Rippled β-sheet formation by an amyloid-β fragment suggests the generality of enantiomeric β-sheet peptide coassembly

Jennifer M. Urban,¹ Janson Ho,¹ Gavin Piester,¹ Riqiang Fu,² and Bradley L. Nilsson¹*

¹Department of Chemistry, University of Rochester, Rochester, NY 14627-0216

²The National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac

Drive, Tallahassee, FL 32310

email: bradley.nilsson@ rochester.edu; Fax: (585) 276-0205; Tel: (585) 276-3053

SUPPLEMENTARY MATERIAL

Contents:

Table S1. Analytical HPLC gradient conditions	page	S2
Figure S1. Analytical HPLC traces	page	S2-4
Table S2 . Calculated and observed <i>m/z</i> values (MALDI-TOF-MS)	.page	S4
Figure S2. MALDI-TOF-MS spectra	.page	S5-7
Figure S3. Peptide concentration curves	.page	S8
Figure S4. TEM images of peptide fibrils used for solid state NMR	.page	S9-S10
Figure S5. Raw ssNMR data for the L/L- and L/D- assemblies	.page	S11

Peptide	Sequence	Retention Time (min)	Gradient (soln A: water/0.5% TFA; soln B: acetonitrile/0.5% TFA)
L-A <i>β</i> (16-22)	Ac-KLVFFAE-NH ₂	12.55	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min
D-A <i>β</i> (16-22)	Ac-klvffae-NH ₂	12.55	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min
L17/F20 ¹³ C L-Aβ(16-22)	Ac-K ¹³ LVF ¹³ FAE-NH ₂	12.55	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min
F19 ¹³ C L-Aβ(16-22)	Ac-KLV ¹³ FFAE-NH ₂	12.35	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min
F20 4F-Phe L-Aβ(16-22)	Ac-KLVF(4F-Phe)AE-NH ₂	12.43	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min
F20 D-4F-phe D-Aβ(16-22)	Ac-klvf(4F-phe)AE-NH ₂	12.43	Isocratic 5% B 5 min, 5-95% B over 10 min, 95% B 5 min

Table S1. Analytical HPLC gradient conditions

Figure S1. Analytical HPLC traces of synthetic peptides at 215 nm.

A. L-Aβ(16-22), Ac-KLVFFAE-NH₂

B. D-A (16-22), Ac-klvffae-NH₂

C. L17/F20 ¹³C L-Aβ(16-22), Ac-K¹³LVF¹³FAE-NH₂

F. F20 D-4F-phe D-A (16-22), Ac-klvf(4F-phe)AE-NH₂

Table S2. Calculated and observed m/z for all peptides by MALDI-TOF-MS.

Peptide	calc [MH ⁺]	obs [MH ⁺]	calc [MNa ⁺]	obs [MNa ⁺]	calc [MK ⁺]	obs [MK ⁺]
L-A <i>β</i> (16-22)	895.07	895.175	917.07	917.191	933.17	933.180
D-A <i>β</i> (16-22)	895.07	894.693	917.07	916.685	933.17	932.671
L17/F20 ¹³ C L-Aβ(16-22)	897.05	896.834	919.05	918.835	935.15	934.821
F19 ¹³ C L-Aβ(16-22)	896.06	896.311	918.06	918.340	934.16	934.335
F20 4F-Phe L-Aβ(16-22)	913.06	913.494	935.06	935.522	951.16	951.523

F20 D-4F-phe D-A β (16-22)913.06913.	497 935.06	935.532	951.16	951.530
---	------------	---------	--------	---------

Figure S2. MALDI-TOF spectra for all peptides.

A. L-Aβ(16-22), Ac-FKLVFFAE-NH₂

B. D-A (16-22), Ac-klvffae-NH₂

C. L17/F20 ¹³C L-A*β*(16-22), Ac-K¹³LVF¹³FAE-NH₂

D. F19 ¹³C L-A*β*(16-22), Ac-KLV¹³FFAE-NH₂

F. F20 D-4F-phe D-A (16-22), Ac-klvf(4F-phe)AE-NH₂

Figure S3. Peptide concentration curves used to determine concentrations of all peptides used in this study.

A. Concentration curve used for all peptides *except* those containing 4F-Phe

B. Concentration curve used for peptides containing 4F-Phe

Urban, J. M. Supplementary Material

Figure S4. Transmission electron micrographs of peptide fibrils used for solid state NMR.

A. F20 4F-Phe L-Aβ(16-22), Ac-KLVF(4F-Phe)AE-NH₂

B. TEM images of the L/L-ssNMR sample: F19 ¹³C L-A β (16-22) (Ac-KLV¹³FFAE-NH₂) with F20 4F-Phe L-A β (16-22) (Ac-KLVF(4F-Phe)AE-NH₂).

C. TEM images for the L/D-ssNMR sample: F19 ¹³C L-A β (16-22) (Ac-KLV¹³FFAE-NH₂) with F20 D-4F-phe D-A β (16-22) (Ac-klvf(4F-phe)AE-NH₂).

Figure S5. Carbon-13 ssNMR 1D spectra for the L/L- and L/D- $A\beta(16-22)$ assemblies.

