¹]	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.	%	Int. coord.
195.28	68%	τCC	29%	$\delta_{oop}COD$						
221.20	62%	$\delta_{\text{oop}}\text{COD}$	29%	τCC						
375.85	68%	$\delta_{sciss}CH_2CO$	20%	$\delta_{\text{rock}'}\text{CD}_3$						
676.57	47%	$\delta_{\text{rock}}\text{CD}_3$	25%	drockCH2	14%	$\delta_{rock'}CD_3$	9%	$\delta_{twist}CH_2$		
755.00	40%	$\delta_{\text{rock'}}\text{CD}_3$	17%	$\delta_{\text{rock}}\text{CD}_3$	16%	vCC	14%	vC-0		
861.02	63%	$\delta_{ip}COD$	12%	vCC	8%	$\delta_{\text{rock}}\text{CH}_2$	6%	$\delta_{s}\text{CD}_{3}$		
978.67	32%	$\delta_s CD_3$	18%	vCC	14%	$\delta_{ip}\text{COD}$	11%	$\delta_{\text{rock}'} CD_3$	10%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$
	7%	vC-0	6%	$\delta_{\text{rock}}\text{CH}_2$						
1062.80	60%	vC-0	16%	$\delta_{as'}CD_3$	9%	$\delta_{as} CD_3$	8%	$\delta_{\text{sciss}}\text{CH}_2\text{CO}$		
1074.49	65%	$\delta_{as}CD_3$	31%	$\delta_{as'}CD_3$						
1088.27	48%	$\delta_{as'}CD_3$	22%	$\delta_{as}\text{CD}_3$	19%	νC-0	7%	$\delta_{\text{rock}'}\text{CD}_3$		
1157.17	38%	$\delta_{\text{rock}}CH_2$	21%	$\delta_s CD_3$	15%	vCC	10%	$\delta_{\text{rock}}\text{CD}_3$	8%	$\delta_{ip}\text{COD}$
1166.86	35%	δ₅CD₃	34%	vCC	12%	$\delta_{\text{rock}}\text{CH}_2$	6%	$\delta_{ip}\text{COD}$		
1323.98	90%	$\delta_{\text{twist}}\text{CH}_2$								
1414.22	89%	$\delta_{wagg}CH_2$	6%	vCC						
1526.01	95%	$\delta_{\text{sciss}}\text{CH}_2$								
2189.66	98%	$\nu_{as}CD_3$								
2305.98	96%	$\nu_{as'}CD_3$								
2318.96	98%	$\nu_{as}CD_3$								
2772.36	100%	vOD								
3028.05	100%	$\nu_s CH_2$								
3110.10	99%	$\nu_{\text{as}}\text{CH}_2$								