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Abstract: Cyanine dyes have been widely applied in various biological systems owing to their specific
photochemical properties. Assembly and disassembly process of cyanine dyes were constructed
and regulated by special biomolecules. In this paper, dimeric cyanine dyes with different repeat
units (oligo-oxyethylene) in linker (TC-Pn) (n = 3–6) were found to form H-aggregates or mixture
aggregates in PBS. These aggregates could be disassembled into dimer and/or monomer by (TGnT)
tetramolecular G-quadruplexes (n = 3–6, 8), which were affected by the linker length of dimeric
cyanine dyes and layers of G-quartets. The 1H-NMR titration results suggest that the binding mode
of dimeric cyanine dye with TGnT might be on both ends—stacking like a clip. This binding mode
could clearly explain that matching structures between dimeric cyanine dyes and TGnT quadruplexes
could regulate the disassembly properties of aggregates. These results could provide clues for the
development of highly specific G-quadruplex probes.
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1. Introduction

The G rich oligomers form four stranded structures maintained by stacked G-quartets. The building
blocks of G-quadruplexes are structures known as G-quartets (Gq), which are planar association of
four G bases held together by eight Hoogsteen hydrogen bonds. The G-quartets are stacked on top of
each other by hydrophobic interactions, stabilized by monovalent cations, such as K+ and Na+ [1].
G-quadruplex motifs are widespread in the telomere and promoter regions of several important
oncogenes, and play an important function in cancer cell proliferation [2–8]. In addition, intermolecular
G-quadruplexes also play important roles in the assembly and regulation of nucleic acid nanostructures
(nanowires, strips, nanotubes) [9–11]. Tetramolecular G-quadruplexes are one of the important
intermolecular G-quadruplexes, which are formed by four parallel strands bound together by n layers
of G-quartets [12]. It is well known that the binding mode between tetramolecular G-quadruplex and
ligands mainly are the groove-embedding mode and end-stacking binding mode [13–16]. A clip-like
binding mode of dimeric cyanine dye with parallel intramolecular G-quadruplexes was found by
our previous study [17,18]. This binding mode involves two binding modes of terminal stacking
and groove-embedding. Thus, this clip-like binding mode of cyanine dye could improve the specific
recognition of G-quadruplexes.

Cyanine dyes were widely applied in various biological systems due to their controllable
process [19,20]. Assembly and disassembly processes of cyanine dyes can be constructed and regulated
by biomolecules [21–23]. A cyanine dye named DMSB can be assembled into J-aggregates when
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biomolecular TBA G-quadruplex is added [24]. It can also bind to the intermolecular parallel
G-quadruplex [d(TGGGGT)]4 (abbreviated TG4T) in the form of a dimer and monomer [25]. The high
specificity of DMSB makes it an excellent G-quadruplex structural probe. A series of dimeric cyanine
dyes (Figure 1c) were designed in our previous work [17]; it consisted of two monomeric parent cores
bridged by a linker chain. The monomeric part of dimeric cyanine dye was similar to DMSB. The major
difference in the monomeric part of dimeric cyanine is replacement of one side of the benzoselenazole
scaffold with the naphthothiazole unit, as well as addition of the cationic sulfo group to the N-alkyl
chain. Owing to this structural change, we speculate that assembly and disassembly of dimeric cyanine
dye could be affected by linker length. In addition, the clip-like binding mode of dimeric cyanine dyes
could also be regulated by the layers of G-quartets.
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environments [27,28]. As shown in Figure 2, dimeric cyanine dyes (TC-P3-6) can form a mixture of 
dimer (550 nm) and monomer (586 nm) in DMSO, and mixture aggregates or H-aggregates (492 nm) 
in PBS with similar compounds [17,29,30] and an exciton model [31]. These aggregates of dimeric 
cyanine dyes can be regulated by different DNA motifs. 

Figure 1. (a) Schematic representation of the G-quartet, (b) d(TG5T)4 (abbreviated TG5T) tetramolecular
G-quadruplex formed by self-association of four parallel DNA, and (c) structures of TC-P(n + 1) (n = 2–5).

In this paper, the interaction between dimeric cyanine dyes with various linker length (TC-P3-6)
and TGnT (n = 3–6, 8) G-quadruplex with n layer of G quartets was studied (Figure 1). Dimeric cyanine
dyes formed H-aggregates or mixture aggregates in PBS buffers. The disassembly property of the same
dimeric cyanine dye was greatly affected by layers of d(TGnT)4 (abbreviated TGnT) G-quadruplexes.
Same TGnT G-quadruplex showed the capability for various disassembly aggregates of dimeric cyanine
dyes (TC-P3, TC-P4 and TC-P5). The results of 1H-NMR titration of TG4T G-quadruplex with TC-P4
cyanine dye show that the binding mode should be clip-like, as our study posits.

2. Result and Discussion

2.1. Spectral Properties of Dimeric Cyanine Dyes in DMSO and PBS

Cyanine dye structure and environment play an important function in the assembly and
disassembly of dyes [26]. Some cyanine dyes are able to form H-aggregates or J-aggregates in
special environments [27,28]. As shown in Figure 2, dimeric cyanine dyes (TC-P3-6) can form a mixture
of dimer (550 nm) and monomer (586 nm) in DMSO, and mixture aggregates or H-aggregates (492 nm)
in PBS with similar compounds [17,29,30] and an exciton model [31]. These aggregates of dimeric
cyanine dyes can be regulated by different DNA motifs.Molecules 2019, 24, x FOR PEER REVIEW 3 of 9 
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2.2. The Interaction Between Dimeric Cyanine Dyes and TGnT G-quadruplex

The binding mode of dimeric cyanine dye with parallel G-quadruplex c-myc was on both ends
of the G-quadruplex like a clip. This binding mode is greatly affected by the linker of the dimeric
cyanine dye and layers of the G-quadruplex. Here, we investigate the interaction between dimeric
cyanine dyes with different linker lengths and tetramolecular G-quadruplex with various layers of
G-quartets. The d[TGnT]4 (abbreviated TGnT) tetramolecular quadruplexes, readily identifiable by its
NMR spectrum, is considered as the thermodynamically stable strand assembly [32,33]. The absorption
titration spectra of TGnT (n = 3–6, 8) G-quadruplexes with various layer G-quartets (Table S1 and
Figure S1, supporting information) with dimeric cyanine dyes TC-P5 was investigated. As shown in
Figure 3, TC-P5 exhibits distinct spectral changes with the addition of various TGnT tetramolecular
G-quadruplexes, although the only difference in their structure is the layers of G-quartets. TG3T
G-quadruplex could hardly disassemble TC-P5 aggregates at 492 nm (H-aggregates), even at a high
concentration of 30 µM. TG4T, TG5T, TG6T and TG8T were all able to cause a great increase of TC-P5
dimer at 544 nm and a small shoulder band of monomer at 592 nm, accompanied with significant
falling off of H-aggregates at 492 nm. This result suggests that TC-P5 interacts with TGnT (n = 4–6, 8)
in the form of dimer and monomer. It indicates that TGnT is able to induce TC-P5 H-aggregates into
dimer and monomer when TGnT (n = 4–6, 8) is in excess. Since TGnT tetramolecular G-quadruplex
disassembles TC-P5 aggregates differently, the absorption value of H-aggregates at 492 nm (A492) could
be estimated as a disassembly ability of TC-P5. The absorption value at 544 nm assigned to dimer.
The value of A544/A492 was used to reflect the disassembly H-aggregates into dimer ability. As shown
in Figure 3f, the order value of A544/A492 for TC-P5 with TGnT (n = 3–6, 8) followed TG5T > TG4T
> TG6T > TG8T > TG3T at a ratio of [TGnT]/[TC-P5] = 6, indicating that TG4T and TG5T were in
favor of disassembly of H-aggregates of TC-P5 over that of TG3T, TG6T and TG8T tetramolecular
G-quadruplexes (Figure S3, supporting information).

In order to clarify the linker length of dimeric cyanine dye’s influence on interaction with
tetramolecular G-quadruplex, TG8T G-quadruplex with an eight-layer G-quartet was chosen to help
TC-P3 interact with a shorter linker length and TC-P6 with a longer linker length. As shown in Figure 4,
TG8T could not disassemble TC-P3 mixture aggregates, while TG8T G-quadruplex could induce TC-P6
aggregates into dimer (542 nm) and monomer (580 nm). These results show that TC-P6 might interact
with TG8T G-quadruplex in the form of dimer and monomer. However, TC-P3 with a shorter linker
length could not interact with TG8T in the dimer and/or monomer.

1 
 

 

Figure 3. (a–e) Absorption spectra of 5 µmol/L TC-P5 at various concentrations of TGnT (n = 3–6, 8)
G-quadruplexes. All spectra data of the (a–e) are normalized to absorbance at 800 nm (A800 = 0).
(f) The ratio value of absorbance at 594 nm via absorbance at 492 nm at a function of [TGnT]/[TC-P5] = 6
(n = 3–6, 8).
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Figure 4. (a) Absorption titration spectra of 5 µmol/L TC-P3 at different concentrations of TG8T
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We have further chosen TC-P4 with a moderate linker length to interact with TG4T and TG5T
tetramolecular G-quadruplexes. As shown in Figure 5, TG4T tetramolecular G-quadruplex could
disassemble TC-P4 H-aggregates (492 nm) into dimer and monomer; similarly, TG5T tetramolecular
G-quadruplex could also disassemble TC-P4 H-aggregates into dimer (542 nm) and monomer (580 nm).
This result proved that TC-P4 with moderate linker length interacted with TG4T and TG5T with proper
layers of G-quartets in the form of dimer and monomer mode.
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2.3. The Binding Mode of TC-P4 with TG4T

In order to clarify binding sites of dimeric cyanine dye with tetramolecular G-quadruplex,
1H-NMR titration between TC-P4 and TG4T G-quadruplex was carried out. 3D molecular structure
of the TG4T has been determined by NMR and X-ray techniques; the strands associate with
generating a right-handed helix, containing four equivalent grooves and all bases in the anti glycosidic
conformation [14,22]. In Figure 6 and Figure S2 (supporting information), 1H-NMR titration spectra of
0.12 mM TG4T with various concentrations of TC-P4 in PBS at 308 K is shown. The TG4T resonance
signals for four imino protons (10–12 ppm), six aromatic protons (7–9 ppm), and two thymine methyl
protons (1–2 ppm) were well resolved. Clearly, the resonance signals for G5-NH and T6-H6 gradually
disappear. T6-H6 and T1-H6 show a remarkable downfield shift. The changes of the chemical shifts of
T1 and T6 protons (>0.1 ppm) are much larger than those of others, suggesting that the binding site for
TC-P4 with TG4T is probably located on T1 and T6. T6 is 3′-terminal G-quartet and T1 is 5′-terminal
G-quartet. It is reasonable that TC-P4 could stack on T1 and T6 through both end-stacking modes.
Based on this binding mode, TC-P5 and TC-P4 both have a better matching length to interact with four
and five G-tetrads of TGnT tetramolecular G-quadruplex. TC-P3 with a short linker length could not
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bind to TG8T in the form of monomer like a clip due to its short linker length, while TC-P6 aggregates
could be induced into dimer and monomer due to a matching linker length.
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Figure 6. (a) The unambiguously assigned 1H-NMR titration spectra of 120 µM TG4T with different
concentrations of TC-P4 in 0.6 mL PBS (10 mM KH2PO4, 70 mM KCl, 1 mM EDTA, pH 7.4 H2O/D2O,
9/1, v/v); (b) schematic topology diagram for TG4T G-quadruplex. Difference in chemical shifts of base
protons on TG4T with interaction of TC-P4. Values are reported for aromatic (red), imino (black) and
methyl (blue) protons.

3. Materials and Methods

3.1. Synthesis of Dimeric Cyanine Dyes

The synthesis of TC-P3-P6 has been described in our previous study [17]. All these structures
were verified by nuclear magnetic resonance and mass spectrometry.

3.2. Preparing of Samples

All these oligonucleotides of [d(TGGGT)]4 (TG3T), [d(TGGGGT)]4 (TG4T), [d(TGGGGGT)]4

(TG5T), [d(TGGGGGGT)]4 (TG6T) and[d(TGGGGGGGGT)]4 (TG8T) were purchased from Sangon
Biotech Co., Ltd. (Shanghai, China) and purified by HPLC. Ultrapure water was prepared by a Milli-Q
gradient ultrapure water system (Millipore, Molsheim, France).

The stock solution of 100 µM dimeric cyanine dyes was prepared by dissolving into DMSO and
storing in the dark at room temperature. PBS buffer (10 mM KH2PO4-K2HPO4, 70 mM KCL, 1 mM
EDTA, pH 7.4) was used to dissolve the oligonucleotides. The absorbance at 260 nm was used to
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determine the concentrations of oligonucleotides. All oligonucleotides were heated to 95 ◦C for 5 min,
rapidly cooled to 4 ◦C and kept overnight at 4 ◦C. Their folding topologies were identified by circular
dichroism (CD) before usage.

The measured samples were prepared by corresponding DNA stocking solutions into 100 µL PBS
containing 5 µM dyes. The final volume was 700 µL after addition of PBS. The samples were incubated
for 12 h in the dark at room temperature before measurements we taken.

3.3. Spectral Measurements

The UV-vis absorption spectra were recorded using an Agilent-8453 spectrophotometer (Santa
Clara, CA, USA) equipped with a Peltier effect heated cuvette holder in a 10 mm quartz cell. All the
CD spectra were recorded on a JASCO J-815 spectrophotometer (Tokyo, Japan) in a 10 mm quartz cell
at room temperature. All CD spectra were collected with a scan speed of 500 nm/min and a response
time of 0.5 s between 200 nm and 350 nm with three scans averaged.

The 1H-NMR titration spectra were carried out by a Bruker Avance 600 spectrometer (Fällanden,
Switzerland) equipped with a BBI probe. The stocking solution of TG4T was prepared by dissolving
in PBS [10 mM K2PO4/KH2PO4, 70 mM KCl, 10% D2O/90% H2O (v/v)]. The spectra was recorded
immediately by addition of TC-P4 dissolved in DMSO-d6. Bruker pulse program p3919 gp was used
to suppress water peak.

4. Conclusions

In this study, the spectra characteristics of dimeric cyanine dye with tetramolecular G-quadruplex
were investigated. In PBS, dimeric cyanine dyes could form H-aggregates or mixture aggregates.
These aggregates could be transformed into dimer and/or monomer by tetramolecular G-quadruplex
with proper layers of G-quartets. 1H-NMR titration results provide binding sites of dimeric cyanine
dyes location at both ends of tetramolecular G-quadruplex. This work enriches our understanding on
designing specific ligands of recognition of G-quadruplex and highlights the application potential of
these G-quadruplex structures in regulation of supramolecular assembly of cyanine dye.

Supplementary Materials: The following are available online, Figure S1: The CD spectra for TG3T, TG4T, TG5T,
TG6T and TG8T in 10 mM PBS (K+). Figure S2: The unambiguously assigned 1H-NMR titration spectra of 120 µM
TG4T with different concentrations of TC-P4 in 0.6 mL PBS (10 mM KH2PO4, 70 mM KCl, 1 mM EDTA, pH 7.4
H2O/D2O, 9/1, v/v) in methyl protons. Figure S3. The ratio value of absorbance at 594 nm via absorbance at 492 nm
at a function of [TGnT]/[TC-P5] = 4 (n = 3–6, 8). The concentration of TC-P5 is 5 µmol/L. Table S1: Sequences of
5 oligonucleotides.
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