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Abstract: Recent developments in compact near infrared (NIR) instruments, including both handheld
and process instruments, have enabled easy and affordable deployment of multiple instruments
for various field and online or inline applications. However, historically, instrument-to-instrument
variations could prohibit success when applying calibration models developed on one instrument to
additional instruments. Despite the usefulness of calibration transfer techniques, they are difficult to
apply when a large number of instruments and/or a large number of classes are involved. Direct
model transferability was investigated in this study using miniature near-infrared (MicroNIR™)
spectrometers for both classification and quantification problems. For polymer classification, high
cross-unit prediction success rates were achieved with both conventional chemometric algorithms
and machine learning algorithms. For active pharmaceutical ingredient quantification, low cross-unit
prediction errors were achieved with the most commonly used partial least squares (PLS) regression
method. This direct model transferability is enabled by the robust design of the MicroNIR™ hardware
and will make deployment of multiple spectrometers for various applications more manageable.

Keywords: NIR; direct model transferability; MicroNIR™; SVM; hier-SVM; SIMCA; PLS-DA;
TreeBagger; PLS; calibration transfer

1. Introduction

In recent years, compact near infrared (NIR) instruments, including both handheld and
process instruments, have attracted considerable attention and received wider adoption due to
their cost-effectiveness, portability, ease of use, and flexibility in installation. These instruments
have been used for various applications in different industries, such as the pharmaceutical industry,
agriculture, the food industry, the chemical industry, and so on. [1–5] They enable point-of-use analysis
that brings advanced laboratory analysis to the field [6,7] and online and inline analysis that permits
continuous process monitoring [8,9]. Moreover, scalability of NIR solutions has become possible. It is
common that users of compact NIR instruments would desire more than one instrument to be used for
their applications. Sometimes a large number of instruments are deployed.

Intrinsically, NIR solutions require multivariate calibration models for most applications due to
the complexity of the spectra resulting from vibrational overtones and combination bands. Usually a
calibration data set is collected using an NIR instrument to develop a calibration model. However,
when multiple instruments are deployed for the same application, it is too time and labor consuming to
collect calibration sets and develop calibration models for these instruments individually. It is also very
inconvenient to manage different calibration models for different instruments. Therefore, it is highly
desirable that calibration development is performed only once, and that the calibration model can be
used on all these instruments successfully. In practice, when multiple instruments are involved for a
particular application, the calibration model is often developed on one instrument and then applied

Molecules 2019, 24, 1997; doi:10.3390/molecules24101997 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules24101997
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/10/1997?type=check_update&version=2


Molecules 2019, 24, 1997 2 of 19

to the rest of the instruments, especially when a project starts with one instrument for a feasibility
test and then multiple instruments are procured. When a large number of instruments are involved,
a global model approach can be taken in which calibration data from at least two to three instruments
are pooled to develop the calibration model, in order to minimize noncalibrated variations from the
instruments [10]. For any of the cases, model transferability from one or multiple instruments to the
others is critical.

Historically, instrument-to-instrument variations could prohibit the success of the direct use of
calibration models developed on one instrument with the other instruments. To avoid full recalibration,
various calibration transfer methods have been developed to mathematically correct for instrument-to-
instrument variations [10,11]. Common methods include direct standardization [12], piecewise direct
standardization (PDS) [12–14], spectral space transformation [15], generalized least squares (GLS) [16],
and so on. These methods have been extensively used to transfer quantitative calibration models [17–20],
but very few studies were focused on the transfer of classification models [21,22]. Although these
methods are very useful, they can only deal with calibration transfer from one instrument to another at a
time and require transfer datasets to be collected from the same physical samples with both instruments.
This is practical when there are only a few instruments involved. One instrument can be designated as
the master instrument to develop the calibration model. Then data collected by the other instruments
can be transformed into the master instrument’s approximate space via the respective pair of transfer
datasets. Thus, the master calibration model can be used by the other instruments. Alternatively, the
master calibration data can be transferred to the other target instruments and calibration models can
be developed on these target instruments. However, in the new era of handheld and process NIR
instrumentation, a large number of instruments (e.g., > 20) could be deployed for one application.
It would be difficult to perform calibration transfer in this way, especially when these instruments are
placed in different locations. Other calibration transfer methods have been developed without using
the transfer datasets from both instruments [23–25]. But unlike the commonly used methods, these
methods have not been extensively studied and made easily available to general NIR users. Moreover,
calibration transfer of classification models typically requires transfer data to be collected from every
class. When a large number of classes are included in the model, the efforts required would be close to
rebuilding a library on the secondary instrument. This may explain why very few studies have been
conducted on transfer of classification models.

Considering all the advantages and potentials the handheld and process NIR instruments can
offer and the challenges for calibration transfer when a large number of instruments and/or a large
number of classes are involved, it is intriguing to understand if advances in instrumentation and
modeling methods could make direct use of the master calibration model acceptable. However, to the
best of our knowledge, little research has been done in this area.

The authors have demonstrated in the past that the use of miniature near-infrared (MicroNIR™)
spectrometers with the aid of support vector machine (SVM) modeling can achieve very good
direct transferability of models with a large number of classes for pharmaceutical raw material
identification [26]. In the current study, using MicroNIR™ spectrometers, direct model transferability
was investigated for polymer classification. Five classification methods were tested, including two
conventional chemometric algorithms, partial least squares discriminant analysis (PLS-DA) [27] and
soft independent modeling of class analogy (SIMCA) [28], and three machine learning algorithms
that are burgeoning in chemometrics, bootstrap-aggregated (bagged) decision trees (TreeBagger) [29],
support vector machine (SVM) [30,31] and hierarchical SVM (hier-SVM) [26]. High cross-unit prediction
success rates were achieved. Direct transferability of partial least squares (PLS) regression models was
also investigated to quantify active pharmaceutical ingredients (API). Low cross-unit prediction errors
were obtained.
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2. Results

2.1. Classification of Polymers

Polymers are encountered in everyday life and are of interest for many applications. In this study
polymer classification was used as an example to investigate direct model transferability. Resin kits
containing 46 materials representing the most important plastic resin used in industry today were used.
Each material was treated as one class. Three resin kits were used to show prediction performance
on different physical samples of the same material. The samples were measured by three randomly
chosen MicroNIR™ OnSite spectrometers (labeled as Unit 1, Unit 2 and Unit 3).

2.1.1. Spectra of the Resin Samples

Spectra collected by the three spectrometers were compared in Figure 1. For clarity, example spectra
of two samples were presented. The same observations were obtained for the other samples. The raw
spectra in Figure 1a only show baseline shifts between measurements using different spectrometers
for the same sample. These shifts were mainly due to different measurement locations, since these
resin samples are injection molded and are not uniform in thickness and molecular orientation. In fact,
baseline shifts were also observed when using the same spectrometer to measure different locations of
the same sample. These shifts can be corrected by spectral preprocessing, and the preprocessed spectra
from the same sample collected by different spectrometers were very similar as shown in Figure 1b.
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Figure 1. Spectra of example polymer samples by three instruments: (a) raw spectra; (b) preprocessed
spectra by Savitzky-Golay 1st derivative (5 smoothing points and 3rd polynomial order) and standard
normal variate (SNV).

2.1.2. Direct Model Transferability of the Classification Models

The performance of the polymer classification models was evaluated at four levels, the same-unit-
same-kit performance, the same-unit-cross-kit performance, the cross-unit-same-kit performance, and
the cross-unit-cross-kit performance. To account for the most variation in sample shape and thickness,
each resin sample was scanned in five specified locations. In addition, at each position the sample was
scanned in two orientations with respect to the MicroNIR™ lamps to account for any directionality in
the structure of the molding. For each position and orientation, three replicate scans were acquired,
totaling thirty scans per sample, per spectrometer. Prediction was performed for every spectrum in the
validation set. For the same-unit-same-kit performance, the models built with data collected from four
locations on each sample in one resin kit by one spectrometer were used to predict data collected from
the other location on each sample in the same resin kit by the same spectrometer. The total number of
predictions was 276 for all 46 materials for each case. For the same-unit-cross-kit performance, the
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models built with all the data collected from one resin kit by one spectrometer were used to predict all
the data collected from a different resin kit by the same spectrometer. The total number of predictions
was 1380 for all 46 materials for each case. For the cross-unit-same-kit performance, the models built
with all the data collected from one resin kit by one spectrometer were used to predict all the data
collected from the same resin kit by a different spectrometer. The total number of predictions was 1380
for all 46 materials for each case. For the cross-unit-cross-kit performance, the models built with all
the data collected from one resin kit by one spectrometer were used to predict all the data collected
from a different resin kit by a different spectrometer. The total number of predictions was 1380 for
all 46 materials for each case. Five different classification algorithms were used to build the models,
which were PLS-DA, SIMCA, TreeBagger, SVM and hier-SVM.

The prediction performance was evaluated in terms of prediction success rates and the number
of missed predictions. The representing results were summarized in Tables 1 and 2, respectively.
The prediction success rates were calculated by dividing the number of correct predictions with the
number of total predictions. The number of missed predictions is presented to make the difference
clearer, since with a large number of total predictions a small difference in prediction success rate
would mean a conceivable difference in the number of missed predictions. It should be noted that in
a few cases the total number of predictions was not exactly 276 or 1380, because extra spectra were
collected unintentionally during experiments and no spectra were excluded from analysis. To make
the comparison consistent, in these tables all the models were developed using data from Kit 1 for
different spectrometers. The prediction data were collected using different resin kits and different
spectrometers for the four levels of performance.

The same-unit-same-kit cases were control cases and presented as the diagonal elements for each
algorithm in the left three columns of the tables. As expected, 100% prediction success rates and 0
missed predictions were obtained for all algorithms except for one PLS-DA case (Unit 1 K1 for modeling
and testing) where there was only 1 missed prediction. The same-unit-cross-kit cases showed the true
prediction performance of the models for each spectrometer, since independent testing samples were
used. The results are presented as the diagonal elements for each algorithm in the right three columns
of the tables. All the models showed very good same-unit-cross-kit predictions. Although SIMCA
showed the best performance, the differences in performance were very small between algorithms.
It should be noted that samples made of the same type of material but with different properties are
included in the resin kits, indicating that the MicroNIR™ spectrometers have the resolution to resolve
minor differences between these polymer materials. For the cross-kit cases, Kit 2 was used for Unit 1 and
Unit 2, while Kit 3 was used for Unit 3, because at the time of data collection using Unit 3, Kit 2 was no
longer available. Nonetheless, conclusions about the cross-kit performance were not impacted by this.

Table 1. Prediction success rates (%) of polymer classification.

Algorithm Unit# Kit# for
Modeling

Unit# Kit# for Testing

Unit1 K1 Unit2 K1 Unit3 K1 Unit1 K2 Unit2 K2 Unit3 K3

PLS-DA
Unit 1 K1 99.64 89.68 83.99 95.87 88.91 82.39
Unit 2 K1 91.96 100 81.52 90.87 99.57 84.49
Unit 3 K1 76.74 75.32 100 75.07 73.12 99.20

SIMCA
Unit 1 K1 100 99.42 96.45 99.35 97.32 96.81
Unit 2 K1 98.77 100 95.43 97.68 99.93 95.80
Unit 3 K1 96.30 93.29 100 96.09 92.17 100

TreeBagger
Unit 1 K1 100 97.11 95.80 98.04 95.94 96.30
Unit 2 K1 97.83 100 93.55 94.49 98.26 96.16
Unit 3 K1 95.14 98.41 100 96.09 98.84 98.84

SVM
Unit 1 K1 100 99.86 97.54 98.26 97.90 97.83
Unit 2 K1 98.70 100 97.03 94.93 98.26 98.26
Unit 3 K1 97.83 96.18 100 96.30 95.00 99.57

Hier-SVM
Unit 1 K1 100 100 97.97 97.83 97.83 97.25
Unit 2 K1 99.93 100 98.26 98.26 99.13 99.13
Unit 3 K1 99.13 100 100 96.88 97.83 100
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Table 2. Number of missed predictions of polymer classification in the format of number of missed
predictions/total number of predictions.

Algorithm Unit# Kit# for
Modeling

Unit# Kit# for Testing

Unit1 K1 Unit2 K1 Unit3 K1 Unit1 K2 Unit2 K2 Unit3 K3

PLS-DA
Unit 1 K1 1/276 143/1386 221/1380 57/1380 153/1380 243/1380
Unit 2 K1 111/1380 0/277 255/1380 126/1380 6/1380 214/1380
Unit 3 K1 321/1380 342/1386 0/276 344/1380 371/1380 11/1380

SIMCA
Unit 1 K1 0/276 8/1386 49/1380 9/1380 37/1380 44/1380
Unit 2 K1 17/1380 0/277 63/1380 32/1380 1/1380 58/1380
Unit 3 K1 51/1380 93/1386 0/276 54/1380 108/1380 0/1380

TreeBagger
Unit 1 K1 0/276 40/1386 58/1380 27/1380 56/1380 51/1380
Unit 2 K1 30/1380 0/277 89/1380 76/1380 24/1380 53/1380
Unit 3 K1 67/1380 22/1386 0/276 54/1380 16/1380 16/1380

SVM
Unit 1 K1 0/276 2/1386 34/1380 24/1380 29/1380 30/1380
Unit 2 K1 18/1380 0/277 41/1380 70/1380 24/1380 24/1380
Unit 3 K1 30/1380 53/1386 0/276 51/1380 69/1380 6/1380

Hier-SVM
Unit 1 K1 0/276 0/1386 28/1380 30/1380 30/1380 38/1380
Unit 2 K1 1/1380 0/277 24/1380 24/1380 12/1380 12/1380
Unit 3 K1 12/1380 0/1386 0/276 43/1380 30/1380 0/1380

The direct model transferability was first demonstrated by the cross-unit-same-kit results, which
are presented by the non-diagonal elements for each algorithm in the left three columns of the tables.
Except the PLS-DA algorithm, all the other algorithms showed good performance. In general, the
order of performance was Hier-SVM > SVM > SIMCA > TreeBagger >> PLS-DA. When the hier-SVM
algorithm was used, the worst case only had 28 missed predictions out of 1380 predictions, and 1/3 of
the cases showed perfect predictions.

The direct model transferability was further demonstrated by the most stringent cross-unit-cross-kit
cases, which are often the real-world cases. The results are presented by the non-diagonal elements for
each algorithm in the right three columns of the tables. Other than the PLS-DA algorithm, all the other
algorithms showed good performance, but which was slightly worse than the cross-unit-same-kit
results with some exceptions. In general, the order of performance was hier-SVM > SVM > TreeBagger
≈ SIMCA >> PLS-DA.

Besides the representing results shown in these tables, all possible combinations of datasets were
analyzed, including 6 same-unit-same-kit cases, 6 same-unit-cross-kit cases, 8 cross-unit-same-kit cases,
and 16 cross-unit-cross-kit cases in total for each algorithm. The conclusions were similar to those
presented above. For the most stringent cross-unit-cross-kit cases, the mean prediction success rates
of all the cases were 98.15%, 97.00%, 96.74%, 95.83%, and 80.19% for hier-SVM, SVM, TreeBagger,
SIMCA, and PLS-DA, respectively. The high prediction success rates for hier-SVM, SVM, TreeBagger
and SIMCA indicate good direct model transferability for polymer classification with MicroNIR™
spectrometers. To achieve the best result, hier-SVM should be used. But the conventional SIMCA
algorithm that is available to most NIR users is also sufficient.

2.2. Quantification of Active Pharmaceutical Ingredients

Quantitative analysis of an active pharmaceutical ingredient is important in several different steps
of a pharmaceutical production process and it was proved that NIR spectroscopy is a good alternative
to other more time-consuming means of analysis [32]. As one of the process analytical technology (PAT)
tools adopted by the pharmaceutical industry, compact NIR spectrometers can be installed for real-time
process monitoring, enabling the quality by design (QbD) approach that is now accepted by most
pharmaceutical manufacturers to improve manufacturing efficiency and quality [33,34]. In this context,
multiple NIR spectrometers will be needed for the same application. It is important to understand the
direct transferability of calibration models to determine APIs quantitatively.
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To investigate this, a five-component pharmaceutical powder formulation including three APIs,
acetylsalicylic acid (ASA), ascorbic acid (ASC), and caffeine (CAF), as well as two excipients, cellulose
and starch, was used. A set of 48 samples was prepared by milling varying amounts of the three APIs
in the concentration range of 13.77–26.43% w/w with equal amounts (40% w/w) of a 1:3 (w/w) mixture
of cellulose and starch [4]. The set of samples was measured by three randomly chosen MicroNIR™
1700ES spectrometers (labeled as Unit 1, Unit 2 and Unit 3).

2.2.1. Spectra of the Pharmaceutical Samples

The spectra were first compared across the three instruments. Raw spectra of two samples with
the lowest ASA concentration and the highest ASA concentration collected by all three instruments
are shown in Figure 2a. Only slight baseline shifts can be seen between spectra collected by different
instruments. The preprocessed spectra collected by different instruments became almost identical,
as shown in Figure 2b. However, spectral differences between the high concentration sample and the
low concentration can be clearly seen. Similar observations were obtained for the other two APIs, ASC
(Figure 2c,d) and CAF (Figure 2e,f). It should be noted the optimized preprocessing steps were chosen
to generate the preprocessed spectra for each API, respectively.
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Figure 2. Spectra of samples with the highest and the lowest active pharmaceutical ingredient (API)
concentrations measured by three instruments: (a) selected raw spectra based on the acetylsalicylic
acid (ASA) concentration; (b) selected preprocessed spectra based on the ASA concentration by
Savitzky-Golay 1st derivative (5 smoothing points and 2nd polynomial order) and SNV; (c) selected raw
spectra based on the ascorbic acid (ASC) concentration; (d) selected preprocessed spectra based on the
ASC concentration by Savitzky-Golay 2nd derivative (7 smoothing points and 3rd polynomial order)
and SNV; (e) selected raw spectra based on the caffeine (CAF) concentration; (f) selected preprocessed
spectra based on the CAF concentration by Savitzky-Golay 1st derivative (17 smoothing points and 3rd
polynomial order) and SNV.

2.2.2. Direct Model Transferability of the Quantitative Models

To develop the quantitative calibration models, 38 out of the 48 samples were selected as the
calibration samples via the Kennard-Stone algorithm [35], based on the respective API concentration,
which was determined by the amount of API added to the powder sample. The remaining 10 samples
were used as the validation samples. Twenty spectra were collected from each sample with every
spectrometer. Thus, 760 spectra from the 38 calibration samples were used to build every model
and 200 spectra from the 10 validation samples were used to validate each model. For each API,
an individual model was developed on each instrument by partial least squares (PLS) regression.
Different preprocessing procedures with different settings were tested and the optimal one was
determined based on the cross-validation statistics using the calibration set. The same optimal
preprocessing procedure was selected on all three instruments for the same API. The API models were
developed using the corresponding preprocessed spectra.

The model performance was first evaluated in terms of normalized root mean square error of
prediction (NRMSEP), which is root mean square error of prediction (RMSEP) normalized to the mean
reference value of the validation set. NRMSEP was used to provide an estimate of how big the error
was relative to the value measured. Since the mean reference value was the same for all the validation
sets, it is equivalent to comparing RMSEP. Two types of prediction performance were examined, the
same-unit performance and the cross-unit performance. Using a calibration model developed on one
instrument, the same-unit performance was determined by predicting the validation set obtained with
the same instrument, and the cross-unit performance was determined by predicting the validation
set obtained with a different instrument. The cross-unit performance is the indicator of direct model
transferability. The results were reported under the No Correction section in Tables 3–5 for ASA, ASC
and CAF, respectively. The unit number in the row title represents which of the instruments was used
to develop the calibration model, and the unit number in the column title represents which instrument
was used to collect the validation data. Therefore, the NRMSEP values on the diagonal indicate the
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same-unit performance, while the other values indicate the cross-unit performance. The data show
that cross-unit performance was close to the same-unit performance, all below 5%.

Table 3. The normalized root mean square error of prediction (NRMSEP, %) for ASA.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 3.4 3.5 3.5 - - -
Unit 2 4.0 4.2 3.9 3.7 3.3 3.6
Unit 3 4.3 4.5 4.2 4.1 3.5 4.4

Table 4. The normalized root mean square error of prediction (NRMSEP, %) for ASC.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 3.0 2.6 2.7 - - -
Unit 2 2.7 2.7 2.6 2.3 3.5 2.6
Unit 3 2.5 2.5 2.7 2.2 3.1 2.4

Table 5. The normalized root mean square error of prediction (NRMSEP, %) for CAF.

Test Sets
No Correction Bias PDS GLS

Unit 1 Unit 2 Unit 3 Unit 1 Unit 1 Unit 1

Unit 1 4.0 4.6 3.7 - - -
Unit 2 4.1 4.7 4.2 4.2 4.3 3.2
Unit 3 4.2 4.9 4.0 4.1 6.2 3.9

In another independent study, the same samples were measured by a benchtop Bruker Vector
22/N FT-NIR spectrometer. The reported mean absolute bias based on 3 validation samples was 0.28,
0.62 and 0.11 for ASA, ASC and CAF, respectively [36]. In the current study, the mean absolute bias of
the three same-unit cases based on 10 validation samples was 0.21, 0.35 and 0.22 for ASA, ASC and
CAF, respectively. The mean absolute bias of the six cross-unit cases based on 10 validation samples
was 0.14, 0.30 and 0.25, respectively. These results indicate that both the same-unit and the cross-unit
MicroNIR™ performance is comparable with the benchtop instrument performance. However, it
should be noted in the current study 38 samples were used for calibration and 10 samples were used
for validation, while in the other study 45 samples were used for calibration and 3 samples were used
for validation.

The model performance was further examined by the predicted values of the validation set versus
the reference values. Using calibration models developed on Unit 1, the same-unit predicted results
and the cross-unit predicted results for ASA, ASC and CAF are shown in Figure 3. It can be seen that
most of the predicted values stay close to the 45-degree lines, explaining the good model performance.
Moreover, the cross-unit results (red circles) are very close to the same-unit results (blue circles),
explaining the similar cross-unit performance to the same-unit performance.
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Figure 3. Predicted values versus reference values using models developed on Unit 1: (a) validation
sets by Unit 1 and Unit 2 for ASA prediction; (b) validation sets by Unit 1 and Unit 3 for ASA prediction;
(c) validation sets by Unit 1 and Unit 2 for ASC prediction; (d) validation sets by Unit 1 and Unit 3 for
ASC prediction; (e) validation sets by Unit 1 and Unit 2 for CAF prediction; (f) validation sets by Unit 1
and Unit 3 for CAF prediction. The corresponding bias, R2 for prediction, and root mean square error
for prediction (RMSEP) are presented in each plot.
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The corresponding Bland-Altman plots were used to illustrate the agreement between the
cross-unit prediction results and the same-unit prediction results in Figure 4. The Bland-Altman
analysis is a well-accepted technique for method comparison in highly regulated clinical sciences [37]
and shows good visual comparison between two instruments [11]. The x-axis shows the mean predicted
value and the y-axis shows the difference between the cross-unit predicted value and the same-unit
predicted value. The limits of agreement (LOA) were calculated by Equation (1):

LOA = d± 1.96× SD (1)

where d is the bias or the mean difference, and SD is the standard deviation of the differences. It can be
seen from Figure 4 that with only a few exceptions, all data points stayed within the LOA, indicating that
at a 95% confidence level, the cross-unit prediction results agreed well with the same-unit prediction
results. LOA relative to the mean of the mean predicted values (x-axis) was below 3% for all three APIs.
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The corresponding reduced Hotelling’s T2 and reduced Q residuals are shown in Figure 5.
The reduced statistics were calculated by normalizing Hotelling’s T2 and Q residuals to their respective
95% confidence limit. The black circles represent the calibration data, the blue circles represent the
same-unit validation data, and the red circles represent the cross-unit validation data. It can be clearly
seen that the cross-unit validation data stayed close to the same-unit validation data, further explaining
the similar cross-unit performance to the same-unit performance. It was noticed that 20 calibration
data points (from the same physical sample) and 20 cross-unit validation data points (from another
physical sample) are in the high reduced Hotelling’s T2 and high reduced Q residuals quadrant for
ASA (Figure 5a,b). These explained why the prediction results of one sample significantly deviated
from the 45-degree lines in Figure 3a,b. However, to keep the analysis consistent with the other two
APIs and data available in literature [4,36] for comparison, no sample was excluded from calibration
or validation.
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2.2.3. Calibration Transfer

To check how direct model transfer compared with calibration transfer, three types of calibration
transfer methods were tested. The first method was bias correction by standardizing the predicted
values, which is probably the simplest method. The second method was PDS by mapping spectral
responses of the slave instrument to the master instrument, which is probably the most commonly
used method. The third method was GLS by removing the differences between instruments from both
instruments. To perform the calibration transfer, 8 transfer samples were selected from the calibration
samples with the Kennard-Stone algorithm. The calibration transfer results using Unit 1 as the master
instrument were summarized in Tables 3–5 for ASA, ASC and CAF, respectively. It should be noted
that different settings for PDS and GLS were tested. The results presented were obtained under the best
settings based on RMSEP. By comparing these results with the corresponding same-unit and cross-unit
results (Column 1 under No Correction), there was not a single method that could improve cross-unit
results for all three APIs. Choosing the best method for individual API, only slight improvement
(decrease of 0.3–0.9% in RMSEP%) of cross-unit performance was observed. Calibration transfer could
sometimes damage the performance when a certain method was applied to a certain API. In addition,
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for ASC and CAF, the cross-unit performance was already close to or slightly better than the same-unit
performance. For ASA, although the same-unit performance was better than the cross-unit performance
using the calibration model on Unit 1 (Column 1 under No Correction in Table 3), it was similar to the
cross-unit performance using calibration models on Unit 2 and Unit 3 (Row 1 under No Correction
in Table 3). All these observations indicate that the instrument-to-instrument difference was small.
Therefore, calibration transfer may not be necessary for this application.

3. Discussion

The good direct model transferability demonstrated in this study was enabled by the minimal
instrument-to-instrument differences owing to the robust design of the MicroNIR™ hardware.
The MicroNIR™ spectrometer utilizes a wedged linear variable filter (LVF) as the dispersive element
on top of an InGaAs array detector, which results in an extremely compact and rugged spectral engine
with no moving parts [4]. The operation of the on-board illumination allows for a steady output of
optical power and an extended lamp-life. Thus, a very stable performance can be achieved without the
need for realignment of hardware over time. In addition to the hardware design, the performance
of every MicroNIR™ spectrometer is evaluated and calibrated at the production level. The accuracy
of the MicroNIR™ wavelength calibration enables precise spectral alignments from instrument to
instrument. The repeatability of the photometric response ensures the consistency of signal amplitude
from instrument to instrument. The unit-specific temperature calibration stabilizes the MicroNIR™
response over the entire operating temperature range. In the Supplementary Material, the wavelength
reference plots and the photometric response plots are shown for the MicroNIR™ OnSite units used
for the polymer classification example (Figure S1) and the MicroNIR™ ES units used for the API
quantification example (Figure S2), respectively. Very small instrument-to-instrument differences were
observed. It should be noted that findings from the handheld MicroNIR™ OnSite and ES units could
be extended to the MicroNIR™ PAT units for process monitoring, since the spectral engine and the
calibration protocol at the production level are the same.

In this study, both a classification example and a quantification example were investigated.
For the quantification example, the good direct model transferability was demonstrated with the
most commonly used regression method, PLS. For the classification example, the good direct model
transferability was demonstrated with both the commonly used chemometric algorithm, SIMCA, and
the machine learning algorithms, SVM, hier-SVM and TreeBagger. It should be noted the PLS-DA
performance could be improved to about 90% prediction success rate by manually optimizing the
number of PLS factors. The results presented in Tables 1 and 2 were based on automatically selected
PLS factors. This automatic selection procedure sometimes causes overfitting. However, since all the
other algorithms were also using automatic model building, which may not always generate the best
results, for a fair comparison no manual intervention was introduced to PLS-DA. In fact, even with the
improved performance, PLS-DA still didn’t perform as well as the other algorithms for this specific
application. Although the direct model transferability was good with conventional SIMCA, it can be
further improved with the use of SVM algorithms. SVM has found increasing interest in chemometrics
in recent years, since it is such a sound methodology, where geometric intuition, elegant mathematics,
theoretical guarantees, and practical algorithms meet [38]. Among SVM’s many appealing features,
generalization ability, that is the ability to accurately predict outcome values for previously unseen data,
can help minimize cross-unit prediction errors. The basic principle of SVM is to construct the maximum
margin hyperplanes to separate data points into different classes. Maximizing the margin reduces
complexity of the classification function, thus minimizing the possibility of overfitting. Therefore,
better generalization can be achieved intrinsically for SVM [38]. When many classes are involved, like
the polymer classification example in this study, the hier-SVM algorithm was shown to be beneficial,
because this multilevel classification scheme facilitates refined classification for chemically similar
materials to achieve more accurate prediction [26]. In addition, the TreeBagger algorithm is based on
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random forest, which is one of the most powerful classifiers in machine learning [39]. However, for the
current study, the cross-unit performance of TreeBagger was not as good as the SVM algorithms.

The combination of the hardware design and implementation of advanced calibration techniques
results in a repeatable and reproducible performance between different MicroNIR™ spectrometers,
allowing effective direct model transferability. However, it is not intended to say that this will be the
ultimate solution that eliminates all problems that necessitate calibration transfer. The scope of the
current study was limited to model transferability only involving instrument-to-instrument differences,
not very heterogeneous samples, and data collected with sound sampling and measurement protocols.
For example, when different instruments are placed in different environments, environmental changes
may have to be corrected for the model via calibration transfer. Very heterogeneous samples, such as
biological samples, will be more difficult to handle in general. Even very small instrument-to-instrument
differences could cause unsatisfactory cross-unit prediction results. A global model approach using
data from samples with all expected sources of variance and/or measured with multiple instruments
for calibration could significantly minimize prediction errors. Model updating techniques will also be
very helpful [40]. Direct model transferability will be evaluated for very heterogeneous materials in
our future studies. In addition, poor cross-unit model performance often results from nonqualified
calibration data that are not collected with a careful sampling plan and a proper measurement protocol.
The success of a multi-instrument NIR project must start with reliable NIR data that are collected with
best practices in sampling [41,42] and measurement [43,44].

The current study demonstrated the possibility of direct model transfer from instrument to
instrument for both classification and quantification problems, which has laid a good foundation for
the use of a large number of compact NIR instruments. More studies should be encouraged in wider
applications and using all kinds of instruments from various manufacturers. Scalability of handheld
and process NIR solutions can become more manageable when the number of times that calibration
transfer has to be performed between instruments can be minimized.

4. Materials and Methods

4.1. Materials

For the polymer classification study, 46 injection molded resins were obtained from The ResinKit™
(The Plastics Group of America, Woonsocket, RI, USA). The set of resins contains a variety of polymer
materials, as well as various properties within the same type of material (for example different densities
or strengths). Each resin was treated as an individual class in this study. All the resins used in this study
are listed in Table 6 and detailed properties of these materials are available upon request. To evaluate
the cross-kit prediction performance, three resin kits were used.

For the API quantification study, 48 pharmaceutical powders consisting of different concentrations
of three crystalline active ingredients, as well as two amorphous excipients were provided by Prof.
Heinz W. Siesler at University of Duisburg-Essen, Germany [4]. The active ingredients used were
acetylsalicylic acid (ASA, Sigma-Aldrich Chemie GmbH, Steinheim, Germany), ascorbic acid (ASC,
Acros Organics, NJ, USA), and caffeine (CAF, Sigma-Aldrich Chemie GmbH, Steinheim, Germany),
and the two excipients used were cellulose (CE, Fluka Chemie GmbH, Buchs, Switzerland) and starch
(ST, Carl Roth GmbH, Karlsruhe, Germany). The concentration of the active ingredients ranged from
13.77–26.43% (w/w), and all samples consisted of 40% (w/w) of a 3:1 (w/w) mixture of cellulose and starch.
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Table 6. Polymer materials used for the classification study.

No. Polymer Type No. Polymer Type

1 PolyStyrene-General Purpose 24 Polyethylene-High Density
2 PolyStyrene-High Impact 25 Polypropylene-Copolymer
3 Styrene-Acrylonitrile (SAN) 26 Polypropylene-Homopolymer
4 ABS-Transparent 27 Polyaryl-Ether
5 ABS-Medium Impact 28 Polyvinyl Chloride-Flexible
6 ABS-High Impact 29 Polyvinyl Chloride-Rigid
7 Styrene Butadiene 30 Acetal Resin-Homopolymer
8 Acrylic 31 Acetal Resin-Copolymer
9 Modified Acrylic 32 Polyphenylene Sulfide

10 Cellulose Acetate 33 Ethylene Vinyl Acetate
11 Cellulose Acetate Butyrate 34 Urethane Elastomer (Polyether)
12 Cellulose Acetate Propionate 35 Polypropylene-Flame Retardant
13 Nylon-Transparent 36 Polyester Elastomer
14 Nylon-Type 66 37 ABS-Flame Retardant
15 Nylon-Type 6 (Homopolymer) 38 Polyallomer
16 Thermoplastic Polyester (PBT) 39 Styrenic Terpolymer
17 Thermoplastic Polyester (PETG) 40 Polymethyl Pentene
18 Phenylene Oxide 41 Talc-Reinforced Polypropylene
19 Polycarbonate 42 Calcium Carbonate-Reinforced Polypropylene
20 Polysulfone 43 Nylon (Type 66–33% Glass)
21 Polybutylene 44 Thermoplastic Rubber
22 Ionomer 45 Polyethylene (Medium Density)
23 Polyethylene-Low Density 46 ABS-Nylon Alloy

4.2. Spectra Collection

4.2.1. Resin Samples

Three MicroNIR™OnSite spectrometers (Viavi Solutions Inc., Santa Rosa, CA, USA) in the range of
908–1676 nm were randomly picked to collect the spectra of the resin samples. The spectral bandwidth
is ~1.1% of a given wavelength. Three kits of samples were measured in the diffuse reflection mode.
A MicroNIR™ windowless collar was used to interface with the samples, which optimized the sample
placement relative to the spectrometer. Each sample was placed between the windowless collar of the
MicroNIR™ spectrometer and a 99% diffuse reflection standard (Spectralon®, LabSphere, North Sutton,
NH, USA). The reason for using the Spectralon® behind each sample was to return signal back to the
spectrometer, particularly for very transparent samples, in order to improve the signal-to-noise ratio.

Each sample was scanned in five specified locations to account for the most variation in sample
shape and thickness. In addition, at each position the sample was scanned in two orientations with
respect to the MicroNIR™ lamps to account for any directionality in the structure of the molding.
For each position and orientation, three replicate scans were acquired, totaling thirty scans per sample,
per spectrometer. The MicroNIR™ spectrometer was re-baselined after every ten samples, using a 99%
diffuse reflectance reference scan (Spectralon®), as well as a lamps-on dark scan, in which nothing was
placed in front of the spectrometer. Each sample was measured by all three spectrometers following
the same protocol.

4.2.2. Pharmaceutical Samples

Each of the 48 samples were placed in individual glass vials, and their spectra were collected
by three randomly picked MicroNIR™ 1700ES spectrometers in the range of 908–1676 nm using the
MicroNIR™ vial-holder accessory. The spectral bandwidth is ~1.1% of a given wavelength. In this
measurement setup, the samples were scanned from the bottom of the vial in the diffuse reflection mode.

Each sample was scanned twenty times using each MicroNIR™ spectrometer. The sample was
rotated in the vial-holder between every scan to account for sample placement variation, as well as
the non-uniform thickness of the vial. Before every new sample, the MicroNIR™ spectrometer was
re-baselined by scanning a 99% diffuse reflectance reference (Spectralon®), as well as a lamps-on dark
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scan, which consisted of an empty vial in place of a sample. Each sample was measured by all three
spectrometers following the same protocol.

4.3. Data Processing and Multivariate Analysis

4.3.1. Polymer Classification

All steps of spectral processing and chemometric analysis were performed using MATLAB
(The MathWorks, Inc., Natick, MA). All spectra collected were pretreated using Savitzky-Golay first
derivative followed by standard normal variate (SNV).

PLS-DA, SIMCA, TreeBagger, SVM and hier-SVM were applied to preprocessed datasets.
Autoscaling was performed when running these algorithms. To implement PLS-DA, the number of
PLS factors was chosen by training set cross validation and the same number was used for all classes.
To implement SIMCA, the number of principal components (PC) was optimized for each class by
training set cross validation. No optimization was performed for TreeBagger, SVM and hier-SVM, and
the default settings were used. For TreeBagger, the number of decision trees in the ensemble was set to
be 50. Since random selection of sample subsets and variables is involved when running TreeBagger,
there are small differences in the results from run to run. To avoid impacts from these differences, all
the TreeBagger results were based on the mean of 10 runs. For SVM algorithms, the linear kernel with
parameter C of 1 was used.

For the same-unit-same-kit performance, the models built with data collected from four locations
on each sample in one resin kit by one spectrometer were used to predict data collected from the other
location on each sample in the same resin kit by the same spectrometer. For the same-unit-cross-kit
performance, the models built with all the data collected from one resin kit by one spectrometer were
used to predict all the data collected from a different resin kit by the same spectrometer. For the
cross-unit-same-kit performance, the models built with all the data collected from one resin kit by
one spectrometer were used to predict all the data collected from the same resin kit by a different
spectrometer. For the cross-unit-cross-kit performance, the models built with all the data collected
from one resin kit by one spectrometer were used to predict all the data collected from a different resin
kit by a different spectrometer.

4.3.2. API Quantification

All steps of spectral processing and chemometric analysis were performed using MATLAB. Some
functions in PLS_Toolbox (Eigenvector Research, Manson, WA, USA) were called in the MATLAB
code. To develop the calibration models, 38 out of the 48 samples were selected as the calibration
samples via the Kennard-Stone algorithm based on the respective API concentration. The remaining
10 samples were used as the validation samples. The preprocessing procedure was optimized for each
API separately based on the calibration set cross validation. The same preprocessing procedure was
used on all three instruments for the same API. PLS models were developed using the corresponding
preprocessed datasets for each API.

To evaluate the same-unit performance, the model built on one instrument was used to predict
the validation set collected by the same instrument. To evaluate the cross-unit performance without
calibration transfer, the model built on one instrument was used to predict the validation set collected
by the other instruments.

For calibration transfer demonstration, Unit 1 was used as the master instrument, and Unit 2 and
Unit 3 were used as the slave instruments. Eight transfer samples were selected from the calibration
samples with the Kennard-Stone algorithm. To perform bias correction, bias was determined using the
transfer data collected by the slave instrument, and the bias was applied to the predicted values using
the validation data collected by the slave instrument. To perform PDS, the window size was optimized
based on RMSEP, and the corresponding lowest RMSEP was reported in this study. To perform GLS,
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parameter a was optimized based on RMSEP, and the corresponding lowest RMSEP was reported in
this study.

5. Conclusions

In this study, direct model transferability was investigated when multiple MicroNIR™
spectrometers were used. As demonstrated by the polymer classification example, high prediction
success rates can be achieved for the most stringent cross-unit-cross-kit cases with multiple algorithms
including the widely used SIMCA method. Better performance was achieved with SVM algorithms,
especially when a hierarchical approach was used (hier-SVM). As demonstrated by the API
quantification example, low prediction errors were achieved for the cross-unit cases with PLS models.
These results indicate that the direct use of a model developed on one MicroNIR™ spectrometer on the
other MicroNIR™ spectrometers is possible. The successful direct model transfer is enabled by the
robust design of the MicroNIR™ hardware and will make deployment of multiple spectrometers for
various applications more manageable and economical.

Supplementary Materials: The supplementary materials on reproducibility of MicroNIR™ products are available
online http://www.mdpi.com/1420-3049/24/10/1997/s1. Figure S1: MicroNIR™ OnSite manufacturing data
demonstrating instrument-to-instrument reproducibility, Figure S2: MicroNIR™ 1700ES manufacturing data
demonstrating instrument-to-instrument reproducibility.
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