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Abstract: The crystal structure of 4-iodobenzonitrile, which is monoclinic (space group I2/a) under
ambient conditions, contains chains of molecules linked through C≡N···I halogen-bonds. The chains
interact through CH···I, CH···N and π-stacking contacts. The crystal structure remains in the same
phase up to 5.0 GPa, the b axis compressing by 3.3%, and the a and c axes by 12.3 and 10.9 %. Since the
chains are exactly aligned with the crystallographic b axis these data characterise the compressibility
of the I···N interaction relative to the inter-chain interactions, and indicate that the halogen bond
is the most robust intermolecular interaction in the structure, shortening from 3.168(4) at ambient
pressure to 2.840(1) Å at 5.0 GPa. The π···π contacts are most sensitive to pressure, and in one case the
perpendicular stacking distance shortens from 3.6420(8) to 3.139(4) Å. Packing energy calculations
(PIXEL) indicate that the π···π interactions have been distorted into a destabilising region of their
potentials at 5.0 GPa. The structure undergoes a transition to a triclinic (P1) phase at 5.5 GPa.
Over the course of the transition, the initially colourless and transparent crystal darkens on account
of formation of microscopic cracks. The resistance drops by 10% and the optical transmittance drops
by almost two orders of magnitude. The I···N bond increases in length to 2.928(10) Å and become less
linear [<C−I···N = 166.2(5)◦]; the energy stabilises by 2.5 kJ mol−1 and the mixed C-I/I..N stretching
frequency observed by Raman spectroscopy increases from 249 to 252 cm−1. The driving force of the
transition is shown to be relief of strain built-up in the π···π interactions rather than minimisation of
the molar volume. The triclinic phase persists up to 8.1 GPa.
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1. Introduction

Hydrogen bonded solids were amongst the first organic systems of any complexity to be studied
at high pressure. One of the first studies concerned hydrogen-bonding in oxalic acid [1], and a
substantial body of work now exists which demonstrates that hydrogen-bonded systems are highly
sensitive to pressure, exhibiting extensive phase diversity on compression, the amino acids having
been studied particularly thoroughly [2–4]. A notable example of the effect of pressure is in migration
of the proton positions between the hydrogen-bond donor-acceptor sites in the oxalic acid dihydrate
and in cyclohexane-1,3-dione [5–7].

Other similar classes of interaction, such as the analogous halogen bond, R-X···D (where R = organic
group, X = halogen, D = nucleophilic site) [8], which have the potential to be highly sensitive to
pressure, have been more lightly investigated. Of the 2715 high pressure structures deposited in
the Cambridge Structural Database (CSD) (v5.40, November 2018), only 41 exhibit halogen bonding.
Interest in the area mainly concerns the role of halogen bonding in polymorphism [9,10] and in charge
transfer properties of materials [11,12]. In crystal engineering the halogen bond has a propensity to be
highly directional, and it has been used to direct chain formation in polymerisation reactions at high
pressure [13]. The σ -hole (a region of positive electrostatic potential on the halogen atom) [14] forms
along the axis of the covalent bond and directs intermolecular interactions with the nucleophile to be
linear (R-X···D = 180◦). The degree of atomic separation and interaction energies are affected by the
electrostatic potential of the sigma hole, which can be tuned by changing the electron withdrawing
affinity of the R-group, or by substituting the halogen atom for another which leads to a plethora of
compounds with halogen bonding [15–17].

Halogen bond interactions between N and I have been identified as a potential candidates for
high-pressure studies as they have already been shown to be sensitive to variations in temperature [18].
The high polarizability of iodine makes its bonding highly flexible. For example, elemental iodine,
which at ambient pressure contains semi-conducting planes of donor-acceptor interactions (I···I = 3.50
and 3.97 Å, where 2× the van der Waals radius of I is 4.08 Å [19]), transforms to a metal at 16 GPa [20].
In the context of other metallisation transitions in the main-group elements, this is quite a modest
pressure. Very recently compression beyond 10 GPa of the organic polyiodide salt tetraethylammonium
diiodine triiodide has been shown to lead to an insulating-to-semiconducting transformation driven
by donor-acceptor bond formation between iodine molecules and tri-iodide anions [21].

The I···N intermolecular distance in 4-iodobenzonitrile (Scheme 1) is 3.168(4) Å which is
substantially shorter than the sum of the van der Waals radii (3.70 Å) [19]. In this paper we
describe the effects of pressure on this interaction up to 8.1 GPa with the aim of characterising its
sensitivity to compression.
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2. Results and Discussion

2.1. Ambient Pressure Structure and the First Coordination Sphere

4-Iodobenzonitrile crystallises in phase I at ambient conditions from dichloromethane or a
mixture of methanol and ethanol and at high pressure (0.6 GPa) from methanol-ethanol. The crystal
structure of 4-iodobenzonitrile has been determined previously by Schlemper and Britton in 1965 [22],
and subsequently by Desiraju and Harlow in 1989 [23]. The structure has also been compared with
those of other iodobenzene derivatives by Merz [24]. The space group is I2/a, with the four molecules
in the unit cell residing on crystallographic two-fold axes. The intermolecular contacts are listed in
Table 1, where contacts are labelled A-L in order of energy as calculated by PIXEL.

Molecules related by unit cell translations along b (molecules G and H in Table 1) are linked by
I···N halogen bonding interactions into an exactly linear chain, with a contact distance of 3.168(4) Å
and a total intermolecular energy of −10.8 kJ mol−1 (Figure 1a). Note that this is not the strongest
interaction in the structure. For comparison, Carlucci and Gavezzotti reported a dimer energy of
−14.3 kJ mol−1 for the interaction involving the I···N contact (at 3.1 Å) in the pyrazine-iodobenzene
cocrystal [15].

The Raman spectra of 4-iodobenzonitrile are shown as a function of pressure in Figure 2 with
an expansion of the lattice mode region at ambient pressure in Figure 3a, where the experimentally
measured spectra are in black with the positions and intensities of the modes calculated by periodic
DFT in red. The DFT frequencies, which are unscaled, reproduce the experimental values within
20 cm−1, while the intensities are less reliably reproduced, as is usual. The DFT results indicate that the
strong bands between 50 and 100 cm−1 are whole-molecule rocking motions. The calculations also
indicate that there are three Raman active modes at 229 (intensity 8 Å4 amu−1), 233 (186) and 241 (16)
cm−1, which agrees with the three observed modes at 230, 237 and 243 cm−1). Of these, the central
band has Ag symmetry in the C2h point group of the crystal lattice and can be described as a mixture
of C-I and I···N stretching modes; the other two modes have Bg symmetry. There are two molecules
in the primitive setting of the unit cell and the corresponding anti-symmetric mode is only infra-red
active (calc. 235 cm−1, Au symmetry).

Each halogen-bonded chain in the crystal structure is surrounded by six others, with offset π···π
stacking and other dispersion-based interactions between them which range in energy from −6.8
to −12.6 kJ mol−1 (Figure 1b). The shortest contacts between the chains are between C4H4···I1 and
C4H4···N7 at ca. 3.3 Å in molecules A to F which have total molecule-molecule energies of −12.6
and −11.7 kJ mol−1. Contacts to molecules I and J involve longer C4H4···I interactions at 3.59 Å and
have energies of −7.6 kJ mol−1. The longest contacts are formed in offset π···π stacking interactions,
at 4.040(2) Å in molecules K and L, with total molecular interaction energies of −6.8 kJ mol−1.

Overall the first coordination sphere contains 12 molecules broken down into four pairs and
one quartet of symmetry related interactions to give five unique dimer pairs. Each molecule is
surrounded by six others forming a layer with three molecules above and three below the layer to give
an approximately cubic close packed underlying topology (Figure 4).
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Table 1. PIXEL calculated dimer interaction energies of the phase I polymorph at 0.0 GPa. All energies are in kJ mol−1.

Label Centroid Distance (Å) Symmetry Coulombic Polarization Dispersion Repulsion Total Contacts

A 7.398 −1/2+x,1/2+y,−1/2+z −8.4 −3.2 −10.6 9.6 −12.6 I1···H4C4 = 3.29 Å
B 1/2+x,−1/2+y,1/2+z
C −1/2+x,−1/2+y,−1/2+z
D 1/2+x,1/2+y,1/2+z
E 5.864 1/2−x,3/2−y,1/2−z −7.6 −3.1 −12.6 11.6 −11.7 2 × long N7···H4C4 =
F 1/2−x,3/2−y,3/2−z 2 × 3.27 Å
G 10.592 x,−1+y,z −19.0 −6.6 −8.8 23.6 −10.8 I1···N7 = 3.168(4) Å
H x,1+y,z
I 8.248 1/2−x,1/2−y,1/2−z −5.4 −2.0 −12.5 12.3 −7.6 2 × long I1···H3C3 =
J 1/2−x,1/2−y,3/2−z 2 × 3.59 Å
K 4.205 1−x,1−y,1−z −15.7 −5.8 −30.9 45.6 −6.8 Cg···Cg = 4.040(2) Å
L −x,1−y,1−z
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Figure 2. Raman spectra collected on compression of 4-iodobenzonitrile over the entire spectral range 
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Figure 3. Comparison of the lattice phonon regions in the Raman spectrum of 4-iodobenzobitrile. (a) 

Phase I at ca. ambient pressure. Black: measured at 0.08 GPa in a diamond anvil cell, red: calculated 

form the ambient-pressure crystal structure by periodic DFT. (b) Phase II at ca 5.5 GPa. Black: 

measured at 5.29 GPa, red: calculated from the crystal structure at 5.49 GPa. 

Figure 1. (a) ORTEP style plot of 4-iodobenzonitrile and the numbering scheme used in this study.
The atom numbering scheme in phase II is the same as that of phase I but the symmetry generated C3
and C4 become C9 and C8, respectively. Ellipsoids are drawn at the 50 % probability level. (b) Molecular
chains formed along b surrounded by six neighbouring chains.
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Figure 3. Comparison of the lattice phonon regions in the Raman spectrum of 4-iodobenzobitrile.
(a) Phase I at ca. ambient pressure. Black: measured at 0.08 GPa in a diamond anvil cell, red: calculated
form the ambient-pressure crystal structure by periodic DFT. (b) Phase II at ca 5.5 GPa. Black: measured
at 5.29 GPa, red: calculated from the crystal structure at 5.49 GPa.
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2.2. Response of Phase I to Pressure

The energies of the five unique dimers observed between ambient pressure and 5.0 GPa are
plotted as a function of centroid separation in Figure 5, which also shows the structure of each dimer.
Dimer energies at 5.0 GPa are listed in Table 2. There is a pronounced response to pressure in terms of
total interaction energies in pairs E and F (∆E = +10.2 kJ mol−1); G and H (∆E = +7.5 kJ mol−1); and,
K and L (∆E = +34.9 kJ mol−1).
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Table 2. PIXEL calculated dimer interaction energies of the phase I polymorph at 5.0 GPa, immediately below the phase transition. All energies are in kJ mol−1.

Label Centroid Distance (Å) Symmetry Coulombic Polarization Dispersion Repulsion Total Contacts

A 7.009 −1/2+x,1/2+y,
−1/2+z −19.5 −10.7 −20.3 35.6 −14.9 I1···H4 = 2.88 Å &

B 1/2+x, −1/2+y,1/2+z N7···H3 = 2.83 Å

C −1/2+x, −1/2+y,
−1/2+z

D 1/2+x,1/2+y,1/2+z
E 5.349 1/2−x,3/2−y,1/2−z −28.0 −14.6 −29.6 73.7 1.5 2 × long N7···H3C3 = 2 × 2.90 Å
F 1/2−x,3/2−y,3/2−z 2 × N7···H4C4 = 2 × 2.84 Å
G 10.239 x, −1+y,z −43.7 −17.5 −15.3 73.2 −3.3 I1···N7 = 2.840(1) Å
H x,1+y,z
I 7.862 1/2−x,1/2−y,1/2−z −24.0 −10.4 −27.4 54.4 −7.4 2 × I1···H3C3 = 2 × 3.09 Å
J 1/2−x, 1/2−y, 3/2−z
K 3.781 1−x,1−y,1−z −78.7 −28.4 −65.2 200.4 28.1 Cg···Cg = 3.593(6) Å
L −x,1−y 1−z



Molecules 2019, 24, 2018 8 of 23

The least sensitive of these involve the I···N interactions to molecules G and H. The I···N contact
shortens from 3.168(4) to 2.840(1) Å between ambient pressure and 5 GPa (Figure 6a). The Coulombic
energy is the largest term in these contacts and the overall molecular interaction remains slightly
stabilising at 5.0 GPa with a total energy of −3.3 kJ mol−1. The frequency of the symmetric C-I/I···N
stretch increases with pressure, a reflection of the stiffening of intermolecular potentials as the molecules
are pushed into closer proximity, reaching a value of 249 cm−1 at 4.3 GPa (the highest-pressure Raman
measurement in phase I).

The contact which is most sensitive to pressure is with molecules K and L which interact via π···π
interactions which shorten from 3.6420(8) to 3.139(4) Å (Figure 6b). The overall interaction energy
becomes quite destabilising at 5.0 GPa as the molecules are forced into a strongly repulsive regime
(total interaction energy = +28.1 kJ mol−1).
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Figure 6. (a) Change in the axial I···N distance relating to contacts G and H as a function of pressure.
Circles represent ex-situ data and squares represent in-situ data. The contacts remain related by
symmetry in both phases. (b) The change in π···π stacking distances between the layers in contacts K
and L as a function of pressure. Circles represent ex-situ collected data and squares in-situ collected
data. K (blue) and L (purple) contacts split into two symmetry independent contacts in phase II.

Of the remaining interactions, E and F which involve CH···N interactions which shorten from
3.27 to 2.84 Å, are also quite sensitive to pressure. Dispersion is the largest energy term in these
contacts, but the Coulombic contribution is also significant. Interaction energies in contacts A to D
and I and J, are characterised by CH···I interactions and hardly change with pressure at all. C4H4···I7
interactions shorten from 3.29 to 2.88 Å and C3H3···I7 interactions shorten from 3.59 to 3.09 Å to 5.0
GPa, and the total energies change by only −2.3 kJ mol−1 and +0.2 kJ mol−1, respectively. Molecules A
to D, characterised by C4H4···I7 interactions, are the only contacts seen to strengthen, albeit slightly.

The structural response to pressure thus favours compression of the weaker π···π interactions over
the I···N halogen bond. The distinction is reflected in the changes in the unit cell dimensions.

2.3. Unit Cell Compression

The π···π offset stacking interactions (molecules K and L), which show the largest decrease in
distance with pressure, are expressed along the a− and c−axes, which compress by 12.3 and 10.9% up
to 5.0 GPa. The least compressible interactions (I···N) are generated by lattice translations along b,
and this axis compresses by only 3.3% (Figure 7a). A fit of the variation of unit cell volume of phase
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I with pressure to a third order Birch-Murnaghan equation of state (EOS) is given in Figure 7b and
yields a bulk modulus K0 = 6.5(6) GPa, with a pressure derivative K’ = 8.9(11).
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Figure 7. (a) Plot of unit cell parameters as a function of pressure. Ex situ crystal data are shown
as circles and in situ crystal data are shown as squares. (b) Molecular volume of all phase I data,
black circles, fitted to a 3rd order Birch-Murnaghan EOS and extrapolated to 5.7 GPa (red-dashed
line). Phase II data are shown as red triangles. Error bars are obscured by data markers and the phase
boundary is indicated by a dashed line in both figures.

A small bulk modulus (<10 GPa) is typical of soft materials where dispersion forces dominate
intermolecular interactions e.g., naphthalene and Ru3(CO)12 have values of 8.3(4) and 6.6 GPa,
respectively [25,26]. Flexible intramolecular torsion angles can provide an additional mechanism for
compression, as seen in the P and OP polymorphs of the prodigiously polymorphic compound ‘ROY’
(5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile), for which K0 = 6.0(7) and 4.3(3) GPa,
respectively [27,28]. It assumes a higher value if additional intermolecular interactions such as
H−bonding is present, e.g., the value for hydroquinone-formic acid clathrate is K0 = 13.6(4) GPa [29],
and that of melamine is 12.0(5) [30]. Materials characterised by a mixture of dispersion and weaker
H-bonds and have correspondingly lower bulk moduli, e.g., aniline (phase II) is 5.4(2) [31].

2.4. Formation of Phase II

Phase I transforms to a new high-pressure polymorph (phase II) at 5.5 GPa, with sharp
discontinuities in the unit cell dimensions (Figure 7a). Phase II is triclinic (P1) with two molecules in
the unit cell. The phase transition from phase I to II tended to lead to fragmentation of a single crystal
of phase I. After some experimentation (see Section 4.2) a well-diffracting single crystal of phase II
was obtained by in situ crystal growth in methanol-ethanol, followed by rapid increase in pressure to
8.1 GPa; the structure of phase II was solved from this data set. The solution was used to model the
data obtained from a fragmented crystal at 5.5 GPa.

The phase transition causes the crystal to darken in colour (Figure 8a), accompanied by a marked
decrease in resistance (Figure 9). However, the UV-visible spectra shown in Figure 10 indicate neither
a significant redshift of the absorption edge nor any new absorbance features between 300 and 800 nm
up to 8 GPa. The only changes occur in the background, which is related to the presence of light
scattering by the sample.
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Figure 8. Crystals used in this study: (a) Ex situ crystal loaded in methanol-ethanol (Section 4.2i),
the crystal transparency reduction is apparent at 5.21 GPa. (b) In situ crystal growth from melting the
initial polycrystalline mass to 420 K and allowing to cool to room temperature repeatedly (Section 4.2iii).
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Figure 9. Resistance of polycrystalline 4-iodobenzonitrile as a function of pressure. A drop from 1010 to
8 × 109 Ω occurs at the phase transition. The precipitous drop beyond 6 GPa comes from interference
from the gasket.
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Figure 10. On the left: UV-Vis absorption spectra of 4-iodobenzonitrile as a function of pressure. On the
right: images of the hydrostatic chamber with the sample and ruby spheres. The crystal does not
completely recover its integrity after pressure release.

The creation of crystal domains, usual in reconstructive first order phase transitions involving
anisotropic structures, gives rise to multiple scattering with the walls of the domains resulting in a clear
darkening on the sample. Therefore, the sample darkening is not related to a change in band structure,
but rather to formation of very small domains as the crystal passes through the phase transition.
The change in microstructure reduces the transmittance of the sample by two orders of magnitude
(Figure 10).

This conclusion is supported by the band structures of 4-iodobenzonitrile at 5, 5.5 and 8.1 GPa,
shown in Figure 11. It is evident that each of the phases is an insulator, with calculated thermal
bandgaps of 2.8 eV at 5 GPa, reducing to 2.5 eV at 8.14 GPa. These values will be underestimated
compared to the true bandgap owing to the use of the PBE functional. Overall, the band structures
show relatively flat bands, demonstrating that there is little dispersion in the crystal and that the bands
can be viewed as molecular orbitals. The projected densities of states illustrate this, showing that each
atomic species is responsible for the make-up of the bands. Interestingly, upon increasing pressure,
the contribution of iodine to the HOMO band is markedly increased.
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Figure 11. Band structure and electronic density of states of 4-iodobenzonitrile at (a) 5 GPa, (b) 5.5 GPa
and (c) 8.14 GPa. The density of states are shown projected onto their atomic species where
hydrogen—black, carbon—red, nitrogen—green and iodine—blue.

The clearest effect of the phase I→ II transition on the Raman spectra (Figure 2) is an increase in
intensity in the bands above 1500 cm−1 that correspond to a mixture of CC stretches and CCH bends in
the phenyl group. The results of the DFT calculations indicate that a doubling of the intensity in this
region would be expected, and the larger enhancement seen in the spectra in Figure 2 may additionally
reflect the influence of sample orientation. The changes below 250 cm−1 are more dramatic, with the
whole-molecule rocking region now extending beyond 200 cm−1 (Figure 3b). Three modes persist in
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the 250 cm−1 region, now all of the same symmetry (Ag). The calculated frequency values, 248 cm−1

(intensity 131 Å4 amu−1), 254 (93) and 277 (33) agree within 10 cm−1 with the observed positions at 252,
263 and 282 cm−1. Animations of the modes indicate that the C-I/I···N stretch remains localised in the
first, and strongest, of these bands. The other two modes are in- and out- of plane oscillations which
cause bending at the I···N interaction.

High-pressure phases are occasionally recoverable at ambient pressure (some recent examples
being glycolide, [32] mefanamic [33] and δ-p-aminobenzoic acids [34]). However, the Raman spectrum
collected on complete pressure release resembles the ambient pressure single-crystal spectrum,
indicating that the transition is reversible. The optical transmittance of the sample also recovers,
but only partially (Figure 10).

2.5. The Crystal Structure of Phase II

Pressures below 10 GPa can lead to significant changes in intramolecular bonding interactions
organic materials, as was the case for example in syn-1,6:8,13-biscarbonyl [14] annulene [35]. In the
present study control of the ratio of the numbers of data to refined parameters meant that it was
necessary to apply restraints to the intramolecular bond distances and angles, and so it is not possible
to determine if there are major changes in these parameters with pressure. This said, the nitrile group
appears to be quite non-linear at 5.5 GPa with <C5−C6−N7 = 169(2)◦. The non-linearity persisted
when the structure of phase II was optimised by periodic DFT, with a magnitude which is smaller
(4.4◦) and more similar to the value 4(3)◦ obtained at 8.1 GPa. It is possible that the larger experimental
value at 5.5 GPa is a consequence of the relatively low data quality obtained from the fragmented
sample (R1 = 11.1%).

Phase II exhibits the same four classes of short contact found in phase I (π···π, CH···I, CH···N and
I···N) as well as some additional I···π and H···H contacts. The energetically most significant dimer
interactions in are shown in Figure 12, with energies listed in Table 3. The contacts in Table 3 are
labelled so that molecule A in phase II occupies a similar position in the first coordination sphere as
molecule A in phase I etc. The contact labels in the two phases can thus be correlated directly (Figure 4).
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Table 3. PIXEL calculated dimer energies of the phase II polymorph at 5.5 GPa, immediately above the phase transition. All energies are in kJ mol−1.

Label Centroid Distance (Å) Symmetry Coulombic Polarization Dispersion Repulsion Total Contacts

A 7.728 x,y,1+z −17.8 −8.9 −18.3 32.6 −12.5 I1···H4 = 2.94 Å &
B x,y,−1+z N7···H9 = 2.77 Å
C 5.692 −1+x,y,z −37.5 −17.4 −40.7 98.6 3.0 I1···H8C8/H9C9 = 2.98/3.07 Å &
D 1+x,y,z H3···H8 = 2.38 Å
E 5.242 2−x, 1−y,1−z −25.4 −15.1 −31.2 71.6 −0.1 2 × N7···H3 = 2 × 2.88 Å &

H4···H8 = 2 × 2.44 Å
F 6.474 3−x,−y,1−z −24.3 −9.4 −18.5 34.0 −18.2 2 × N7···H8 = 2 × 2.50 Å
G 10.292 −1+x,y,−1+z −33.9 −13.7 −13.2 55.3 −5.6 I1···N7 = 2.928(10) Å
H 1+x,y,1+z
I 8.287 1−x,1−y,−z −14.9 −8.6 −23.8 41.1 −6.3 2 × I1···H3 = 2 × 3.09 Å
J 7.240 2−x,−y,−z −29.8 −17 −31.1 72.6 −5.2 2 × I1···H9 = 2 x2.87 Å
K 4.894 2−x,1−y,−z −70.5 −23.6 −56.8 172.5 21.6 2 × I1···Cg = 3.38(2)
L 3.337 2−x,−y,1−z −59.6 −24.2 −57.7 188.3 46.7 Cg···Cg = 3.530(8) Å &

I1···N7 = 3.33(2) Å
M 7.832 3−x,1−y,1−z −1.8 −0.7 −2.6 0.6 −4.4 long N7···N7 = 4.10(4) Å
N 10.011 1−x,−y,−z −4.6 −1.4 −7.3 11.8 −1.5 long I1···I1 = 4.241(7) Å
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Like phase I, the structure of phase II consists of chains of molecules which interact via I···N
interactions (G and H). The chains are no longer strictly linear [<C2I1···N7 = 166.2(5)◦] and the I···N
distance increases over the course of the transition from 2.840(1) Å in phase I at 5.0 GPa to 2.928(10)
Å in phase II at 5.5 GPa. Even at 8.1 GPa the distance is 2.90(2) Å (Figure 6a). The energy of the
interaction does not change by much: −3.3 kJ mol−1 in phase I at 5.0 GPa and −5.6 kJ mol−1 in phase
II at 5.5 GPa. These figures are lower than in a range of ambient-pressure structures with differing
sigma−hole strengths in which the I···N distances varied between 2.95 and 3.15 Å and the energies
from −30.2 to −15.1 kJ mol−1 [15]. Consistent with the modest strengthening, the frequency of the
C-I/I···N stretching mode is similar but slightly higher than at 4.3 GPa (252 versus 249 cm−1).

Each chain is surrounded by six other chains. The four equivalent inter-chain interactions of
phase I labelled A-D and mediated by short I···H and N···H contacts split in phase II into two pairs of
contacts. The A/B pair is similar to phase I, but C and D become off-set stacking interactions with a
shorter centroid-centroid distance and a slightly destabilising energy. The pair of antiparallel off-set
stacking interactions E/F in phase I split into two inequivalent contacts in phase II. Contact E is similar
to that in phase I, but interaction F becomes longer and more coplanar. The change in contact F is
partly responsible for driving the phase transition (see below).

The degenerate pair of contacts I and J in phase I split into symmetry-inequivalent interactions
in phase II, but their character and energies are largely unaffected. The pair of antiparallel stacking
contacts K/L in phase I, which become strongly destabilising in phase I at 5.0 GPa, split into two
stacking interactions (Figure 6b). In contact K the C–I bond of one molecule moves above the phenyl
ring of the other, with the slippage between the rings changing from 1.747 to 3.056 Å. The stacking
distance increases from 3.139(4) to 3.353(6) Å, and the energy becomes less positive. In L the slippage is
slightly smaller (1.614 Å) with an unchanged stacking distance of 3.139(6) Å and the interaction energy
becomes more positive.

Two new long contacts where the shortest distances are formed between pairs of iodine and
nitrogen atoms also emerge as two additional molecules (M and N) enter the first coordination sphere.
The interactions are long [N7···N7 = 4.10(4) Å in M and I1···I1 = 4.241(7) Å in N] and the energies are
small but stabilising. The first coordination sphere in phase II thus contains fourteen molecules. It is
like that of Phase I, with a central six molecule layer but now with four molecules above and four
molecules below the central layer instead of three, resulting in a change of the underlying topology
from pseudo cubic close packed in phase I to body centred cubic in phase II (Figure 4b).

2.6. The Driving Force of the Phase I-to-II Transition

The orientation matrices for the diffraction patterns obtained before and after the transition yield
the following relationship between the basis vectors of phases I and II:

−0.478 0.403 −0.423
0.470 0.421 0.917
0.512 0.499 −0.189


The patterns were measured at different pressures (5.0 and 5.5 GPa), but the elements of this matrix

are still rather far from rational fractions, meaning that there is not a simple symmetrical relationship
between the phases. This is further evidence that the phase transition is first order and reconstructive,
supporting the conclusions made in Section 2.4.

The extrapolated molecular volume of phase I at 5.5 GPa is 137.3(3) Å3. The observed value of the
molecular volume at 5.5 GPa is the same, within error, at 137.6(3) Å3. The negligible change in molecular
volume at the phase transition is significant because it indicates that, unlike most high-pressure phase
transitions, the dominating thermodynamic factor is not volume minimisation. The volume in phase
II at 8.1 GPa appears to lie on the same trend-line as those in phase I, but with only two data points
available it is not possible to determine an equation of state for phase II.
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In order to identify the likely ‘driving force’ of the phase transition the intermolecular interaction
energies in phase I were calculated using a structure in which the unit cell dimensions of phase I
were extrapolated to 5.5 GPa using third-order Birch-Murnaghan equations of state (EoSFIT) [36].
The estimated cell dimensions were a = 6.7923 Å, b = 10.2202 Å, c = 8.0533 Å andβ= 100.7◦. The structure
was optimised by periodic DFT, and intermolecular energies calculated using PIXEL. Intermolecular
energies were likewise calculated following optimisation of the experimentally-determined phase II
structure at the same pressure. The lattice energy of phase I was +4.1 kJ mol−1 and that of phase II
−0.9 kJ mol−1, reproducing the expected energetic ordering of phases I and II at the phase transition.
The difference in DFT energies was −0.2 kJ mol−1.

A comparison of contact energies within the first coordination sphere (Table 4, a more detailed
listing is available in the ESI, Table S3) shows that overall the contacts in phase II are more stabilising
by 12.9 kJ mol−1. The largest stabilising changes over the course of the I to II transition occur for the
contacts F and K. In both cases the stabilising components of the molecule-molecule energies become
less negative, but at the same time the repulsion terms also become less positive (a full breakdown
given in Table S4 in the ESI). Both effects can be traced to the larger centroid-centroid separations for
the contacts in phase II, contact F changing from 5.38 to 6.61 Å and K from 3.73 to 4.81 Å.

Table 4. Comparison of energies within the first coordination spheres in phases I and II at 5.5 GPa.
Energies are in kJ mol−1 and distances are in Å. Both structures were optimised by periodic DFT and
the energies calculated using PIXEL.

Phase I at 5.5 GPa Phase II at 5.5 GPa
∆(II-I)

Contact Distance Total Energy Contact Distance Total Energy

A 6.984 −13.8 A 7.728 −12.2 1.6
B 6.984 −13.8 B 7.728 −12.2 1.6
C 6.984 −13.5 C 5.692 1.2 14.7
D 6.984 −13.5 D 5.692 1.2 14.7
E 5.381 3.4 E 5.296 −4.9 −8.3
F 5.382 2.5 F 6.606 −18.6 −21.1
G 10.22 −0.1 G 10.292 −6.3 −6.2
H 10.22 −3.7 H 10.292 −6.3 −2.6
I 7.774 −5.3 I 8.145 −6.1 −0.8
J 7.774 −5.3 J 7.158 −4.9 0.4
K 3.729 33.1 K 4.805 16.8 −16.3
L 3.729 35.3 L 3.375 50.4 15.1

M 7.962 −3.7 −3.7
N 9.878 −2.0 −2.0

Totals 5.3 −7.6 −12.9

Both contacts F and K are destabilising in phase I at 5.5 GPa. After the transition F becomes
stabilising, while K remains destabilising but less so than in phase I. The transition can thus be described
as being driven by relief of interactions that had become destabilising on compression of phase I.

3. Conclusions

Taylor has compared the frequency of occurrence of intermolecular contacts in crystal structures
to the frequency expected if determined solely by the exposed surface areas of atoms [37]. Highly
preferred interactions occur much more often than would be expected on the basis of random packing
arrangements, an effect which can be quantified with a metric RF which adopts a value of > 1 if
interactions are formed more frequently than would be expected by chance. Hydrogen bonds have the
highest values of RF, occupying 9 out of the top 10 highest-ranked interactions, for example H-bonds
to Br−, oxygen and sulfur are 10.9, 5.8 and 2.9, respectively. The I···N halogen bond, for which RF =
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5.4, is the only non-hydrogen bond to occur in Taylor’s Top Ten, with a similar frequency to H-bonds
involving oxygen and nitrogen.

4-Iodobenzonitrile is ideal for studying the mechanical properties of this, the most
consistently-formed, halogen bond because it forms crystals in which I···N bonds are exactly aligned
with the b-axis of its monoclinic unit cell. Symmetry, in the form of Neumann’s Principle, demands
that this direction must be one of the principal directions of anisotropic strain. Therefore comparing
compression along b with that along a and c enables the response to pressure of the I···N halogen bond
to be compared directly to that of interactions mediated by other common classes of interaction such as
π-stacking and CH···N and CH···I contacts. The gradients of the lines in the ‘phase I’ panel of Figure 7a
graphically illustrate the low compressibility of the I···N bonds compared to the other contacts in the
crystal structure.

Even though the I···N interaction is the least compressible interaction, that does not mean that it is
the strongest. PIXEL calculations show that molecule-molecule energy within the halogen-bonded
chains is essentially the same as in the more compressible contacts (Table 2). The response of different
contacts to pressure measures their deformability rather than their strength (i.e. energy), characterising
the shape of an intermolecular potential rather than its depth. Deep wells are not necessarily steep wells.

PIXEL calculations show that the Coulombic contribution to the I···N interaction is twice that of
the dispersion term, and that this weighting increases with pressure. Dispersion is the largest term in
the other contacts, but here too, the contribution of electrostatics increases with pressure. Interactions
which are dominated by dispersion are often found to be deformable because dispersion imposes
no directional restrictions, whereas there is usually a distinct orientational preference in electrostatic
interactions, the linear geometry of the halogen bonding studied here, for example, being dictated by
the spatial characteristics of the lone pair on N and σ-hole on I. However, the halogen bond remains
linear up to 5 GPa and its incompressibility may simply reflect that at ambient pressure the I···N
distance is already 0.36 Å within the sum of the van der Waals radii of I and N, a figure which rises to
0.69 Å at 5 GPa. There is thus less ′room for manoeuvre′ than in the other interactions for which the
minimum figure is 0.30 Å even at 5 GPa.

The I···N interaction remains stabilising (just) throughout the pressure range of this study.
The same is not true of the N···H and π-stacking interactions, which have become destabilising at
5 GPa. On increase of pressure to 5.5 GPa the monoclinic phase 4-iodobenzonitrile undergoes a phase
transition to a triclinic phase. The I···N-linked chains become less linear, but the PIXEL calculations
show that the transition is driven by relief of the destabilising N···H and π-stacking interactions.
The reduction in molecular volume which must occur at the transition is within the precision of our
measurements, the apparent small increase relative to the extrapolated phase I volume is just statistical
noise. Unlike most other high-pressure phase transitions (e.g., in mephodrone hydrogen sulfate [38]
or L-serine [39,40]) the one in 4-iodobenzonitrile thus appears to be driven by the contribution of the
intermolecular interactions to the free energy rather than the P∆V term; a similar feature was observed
in a phase transition in salicylaldoxime [41].

4. Experimental

4.1. High-Pressure Experiments

Single crystal X-ray diffraction, Raman and UV-Vis absorption spectroscopy at high pressure were
performed in Merrill-Bassett or Boehler-Almax type diamond anvil cells (DACs) equipped with 0.6 mm
culet type Ia Boehler-Almax cut diamonds. Tungsten gaskets with holes of diameter 0.25–0.35 mm and
thickness 0.1–0.12 mm formed the sample chambers and the hydrostatic pressure transmitting media,
were either 1:1 n-pentane:isopentane, 4:1 methanol-ethanol or spectroscopic paraffin oil. Pressures
were determined by the ruby fluorescence method [42].



Molecules 2019, 24, 2018 17 of 23

4.2. Recrystallizations and Compression Conditions

Over the course of this work the response of 4-iodobenzonitrile to high pressure was studied
under four different sets of conditions.

(i) Ex situ crystal growth followed by compression in pentane-isopentane: 4-Iodobenzonitrile (97%,
Sigma-Aldrich, Irvine, UK) was first recrystallized by solvent diffusion of n-pentane in dichloromethane
solution to give colourless, rectangular-prismatic crystals of the ambient-pressure phase (phase I).
Initial ambient and high-pressure X-ray diffraction data were collected on a crystal of dimensions
0.1 × 0.2 × 0.2 mm3 in n-pentane:iso-pentane to 5.0 GPa using a lab source diffractometer (see below).
Beyond 5.0 GPa the sample darkened in colour and diffraction quality decreased dramatically (Figure 8a)
but there was nevertheless some evidence of crystallinity in the form of weak diffraction at low angle.
A second series of measurements was therefore carried out using methanol-ethanol as a hydrostatic
medium with the aim of obtaining better quality data above 5 GPa [43].

(ii) Ex situ crystal growth and compression in methanol-ethanol: 4-Iodobenzonitrile was recrystallized by
slow evaporation of a 4:1 methanol-ethanol solution to give colourless, rectangular prism shaped
crystals of phase I. Ambient and high-pressure X-ray diffraction data were collected using a crystal
(0.1 × 0.1 × 0.1 mm3) and the mother liquor from the crystal growth as the pressure- transmitting
medium. Data were collected to 5.5 GPa using synchrotron radiation (see below). A new phase
(phase II) formed at 5.5 GPa but the sample contained numerous quite weakly-scattering domains.
We therefore turned to in situ crystal growth with the aim of obtaining an improved data set.

(iii) In situ crystal growth and slow compression in methanol-ethanol: A 4-iodobenzonitrile in 4:1
methanol-ethanol solution was loaded in a DAC to give a polycrystalline mass on compression
at 0.5 GPa. A colourless crystal measuring 0.12 × 0.18 × 0.22 mm3 was obtained by repeatedly heating
the DAC to 420 K and cooling to room temperature (Figure 8b). High-pressure X-ray diffraction data
were collected to 4.9 GPa in ca. 0.9 GPa steps using synchrotron radiation. The crystal broke apart
above 5 GPa and no discernible diffraction data could be obtained.

(iv) In situ crystal growth followed by rapid compression in methanol-ethanol: A small single crystal (~0.05
mm3) was regrown in situ but rapidly compressed to 8.1 GPa from ambient pressure in one step.
High-pressure diffraction measurements were performed immediately on a lab source diffractometer
to give sufficiently good data for structure solution and refinement of phase II.

4.3. Single Crystal X-ray Diffraction

Single crystal diffraction data were collected using both sealed-tube and synchrotron X-radiation.
The synchrotron data were collected on Beamline 11.3.1 at the Advanced Light Source on a D8
diffractometer (Bruker, Madison, WI, USA) with silicon (111) monochromated synchrotron radiation,
wavelength 0.7749 Å (energy = 16.5 keV) and PHOTON-II detector. Shutterlessω-scans with different
2θ and φ-offsets were performed at step widths of 0.3◦ with exposure times of 1 s. The sealed-tube
data sets were collected using a Bruker APEX-II diffractometer with graphite monochromated Mo-Kα
radiation (λ = 0.71073 Å) and exposure times of 30 s.

Diffraction images were integrated using SAINT with dynamic masks generated by ECLIPSE to
mask shaded detector areas [44,45]. The multi-scan procedure SADABS [46] was used to treat cell and
sample absorption errors. The structure of phase I was solved using dual-space methods (SHELXT) [47]
and that of phase II at 8.1 GPa by simulated annealing (DASH) [48]. Structures were refined by
full-matrix least-squares on |F|2 (SHELXL) [49] using the ShelXLe graphical user interface [50].

Non-hydrogen intramolecular bond distances in each high-pressure model were restrained to
those of the ambient temperature-pressure structure. In phase I the molecule has. 2. site symmetry;
in phase II it occupies a general position but was restrained to have C2v symmetry during refinement.
Only the iodine atom was refined with anisotropic displacement parameters, with the light-atoms
restrained to have similar isotropic displacement parameters in the high-pressure structure refinements;
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the ambient temperature-pressure structure was refined with anisotropic displacement parameters
for non-hydrogen atoms. All H-atoms were placed in calculated positions and allowed to ride on
their parent atoms. The phase I to II transition is reconstructive and there is no rational geometric
relationship between the lattices (see Section 2.6); it was found unnecessary to model twinning in
phase II.

Crystal and refinement data immediately below and above the phase transition are collected in
Table 5, a full set of parameters for the 18 data sets collected over the course this study is available in the
electronic supplementary information (ESI). CCDC 1911442-1911459 also contains the supplementary
crystallographic data for this paper. These data can be obtained free of charge online [51].

Table 5. Experimental details for the ambient pressure structure, and structures immediately below
and above the phase transition. For all structures: C7H4IN, Mr = 229.01. Experiments were carried out
at 298 K. H-atom parameters were constrained. CCDC deposition numbers for the structures listed are
1911442, 1911457, and 1911458.

Pressure (GPa) 0.00 5.00 5.49

Phase I I II
Crystal data
Crystal system, space group Monoclinic, I2/a Monoclinic, I2/a Triclinic, P1
a, b, c (Å) 7.788 (2), 10.592 (3), 9.086 (3) 6.8316 (3), 10.2395 (6), 8.0931 (18) 5.692 (5), 6.9674 (11), 7.7283 (12)
α, β, γ (◦) 90, 104.934 (9), 90 90, 100.696 (7), 90 65.412 (13), 80.98 (4), 87.77 (3)
V (Å3) 724.2 (4) 556.29 (13) 275.1 (3)
Z 4 4 2
Radiation type Synchrotron, λ = 0.7749 Å Mo Kα Synchrotron, λ = 0.7749 Å
µ (mm−1) 5.39 5.63 7.09
Crystal size (mm) 0.20 × 0.02 × 0.02 0.20 × 0.10 × 0.10 0.1 × 0.1 × 0.1
Diffractometer Bruker D8 with Photon II detector Bruker APEX 2 Bruker D8 with Photon II detector
Tmin, Tmax 0.533, 0.746 0.601, 0.745 0.390, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections

3052, 741, 703 1028, 192, 189 549, 236, 197

Rint 0.027 0.039 0.041
(sin θ/λ)max (Å−1) 0.626 0.622 0.575
R1[F2 > 2σ(F2)], wR2(F2), S 0.016, 0.038, 1.13 0.043, 0.114, 1.19 0.111, 0.293, 1.34
No. of parameters 44 22 30
No. of restraints 0 13 34
∆ρmax, ∆ρmin (e Å−3) 0.22, −0.53 1.19, −0.56 1.87, −1.16

4.4. Raman and UV-Vis Spectroscopy

High-pressure Raman spectra were collected in parallel to the single-crystal diffraction experiments
during the study using the crystal grown ex situ in methanol-ethanol as a pressure transmitting medium
[method (ii) above]. The instrument used was a LabRAM HR Evolution Raman spectrometer (Horiba,
Longjumeau, France) using an 1880 lines mm−1 grating and 633 nm excitation. The range was 50
to 3400 cm−1

. A BXFM-ILHS microscope (Olympus, Waltham, MA, USA) with a 50× long working
distance objective was used for laser focusing to a spot size of ca. 2 µm on to the sample. Spectra were
collected on compression up to 9.7 GPa and on decompression to ambient pressure at 298 K.

UV-Vis absorption spectra at high pressure and room temperature were recorded using a
custom-made apparatus. The modulated light from deuterium and tungsten lamps was dispersed
with a monochromator and focused on the sample with a reflective objective. The transmitted light
was collected with another reflective objective and the signal detected with a photomultiplier was
synchronously detected with a lock-in amplifier. The experiments were carried out using paraffin oil
(Merck, Darmstadt, Germany) as transmitting medium. The pressure and hydrostatic conditions were
checked through the shift and bandwidth of ruby R-lines luminescence, respectively.

4.5. High-Pressure Conductivity Measurements

Electrical resistance was measured on a compressed powder sample using a four-probe method
in a Merrill-Bassett DAC with 800 µm culet anvils (Figure 13). Gold contacts were made on one of the
anvils through a custom-made mask using a sputter coater. Daphne 7373 oil was used as a pressure
medium. A ruby chip was loaded into the sample space and pressure was measured using ruby
fluorescence. The metallic parts of the cell and gasket were electrically insulated to avoid short circuits.



Molecules 2019, 24, 2018 19 of 23

The electrical resistance of the sample was measured using a 6517A electrometer (Keithley, Cleveland,
OH, USA) using the constant voltage method. The electrical resistance was measured with increasing
pressure. At just above 5 GPa we observed a sudden drop in resistance which is also accompanied by
the darkening of the sample.
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4.6. PIXEL Energy Calculations

Molecular electron densities were calculated by quantum chemical methods at each pressure
point by GAUSSIAN09 [52] with the MP2/DGDZVP level of theory and basis set. CH distances were
reset to 1.083 Å for structures determined experimentally with X-ray diffraction, but left unchanged
for structures which had been optimised by periodic DFT. The electron density grid obtained from
Gaussian was in steps of 0.06 Å and condensation level of 4 was used for the PIXEL calculations
(CLP-PIXEL) [53,54]. The cluster radius was 15 Å. A breakdown of the interaction energies within the
first coordination spheres of phase I at ambient pressure and 5.0 GPa and phase II at 5.5 GPa are given
in Tables 1–3.

PIXEL has been used previously to study interactions involving iodine [15,55], and the ability of
the method to reproduce experimental sublimation energies of iodine compounds is assessed in the
ESI. For 4-iodobenzonitrile itself the lattice energy calculated by PIXEL is −62.5 kJ mol−1, which is
smaller in magnitude than the experimental enthalpy of sublimation, 88.0(3) kJ mol−1, determined
using Knudsen effusion methods by Rocha et al. [56]. However, the difference is consistent with the
performance of PIXEL for other iodine containing compounds. Rounding errors in the PIXEL energy
calculations also occur in the presence of iodine because of its large size and high polarizability and
results in small differences in the calculated energies of symmetry equivalent molecules, for example,
symmetry related contacts E and F at 0.0 GPa (Table 1) have Coulombic energy terms of −7.7 and
−7.5 kJ mol−1. In these cases, the calculated PIXEL energies are averaged to give −7.6 kJ mol−1.

4.7. Periodic Density Functional Theory (DFT) Calculations

Geometry optimisations, vibrational frequency and Raman intensity calculations were carried-out
using the plane-wave pseudopotential method in the CASTEP code [57] as incorporated in Materials
Studio version 2017 [58]. The PBE exchange-correlation functional was used [59] with norm-conserving
pseudopotentials and a basis set cut-off energy of 1020 eV. Brillouin zone integrations were performed
with a Monkhorst-Pack k-point grid spacing of 0.07 Å−1 [60]. The starting coordinates were taken from
the single-crystal diffraction structures at 0.0 and 5.5 GPa and optimised using the Tkatchenko-Scheffler
correction for dispersion (DFT-D) [61]. The cell dimensions were fixed to the experimental values,
and the space group symmetry was retained. For geometry optimisations the convergence criteria
were 5 × 10−6 eV/atom in energy, 0.01 eV Å−1 for force, 5 × 10−4 Å for displacement and 5 × 10−7

eV/atom for self-consistent field convergence. Prior to calculation of the Raman spectra, these were
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tightened to 1 × 10−8 eV/atom, 0.003 eV Å−1 and 1 × 10−10 eV/atom, respectively [62]. Frequencies
were calculated at the Γ-point only for comparison with the experimental Raman spectra.

4.8. Band Structure Calculations

Band structure and projected density of state (pdos) calculations were performed using CASTEP
(version 16.11), with the PBE exchange-correlation functional. Norm-conserving potentials built into
CASTEP and a plane wave basis set energy cut-off of 1300 eV were used. For the band structures,
k-points were sampled along high symmetry paths (U-R-X-Γ-Y-Z) and (Γ-Y-T-Z-Γ) for the phases I
and II, respectively. Projected densities of states were generated from a subsequent band-structure
calculation using OptaDOS [63,64].

4.9. Other Programs Used

OLEX2 [65] and MERCURY [66] were used for data visualisation, and sample geometries analysed
using PLATON [67]. Equation-of-state calculations were performed by EOSFIT [36]. MOGUL [68],
and CONQUEST [69] were used to survey the Cambridge Structural Database (CSD) [70].

Supplementary Materials: The following are available online, Figure S1: A comparison of the observed enthalpies
of sublimation and calculated PIXEL lattice energies used in method validation, Table S1: A breakdown of the
compounds and their observed enthalpies of sublimation used in PIXEL method validation, Figure S2: Comparison
between PIXEL and DFT calculated total lattice enthalpies of the geometry optimised structures, Table S2: Lattice
enthalpies of the geometry optimised structures as calculated by PIXEL and DFT, Table S3: Full breakdown of the
comparison of energies within the first coordination spheres in phases I and II at 5.5 GPa, Table S4: Crystallographic
experimental details.
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