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Abstract: The physiology of wound healing is dependent on the crosstalk between inflammatory
mediators and cellular components of skin regeneration including fibroblasts and endothelial cells.
Therefore, strategies to promote healing must regulate this crosstalk to achieve maximum efficacy.
In light of the remarkable potential of natural compounds to target multiple signaling mechanisms,
this study aims to demonstrate the potential of hypermongone C, a polycyclic polyprenylated
acylphloroglucinol (PPAP), to accelerate wound closure by concurrently enhancing fibroblast
proliferation and migration, promoting angiogenesis, and suppressing pro-inflammatory cytokines.
This compound belongs to a family of plants (Hypericum) that traditionally have been used to treat
injuries. Nevertheless, the exact biological evidence to support the claims is still missing. The results
were obtained using a traditional model of cell scratch assay and endothelial cell tube formation,
combined with the analysis of protein and gene expression by macrophages. In summary, the data
suggest that hypermongone C is a multi-targeting therapeutic natural compound for the promotion
of tissue repair and the regulation of inflammation.
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1. Introduction

Skin tissue repair and wound healing is a very complex biological process which is controlled by
different cell types including macrophage immune cells, dermal fibroblasts, epidermal keratinocytes,
and endothelial cells working in concert to regenerate damaged skin. Wound healing comprises four
major overlapping phases: (1) hemostasis or blood clotting; (2) inflammation, which is associated with
the migration of macrophages and immune cells to the wound bed to invade pathogens and clean the
wound [1,2]; (3) proliferation and tissue formation, which involves the proliferation and migration of
fibroblasts and the development of new blood vessels (angiogenesis); and (4) tissue remodeling. Upon
injury, different cell types are recruited to the wound site in a timely manner to secrete growth factors
and cytokines in response to external pathogens and tissue rupture to initiate the healing process [3–5].

Inflammation is regulated by macrophages, which play a distinct role in each phase of healing due
to phenotype changes in response to environmental stimuli [6]. In the first stage of healing, inflammatory
cells migrate to the wound site and differentiate into classically polarized M1 macrophages, which
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are associated with tissue injury and inflammation. In the inflammatory phase of wound healing,
M1 macrophages remove apoptotic cell debris and secrete inflammatory cytokines and growth
factors, such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and vascular endothelial
growth factor (VEGF). In the second phase of healing, macrophages are differentiated into the
activated anti-inflammatory M2 subtype to promote cell proliferation and migration, and to overcome
inflammation [2,7]. If the inflammatory response is sustained, the wound becomes chronic, which
leads to impaired healing [2,8].

One of the most important steps in wound closure is the ability for cells to migrate into the wound
bed. The tissue formation stage of wound healing is performed by the proliferation and migration of
dermal fibroblasts, which are themselves stimulated by macrophages and growth factors. Fibroblasts
are responsible for producing the extracellular matrix (ECM) and collagen, which ultimately form the
granulation tissue [6,9]. This matrix functions as tissue support and facilitates the migration of other
cells, such as endothelial cells, macrophages, and fibroblasts [10,11]. Fibroblasts are differentiated into
myofibroblast, and collagen type III is replaced by collagen type I at the late stage of healing, which
leads to the maturation of the newly formed tissue [12–14].

Angiogenesis or new blood vessel formation is another process that occurs during wound healing
and is initiated immediately after tissue injury. Angiogenic factors, such as VEGF released from
damaged endothelial cells and macrophages, induce endothelial cells to develop micro-vessels from
pre-existing vessels. Capillary tubes extend branches to transfer oxygen and nutrients to the granulation
tissue, which is required for successful tissue regeneration and wound closure [15,16]. One of the
characteristics of delayed healing and chronic wounds is the failure of vascularization and blood
circulation [17–19].

There is a vital need for new drugs that regulate different phases of healing simultaneously.
Historically, natural compounds have been used in treating wounds due to their antioxidant,
anti-inflammatory, and antimicrobial properties. Natural compounds are uniquely positioned to play
a regenerative role in wound repair by targeting multiple phases of healing, such as the modulation of
cytokine and growth factor secretion, as well as the induction of cell proliferation and migration [20,21].
Among natural compounds, one family that has attracted significant attention is Hypericum [22,23].
Hypericum belongs to the family of Gutiferaceae (also known as Hypericaceae), a genus that features
an abundance of polycyclic polyprenylated acylphloroglucinols (PPAPs) [24]. Their bioactivities are
attributed to the complex and unique structure of acylphloroglucinol [25]. Medicinal plants from
this genus have been used in traditional medicine due to their antibacterial, neuroprotective, and
anti-inflammatory activities [26,27]. One of the most important and well-known species, Hypericum
perforatum (St. John’s wort), has demonstrated significant wound healing effects in skin injuries and is
considered safe for use [28]. Additionally, local application of H. perforatum extract in combination
with neem oil (Holoil®) has shown anti-inflammatory effects in patients undergoing radiotherapy
treatment [29]. However, species of this genus are rarely studied, suggesting further investigation
is warranted.

To address this knowledge gap, in this study, we elucidated the wound healing effects of
hypermongone C, a compound isolated from Hypericum scabrum. This was assessed by monitoring the
migration and proliferation of dermal fibroblasts, tube formation of endothelial cells, and cytokine
expression of pro-inflammatory macrophages in response to varying doses of hypermongone C. Our
findings demonstrate the enormous potential of this compound to regulate the interaction among
multiple components of the regenerative process and accelerate wound closure effectively.

2. Results

2.1. Hypermongone C Identification

Using time of flight mass spectrometry (TOF-MS) in the positive ion mode, we determined that the
compound isolated from H. scabrum had a molecular formula of C31H46O5 ([M + H]+ ion at m/z 499.3414,
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corresponding to C31H47O5). The structure (Figure 1) was assigned using nuclear magnetic resonance
(NMR) (Figure S1 and Table S1) and high-resolution mass spectrometry (Figure S2). We identified
the compound as a PPAP based on our analysis of 1D and 2D-NMR results, having a furan ring, two
isoprenyl groups, tertiary and quaternary methyl, and three carbonyl groups connected to different
parts of the structure, which are the key features of this class of compounds. The comparison of NMR
chemical shifts and MS data with reported values and known compounds in the literature confirmed
our compound as hypermongone C [30]. The heteronuclear single quantum coherence (HSQC) and
heteronuclear multiple bond correlation (HMBC) correlations established the bicyclic structure (Figure
S1).
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Figure 1. The structure of hypermongone C, a polycyclic polyprenylated acylphloroglucinol.

2.2. Effect of Hypermongone C on Cell Proliferation and Viability

MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
assay was used as an indicator of metabolic activity which indirectly measures cell proliferation
and viability. We performed the MTS assay to determine the cell viability of human umbilical vein
endothelial cells (HUVECs) and primary human dermal fibroblasts (HDFs), cultured in a 96-well
plate and treated with different concentrations of hypermongone C (0.1, 1, and 10 µg/mL) for 24 h.
HDF cells demonstrated higher proliferation at concentrations of 0.1 and 1 µg/mL as compared to
the non-treated cells. Hypermongone C at the concentration of 10 µg/mL moderately inhibited cell
growth (Figure 2A). HUVECs treated with different concentrations of hypermongone C (0.1, 1, and
10 µg/mL) for 8 h demonstrated no toxicity, and concentrations of 0.1 and 1 µg/mL were used for
further experiments (Figure 2B). To confirm the cell viability of HDFs and HUVECs treated with
different concentrations of hypermongone C, we performed the LIVE/DEAD® assay. Following 24-h
incubation, hypermongone C did not induce toxicity in HDFs and HUVECs, and the live cells were
visualized as green (Figure 2C,D).

Molecules 2019, 24, x 3 of 14 

 

499.3414, corresponding to C31H47O5). The structure (Figure 1) was assigned using nuclear magnetic 
resonance (NMR) (Figure S1 and Table S1) and high-resolution mass spectrometry (Figure S2). We 
identified the compound as a PPAP based on our analysis of 1D and 2D-NMR results, having a furan 
ring, two isoprenyl groups, tertiary and quaternary methyl, and three carbonyl groups connected to 
different parts of the structure, which are the key features of this class of compounds. The comparison 
of NMR chemical shifts and MS data with reported values and known compounds in the literature 
confirmed our compound as hypermongone C [30]. The heteronuclear single quantum coherence 
(HSQC) and heteronuclear multiple bond correlation (HMBC) correlations established the bicyclic 
structure (Figure S1). 

 
Figure 1. The structure of hypermongone C, a polycyclic polyprenylated acylphloroglucinol. 

2.2. Effect of Hypermongone C on Cell Proliferation and Viability 

MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) assay was used as an indicator of metabolic activity which indirectly measures cell 
proliferation and viability. We performed the MTS assay to determine the cell viability of human 
umbilical vein endothelial cells (HUVECs) and primary human dermal fibroblasts (HDFs), cultured 
in a 96-well plate and treated with different concentrations of hypermongone C (0.1, 1, and 10 µg/mL) 
for 24 h. HDF cells demonstrated higher proliferation at concentrations of 0.1 and 1 µg/mL as 
compared to the non-treated cells. Hypermongone C at the concentration of 10 µg/mL moderately 
inhibited cell growth (Figure 2A). HUVECs treated with different concentrations of hypermongone 
C (0.1, 1, and 10 µg/mL) for 8 h demonstrated no toxicity, and concentrations of 0.1 and 1 µg/mL were 
used for further experiments (Figure 2B). To confirm the cell viability of HDFs and HUVECs treated 
with different concentrations of hypermongone C, we performed the LIVE/DEAD® assay. Following 
24-h incubation, hypermongone C did not induce toxicity in HDFs and HUVECs, and the live cells 
were visualized as green (Figure 2C,D). 

 
(A) 

 
(B) 

Figure 2. Cont.



Molecules 2019, 24, 2022 4 of 14
Molecules 2019, 24, x 4 of 14 

 

 
(C) 

 
(D) 

Figure 2. Concentration-dependent cell proliferation of (A) human dermal fibroblasts (HDFs) in 
response to various concentrations of hypermongone C after 24-h exposure, calculated using the MTS 
assay. No toxicity was observed in the range of 0.1 and 1 µg/mL when compared to the control 
(untreated cells in growth media). (B) The percentage viability of human umbilical vein endothelial 
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free gap (Figure 3). The percentage of gap closure was imaged at different time points, and there was 
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compared to the control for both concentrations. Wound closure was almost two times faster for 
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Figure 2. Concentration-dependent cell proliferation of (A) human dermal fibroblasts (HDFs) in
response to various concentrations of hypermongone C after 24-h exposure, calculated using the
MTS assay. No toxicity was observed in the range of 0.1 and 1 µg/mL when compared to the control
(untreated cells in growth media). (B) The percentage viability of human umbilical vein endothelial
cells (HUVECs) in response to 8-h incubation with various concentrations of hypermongone C did not
show toxicity by the MTS assay. (C) The LIVE/DEAD® assay of HDFs and (D) HUVECs confirmed the
non-toxic effect of hypermongone C on the cells.

2.3. Hypermongone C-Induced Cell Migration

The effect of hypermongone C on the migration of HDFs to a cell-free gap was investigated
using a scratch assay. Cells were treated with non-toxic concentrations of hypermongone C at 0.1
and 1 µg/mL for 22 h. We observed that hypermongone C induced the migration of cells toward
the cell-free gap (Figure 3). The percentage of gap closure was imaged at different time points, and
there was a significant concentration-dependent closure effect compared to the control or untreated
cells. At the early time point of 4 h, we did not observe any significant difference in cell migration
among different groups. However, over 8 h, the number of cells that migrated toward the scratch was
higher compared to the control for both concentrations. Wound closure was almost two times faster for
concentrations of 0.1 and 1 µg/mL over 18-h incubation. This effect was also concentration-dependent;
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as the concentration of the compound increased, migration became faster. At the 22 h time point,
1 µg/mL hypermongone C treatment showed a remarkable 80% closure, which was significantly higher
than the control (45%).
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Figure 3. Migration assay of hypermongone C. (A) Wound closure percentage of HDFs after different
time intervals of exposure to different concentrations of hypermongone C. The compound at a
concentration of 1 µg/mL demonstrated the highest migration over 22 h. Multiple t-tests were
performed using Graph-Pad Prism 7.03 to determine the significance between each experimental group
and control (* p ≤ 0.05 and ** p ≤ 0.01). (B) Representative images of each treatment group after 22 h.

2.4. Effect of Hypermongone C on Angiogenesis

To study the effect of hypermongone C on angiogenesis, we seeded HUVECs on a matrigel
basement membrane as a substrate. Over 8-h incubation with the compound at concentrations of 0.1
and 1 µg/mL, we observed the cells to proliferate and migrate to form tubular networks. The number
of tubes was counted manually in triplicate for the groups treated with culture media alone or with
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different concentrations of hypermongone C (Figure 4A). Cells treated with the compound showed
a higher level of tubing network as compared to the untreated control, in which many of the cells
remained scattered (Figure 4B). There was a significant difference in the number of tubes formed for
the hypermongone C treatment concentration of 1 µg/mL compared to the control, clearly indicating
the ability of this compound to induce the type of tube formation necessary for wound healing. VEGF
is an ideal positive control for the tube formation; however, the number of tubes at concentrations 0.1
and 1 µg/mL did not reach that of the group containing VEGF.
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2.5. Effect of Hypermongone C on TNF-α, IL-6, and VEGF Production 

Figure 4. (A) The average number of tubes formed among HUVECs after 8 h of incubation on growth
factor reduced BD matrigel, in which * represents a significant difference (p ≤ 0.05 and ** p ≤ 0.01) from
the control group, which was calculated using Graph-Pad Prism 7.03 to determine the significance
between each experimental group and control. # represents a significant difference (p ≤ 0.05) among
treated groups and VEGF positive control. (B) Representative images are shown for the treatment with
growth media alone, 0.1 µg/mL, and 1 µg/mL hypermongone C. Fewer tubes were formed in the group
including untreated cells, with many of them remaining as individual single cells.

2.5. Effect of Hypermongone C on TNF-α, IL-6, and VEGF Production

We assessed the effect of hypermongone C on the macrophage inflammatory response using
enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction
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(qRT-PCR) assays. Differentiated THP-1 macrophages (M0 macrophage) were polarized to the M1
pro-inflammatory phenotype. The effect of hypermongone C treatment on the lipopolysaccharide
(LPS) and interferon-gamma (IFN-γ) polarized macrophages demonstrated that expression of both
inflammatory markers IL-6 and TNF-α were significantly decreased compared to the non-treated
M1 macrophage (Figure 5A,B). Hypermongone at 1 µg/mL over 24-h treatment downregulated the
expression of cytokines IL-6 and TNF-α by 3-fold and 1.5-fold, respectively. This reduction was
more prominent for IL-6 than for TNF- α. The compound also caused a drastic increase in VEGF
growth factor production as compared to the control (Figure 5C). Gene expression profiling of the M1
macrophages was carried out on cDNA analysis. Gene expression results showed similar trends to the
ELISA assay. Hypermongone C downregulated the pro-inflammatory gene expression of IL-6 by 50%
(Figure 5D). However, TNF-α gene expression remained the same as compared to the control (Figure 5E).
Meanwhile, the gene expression of VEGF increased 2-fold compared to the control (Figure 5F). For each
sample, we normalized the expression ratios to the reference primer glyceraldehyde 3-phosphate
dehydrogenase GAPDH (housekeeper) gene, presenting the results as relative values. The promising
upregulation of VEGF suggests hypermongone C’s ability to promote endothelial cell sprouting and
tube formation in vivo. Similarly, the suppression of transcription factors TNF-α and IL-6 indicates
that the compound can attenuate inflammation.
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Figure 5. The influence of hypermongone C on cytokine expression in culture media was determined
for (A) interleukin (IL)-6, (B) tumor necrosis factor (TNF)-α, and (C) vascular endothelial growth
factor (VEGF) by enzyme-linked immunosorbent assay (ELISA) assay. Gene expression of (D) IL-6,
(E) TNF-α, and (F) VEGF by M1 macrophages was determined after 24 h treatment hypermongone C
using quantitative real-time PCR. Gene expression was normalized to the housekeeping gene GAPDH
(internal control) and the control group (non-treated M1 macrophages (2−∆∆C)). * p≤ 0.05 and ** p ≤ 0.01
as compared to the control group.

3. Discussion

This study reports for the first time that hypermongone C, a PPAP isolated from H. scabrum,
accelerates wound healing and wound closure in vitro, modulates the immune response, and induces
tube formation on matrigel. We demonstrate that hypermongone C accelerates fibroblast migration into
the gap, which mimics wound closure in vivo, reduces pro-inflammatory markers (IL-6 and TNF-α),
and promotes endothelial cell proliferation and tube formation on reduced growth factor matrix.

Many plant-derived metabolites can accelerate wound healing and skin regeneration [31,32].
Medicinal plants and natural compounds have been traditionally used in treating wounds, and many
in vitro and in vivo studies have proven their anti-oxidant, anti-bacterial, anti-inflammatory, and
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wound healing effects [33–35]. Several Hypericum species have been used for traditional wound healing
and are considered a rich source of biologically active polycyclic structures demonstrating wound
healing activity as well as other biological properties. However, these compounds are not well studied.
Suntal et al. demonstrated that the ethanolic extract of Hypericum scabrum did not show wound healing
effects using in vivo excision and incision wound models as compared to Hypericum perforatum [36].
Our results are different in that we demonstrated the promising in vitro wound healing potential of
hypermongone C, as a pure compound isolated from the hexane extract of Hypericum scabrum, and not
an extract. Moreover, the extracting method and polarity of solvents used in isolation techniques have
a strong effect on the biological activity of the extract and pure compounds. This will lead to a different
biological function. The yield of hypermongone C isolated from Hexane extract was measured at
0.02%. Although the yield is not that high, the plant is readily available in abundance in various parts
of the world. Also, given the high activity level of this compound as compared to other extracts in the
same group, we only need low concentrations to be applied in wound healing applications. These
together demonstrate the feasibility of use in future clinical applications

Wound healing is a multistep, overlapping process controlled by the cooperation of different cells
in a timely manner, and any failure of these interactions will result in chronic wounds and delayed
healing [37]. Common chronic wounds and non-healing ulcers, such as diabetic foot, pressure, and
venous leg ulcers, remain in the inflammatory phase. IL-6 and TNF-α proinflammatory factors are
amplified in chronic non-healing ulcers, postponing the healing process [38]. Of great interest are
treatments that can regulate the macrophage inflammatory phase to stimulate the successful transition
to the tissue formation and repair phases [39,40].

We evaluated the immunomodulatory effect of hypermongone C using a 24-h treatment of the
compound at 1 µg/mL on M1 macrophages polarized by LPS/IFN-γ. LPS is a bacterial component
that activates the signaling pathway of nuclear factor-kappa B (NF-kB) to trigger the secretion of
pro-inflammatory markers [41]. Our results showed that hypermongone C suppresses the secretion
of pro-inflammatory markers TNF-α and IL-6. This is consistent with the anti-inflammatory effect
of hypermongone G, which features a similar structure to hypermongone C and demonstrates a
significant inhibitory effect on nitric oxide production in LPS-induced RAW264.7 macrophages [30].

We determined the mechanism under which hypermongone C exerts its immune modulating
effect through the analysis of the inflammatory marker secretions of M1 macrophages at the gene
and protein level. We observed reduced expression of IL-6 at both protein and gene levels in
hypermongone C-treated cells. Additionally, TNF-α expression was suppressed at the protein level
compared to the untreated cells, while there was no change in TNF-α reduction at gene level. Gene
expression is controlled and regulated at different stages, such as transcription and post translation [42].
Transcriptional cell activity does not always correlate to protein synthesis. Amsen et al. reported that
the presence of RNA does not necessarily reflect protein levels. For example, some cytokines (IL-4 and
IL-10) are regulated at the translational level, and others such as IL-1 and IL-18 at the post-translational
stage [43]. These observations suggest the anti-inflammatory properties of hypermongone C. This is
consistent with other studies that demonstrated compounds isolated from Hypericum genus possess
potent anti-inflammatory effects [24,25,44].

The other essential factor associated with late healing and wound contraction is collagen formation,
which is in control of dermal and epidermal cells. We performed an in vitro scratch assay on fibroblasts
to investigate the proliferation and migration of these cells treated with hypermongone C under
physiological conditions. We found that hypermongone C accelerates fibroblast cell migration and
gap closure (almost two-folds faster than the control), which indicates the stimulatory effect of this
compound. Traditionally, growth factors have been utilized to promote this stage of wound healing [3].
In light of these new exciting findings, we believe that hypermongone C can be used alone or in
combination with growth factors to accelerate the process.

The proper proliferation and migration of fibroblasts will lead to the formation of granulation tissue,
which requires vascularization to support cellular growth and tissue regeneration [45] Vascularization
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is amplified by inflammation and is suppressed at the late stage of healing when tissue is formed, and
inflammation is reduced. As a result, there is a close relation between delayed healing and impaired
vascularization [19,46]. The process of endothelial cell proliferation, migration, and angiogenesis is
considered one of the most important steps in wound healing, which takes place from the beginning to
the end of the healing process. Hypermongone C at the optimum concentration of 1 µg/mL induced
endothelial cell proliferation and tube formation on a matrigel substrate. In contrast, we observed fewer
tubes formed in the untreated cells, with many of them remaining individual, single cells. Interestingly,
the enhanced expression of the VEGF gene involved in vascularization confirmed the angiogenic
stimulatory potential of hypermongone C. VEGF upregulation at the early stage of healing can shift
the process to the second phase more quickly. Also, VEGF is a vital component of vascularization in
the process of healing, aiding in the transfer of nutrients and oxygen to the forming tissue [18].

The main inspiration behind this work was the extraordinary characteristic of natural compounds
to target multiple molecular mechanisms in the immune system and regulatory pathways. A single
compound with bioactive moieties that can simultaneously modulate multiple signaling transduction is
rare to find. To this end, this paper serves as a pioneering attempt to identify a natural compound with
the potential to modulate the interaction between various biological activators of wound regeneration.
Further studies are warranted to validate the in vivo efficacy of this compound prior to clinical use.

4. Materials and Methods

4.1. Hypermongone C Source and Identification

Hypermongone C was isolated from the aerial part of H. scabrum using chromatographic techniques.
The dried aerial parts of H. scabrum were extracted with hexane. The dried hexane extract (150 g)
was subjected to silica gel column chromatography and was eluted with a gradient of non-polar to
polar solvents. The column effluent was collected to afford 8 fractions. Fraction 2 (3 g) was further
separated on a silica gel column, followed by preparative and semi-preparative RP-HPLC (Knauer,
Berlin, Germany) (H2O/MeCN, 20:80) to yield hypermongone C. Isolation was performed using Knauer
HPLC system and on a RP C18 (5 µm, 4.6 × 250 mm i.d) and Sunfire C18 (5 µm, 19 × 50 mm i.d).
UV spectra was recorded from 210 to 400 nm. The yield of hypermongone C isolated from hexane
extract was measured at 0.02%. The structure of the compound (Figure 1) was elucidated by using 1D
and 2D-nuclear magnetic resonance (NMR) spectroscopy (Bruker, Billerica, MA, USA). 1H-NMR, H-H
correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), and heteronuclear
multiple bond correlation (HMBC) were performed for structural determination (Figure S1). NMR
spectra were recorded in dimethyl sulfoxide (DMSO-d6) using a Bruker Avance III-HD 400 MHz. The
molecular formula was determined by time of flight mass spectrometry (TOF-MS) (Figure S2). The
TOF-MS spectrum of hypermongone C was recorded in methanol using the positive ion mode on an
Orbitrap Velos Pro mass spectrometer (Thermo Fisher, Waltham, MA, USA).

4.2. Cell Culture and Reagents

Human umbilical vein endothelial cells (HUVECs), primary human dermal fibroblasts (HDFs),
and related media for cell culture, including endothelial growth medium, were purchased from Lonza
(Walkersville, MD, USA). HDFs were cultured in Dulbecco’s modified Eagle’s medium (DMEM/F12)
(Corning, NY, USA) supplemented with 10% fetal bovine serum (FBS) (FB Essence, VWR, PA, USA)
and 1% penicillin/streptomycin (HyClone, IL, USA) and incubated at 37 ◦C and 5% CO2 throughout
the experiment. THP-1 human monocytic cells were obtained from American Type Culture Collection
(ATCC) (Manassas, VA, USA). THP-1 cells were maintained in Roswell Park Memorial Institute
(RPMI-1640) medium (Corning) supplemented with 10% fetal bovine essence (FBE; VWR, USA) and 0.05
mM 2-mercaptoethanol (Sigma-Aldrich, Milwaukee, WI, USA). Phosphate-buffered saline (PBS) and
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)
colorimetric assay were purchased from Promega (Madison, WI, USA), while growth factor reduced
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matrigel BD was from Corning. The cell staining solution was obtained from Cell Biolabs (San Diego,
CA, USA) and Culture-Insert was purchased from IbiTreat (Martinsried, Germany). 12-myristate
13-acetate (PMA) and LPS from Escherichia Coli were purchased from Sigma. Interferon-gamma
(IFN-γ) was purchased from PeproTech (Rocky Hill, NJ, USA).

4.3. Cytotoxicity Assay (MTS)

In order to determine cell viability, HUVECs and HDFs were cultured in their growth media to
reach 80% confluency. Cells were seeded at a density of 5 × 103 cell per 96 well plates in a total volume
of 100 µL in each well. After seeding, the cells were incubated for 24 h at 37 ◦C and 5% CO2 to allow
for cell attachment. Media supplemented with the different concentrations of hypermongone C (0.1, 1,
and 10 µg/mL) was replaced. The compound was first dissolved at a concentration of 10 mg/mL in
DMSO and subsequently diluted in culture media. Following 24 h incubation, media containing 20%
MTS solution was replaced with growth media and incubated for 2 h. The absorbance of each well at
490 nm was measured using a Spectramax 190 spectrometer (Sunnyvale, CA, USA).

4.4. LIVE/DEAD® Assay

The LIVE/DEAD® viability/cytotoxicity kit (Thermo Fisher, Waltham, MA, USA) was used to
visually analyze the viability of the HUVECs and HDFs following 8 and 24-h exposure to different
concentrations of hypermongone C. This method discriminates live from dead cells by simultaneously
staining with green–fluorescent calcein-AM to indicate intracellular esterase activity and red-fluorescent
ethidium homodimer-1 to indicate loss of plasma membrane integrity. Cells with a density of 5 × 103

were seeded in a 96 well plates. Cells with 80% confluency were supplemented with different
concentrations of hypermongone C (0.1, 1, and 10 µg/mL) in growth media. Following appropriate
incubation, cells were washed with PBS, then treated with LIVE/DEAD® solution for 15 min. After
washing in PBS, cells were imaged using a fluorescence Nikon Eclipse Ti-E inverted microscope
(Melville, NY, USA).

4.5. In Vitro Migration Assay (Wound Healing Assay)

The cell migration of HDFs was assessed using a Culture-insert, consisting of two wells that were
separated by a wall. A total of 70 µL of cell suspension comprised of 35 × 103 cells was cultured in
each well. Following 24-h attachment and full confluency, the culture inserts were removed to form a
cell-free gap. Cells were washed with PBS to remove cell debris and then supplemented with different
concentrations of hypermongone in growth media and incubated at 37 ◦C and 5% CO2 for 22 h. Images
were taken at different time intervals using a phase contrast Nikon Eclipse Ti-E inverted microscope.
Quantification of the percentage wound healing was calculated by measuring the gap distance using
the following formula:

Wound closure % = (W0−Wn)/W0× 100%

in which Wn is the width of the gap after different time intervals and W0 is the initial width right after
forming a scratch. Cells at the zero and 22 h time points were stained using cell stain solution. The
media of the cells was removed and 400 µL of cell stain solution was added to each well. Cells were
incubated for 15 min at room temperature. Images were taken at different time intervals using a phase
contrast inverted microscope (Invitrogen EVOS FL Auto Cell Imaging, Waltham, MA USA).

4.6. Capillary Tube Formation

Growth factor reduced BD matrigel was kept in a −20 ◦C freezer and thawed on ice overnight
in a 4 ◦C refrigerator. To form a gel, 50 µL of the thawed matrigel was added to each well of a
pre-chilled 96-well plate and then incubated for 30 min at 37 ◦C. 100 µL of a HUVEC cell (cell passages:
2–6) suspension in endothelial growth media (20,000 cells/well), including different concentrations of
hypermongone C (0.1 and 1 µg/mL), was added to the gel and incubated at 37 ◦C for 8 h [47]. The
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number of tubes was examined using a phase contrast inverted microscope (Invitrogen EVOS FL Auto
Cell Imaging) and compared to the condition with no compound (negative control).

4.7. Macrophage Polarization

THP-1 cells with a density of 1 × 106 cells/well with a total volume of 2 mL of culture media were
differentiated into M0 macrophages by culturing the cells with 100 ng/mL of PMA for 24 h. After
differentiation, the cells were washed three times with serum-free media RPMI-1640 (Gibco) to remove
non-differentiated cells. To polarize M0 macrophages to M1 macrophages, the cells were exposed to
culture media supplemented with 100 ng/mL of LPS and 20 ng/mL IFN-γ for 24 h.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

M0 macrophages were polarized to M1 macrophages in media containing hypermongone C and
the polarizing agents including IFN-γ and LPS. Following 24 h incubation, the M1 media was collected,
centrifuged, and stored at −20 ◦C for further experiments. The culture media from the M1 macrophages
was analyzed to determine the cytokine concentrations of TNF-α, IL-6, and VEGF using an ELISA assay
according to the manufacturer’s protocols (PeproTech). Colorimetric changes were measured using a
SpectraMax 190 microplate spectrophotometer at 450 nm with the wavelength correction set at 620 nm.
Standard curves for each cytokine were run in parallel to convert the absorbance to concentration in
each group.

4.9. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (RT-PCR)

Gene Jet RNA Purification kit (Thermo Scientific) was used to isolate total ribonucleic acid (RNA)
according to the manufacturer’s instructions. RNA was quantified on a Thermo Scientific Nanodrop
2000c Spectrometer and considered pure if the ratio of the absorbance at 260 nm/280 nm was ≥ 2. Then,
samples were stored at −20 ◦C until they were analyzed for RT-PCR. The RNA was prepared as a
template for complementary deoxyribonucleic acid (cDNA) synthesis using the iScript cDNA Synthesis
kit (Bio-Rad). Quantitative RT-PCR analysis was performed using 10.4 ng of cDNA per reaction and
SYBER® Green PCR Supermix (Bio-Rad). Gene expression was normalized to the housekeeping gene
GAPDH and the control group (2−∆∆C). Gene expression values were calculated using the mean cycle
threshold (CT) values of the samples. All primers (Table S2) were synthesized by Integrated DNA
Technologies (Coralville, IA, USA).

4.10. Statistical Analysis

Three samples (n = 3) were analyzed per condition unless otherwise stated. All data were
statistically presented as the mean ± standard error. Multiple t-tests were performed using Graph-Pad
Prism 7.03 (La Jolla, CA, USA) to determine the significance between each experimental group. P values
of less than 0.05 were significant.

5. Conclusions

In this study, we set out to simultaneously stimulate cell proliferation and migration as well as
affecting macrophage function using a potent naturally derived compound. Results of this study
showed that hypermongone C accelerates different phases of healing, including the proliferation
and migration of fibroblasts, induction of endothelial cell tube formation and VEGF secretion, and
the regulation of the immune markers IL-6 and TNF-α. Therefore, the wound-healing potential of
hypermongone C, which we have tested here for the first time, offers a novel multi-targeting therapeutic
that can be used alone or in combination with other therapies. We suggest that hypermongone C
be used as a topical formulation or impregnated in wound dressings and applied on animal wound
models to further investigate wound closure in vivo.
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quantitative real-time polymerase chain reaction.
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