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Abstract: The practice of medicine is ever evolving. Diagnosing disease, which is often the first
step in a cure, has seen a sea change from the discerning hands of the neighborhood physician
to the use of sophisticated machines to use of information gleaned from biomarkers obtained
by the most minimally invasive of means. The last 100 or so years have borne witness to the
enormous success story of allopathy, a practice that found favor over earlier practices of medical
purgatory and homeopathy. Nevertheless, failures of this approach coupled with the omics and
bioinformatics revolution spurred precision medicine, a platform wherein the molecular profile of
an individual patient drives the selection of therapy. Indeed, precision medicine-based therapies
that first found their place in oncology are rapidly finding uses in autoimmune, renal and other
diseases. More recently a new renaissance that is shaping everyday life is making its way into
healthcare. Drug discovery and medicine that started with Ayurveda in India are now benefiting
from an altogether different artificial intelligence (AI)—one which is automating the invention of
new chemical entities and the mining of large databases in health-privacy-protected vaults. Indeed,
disciplines as diverse as language, neurophysiology, chemistry, toxicology, biostatistics, medicine and
computing have come together to harness algorithms based on transfer learning and recurrent neural
networks to design novel drug candidates, a priori inform on their safety, metabolism and clearance,
and engineer their delivery but only on demand, all the while cataloging and comparing omics
signatures across traditionally classified diseases to enable basket treatment strategies. This review
highlights inroads made and being made in directed-drug design and molecular therapy.

Keywords: drug discovery; therapeutics; small molecules; precision medicine; artificial intelligence;
deep learning; transfer learning; recurrent neural networks; de novo design

1. Introduction

Human civilization has a lofty record of its efforts to fight disease and ailments. Based on local and
prevalent dogmas, civilizations developed and adopted unique ways to treat the patient. Thousands
of years ago the field of drug design and molecular therapy was defined by a more holistic approach
with the focus on both the mind and body of the ailing, not just the disease alone. This approach
yielded Ayurveda in India, Unani medicine in the Middle East and traditional Chinese medicine
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(TCM) in the Far East. Many of these practices continue to carry favor today with governmental
agencies including the Department of Defense and the National Institutes of Health (NIH)/National
Center for Complementary and Integrative Health funding research to determine best practices across
a spectrum of traditional medical practices from acupuncture to yoga. Nevertheless, the last century
saw allopathy being adopted as the prevalent medical practice across the globe. In fact, in the Western
world, allopathy is the norm. With its advent in the nineteenth and twentieth centuries, the American
Medical Association was created and the pharmaceutical industry began to rise as antibiotics were
synthesized. Allopathic practitioners seek to treat disease by examining and attacking the physical
causes, whether external or genetic and seeks to produce effects that suppress or eradicate symptoms
of the disease. A vast amount of empirical evidence speaks to the success of this approach in healthcare.
Also, the technologies developed, especially inroads made in imaging, visually pinpoint the cause of
the disease, greatly aiding in the treatment of both acute and chronic diseases.

2. Precision Medicine

Despite the remarkable success of allopathy, post-marketing surveillance data show that its
benefit is not experienced by every patient. Patients on the same drug can also respond differently.
This phenomenon is most evident during the conduct of highly controlled Phase II and III clinical trials
when there is more often than not a differential response to the experimental drug [1,2]. Results from
numerous trials show that despite judicious selection of inclusion and exclusion criteria, within the
“active” cohort a subset of participants meets the primary endpoint whereas another subset does
not [3]. Such findings coupled with the genomics revolution has spurred the use of precision medicine
for treating a patient [4,5]. Technological advances, coupled with the shrinking cost of genome
sequencing and analysis, characterized the genomics revolution. Because researchers are now able
to sequence all the deoxyribonucleic acid (DNA) of an organism and its genome, it is possible to
compare the genomes of different organisms and populations [6]. The genomics revolution can impact
on how patients will react to drugs. Often overlooked, the concept of precision medicine took root
during blood transfusion and was then adopted in solid organ transplantation. Precision medicine
is becoming the norm with clinical decisions based on genomic information. By identifying the
genomics of patients and their diseases scientists are now able to make certain treatment decisions
based on whether a drug will be effective, ineffective or toxic [7]. Physicians can thus spare potential
non-responders the effort, cost and risks of taking a drug that is unlikely to prove beneficial in those
patients—the goal being to deliver the right medicine to the right patient every time. Under the
administration of Barack Obama, a nationwide precision medicine initiative was launched in 2015
seeking to individualize treatment and prevention strategies for diseases through federally supported
research initiatives [8]. Rather than the one-size-fits-all method, healthcare professionals in several
disciplines are now treating patients based on factors including their genetic makeup, where they
live, and the lifestyle they practice—i.e., a panomic approach which takes into account both the
interactome (genome+transcriptome+proteome) and the exposome. Cancer patients have been by far
the largest beneficiaries of precision medicine. Cancer usually is a result of gradual accumulation of
genetic changes (often called mutations) in genes that control cell growth. In this sense cancer is very
much a disorder of the genome. Depending on where in the body the cancer arises and the types of
genetic changes the cells accumulate, different types of cancer can have very different genetic profiles.
These genetic profiles can be used in a number of ways to aid doctors in choosing the best treatments
for each individual patient. By comparing the DNA from a patient’s tumor to that of their normal
cells [9], researchers can learn how the cancer arose and where it may be vulnerable to treatment.
Some precision medicine cancer treatments already in use target specific molecular markers that are
found only on certain types of cancer. For example, colon cancers that have a normally functioning
version of a surface protein called KRAS are likely to respond to certain anti-epidermal growth
factor receptor (EGFR) antibody therapies; those in which the protein is absent or non-functional
are not. Two other targeted cancer treatments currently in use are Herceptin and Opdivo [10,11].
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In addition to improving outcomes with treatments of certain cancers [12], leveraging of the precision
medicine platform has started influencing other spheres within medicine. For example, it has been
discovered that a subset of patients with highly aggressive rheumatoid arthritis exhibits autoantibodies
to the neutrophil nuclear enzyme peptidyl arginine deiminase 4 (PAD 4) [13]. These autoantibodies
are active in that they exacerbate disease. The pharmaceutical industry is targeting this subset of
patients with orally bioavailable small molecule PAD 4 inhibitors. The presence of citrullinated
histones and/or citrullinated proteins in patients with acute tissue injury represents another beacon for
intervention with a PAD 4 inhibitor in that population [14]. Epigenetic therapy is the use of drugs or
other epigenome-influencing techniques to treat medical conditions. Many diseases, including cancer,
heart disease, diabetes, and mental illnesses are influenced by epigenetic mechanisms, and epigenetic
therapy offers a potential way to influence those pathways directly. Diabetic retinopathy is known to
be associated with a number of epigenetic markers, including methylation of the superoxide dismutase
2 (Sod2) and matrix metalloproteinase-9 (MMP-9) genes, an increase in transcription of Lysine-specific
histone demethylase 1 (LSD1), a H3K4 and H3K9 demethylase, and various DNA Methyl-Transferases
(DNMTs), and increased presence of microrubonucleic acids (miRNAs) for transcription factors [15,16].
Several avenues to epigenetic treatment of diabetic retinopathy have been studied. One approach
is to inhibit the methylation of the Sod2 and MMP-9 [17]. The DNMT inhibitors 5-azacytidine and
5-aza-20-deoxycytidine have both been approved by the Food and Drug Administration (FDA) for
treatment of other conditions, and studies have examined the effects of those compounds on diabetic
retinopathy, where they seem to inhibit these methylation patterns with some success at reducing
symptoms [17]. The DNA methylation inhibitor Zebularine has also been studied, although results
are currently inconclusive [18]. A second approach is to attempt to reduce the miRNAs observed
at elevated levels in retinopathic patients, although the exact role of those miRNAs is still unclear.
The Histone Acetyltransferase (HAT) inhibitors Epigallocatechin-3-gallate, Vorinostat, and Romidepsin
have also been the subject of experimentation for this purpose, with some success [19–21]. Cancer
epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve
a change in the nucleotide sequence. Epigenetic alterations may be just as important, or even more
important, than genetic mutations in a cell’s transformation to cancer. Epigenetic control of the
proto-onco regions and the tumor suppressor sequences by conformational changes in histones plays
a role in the formation and progression of cancer. Pharmaceuticals that reverse epigenetic changes
might have a role in a variety of cancers. Recently, it has become evident that associations between
specific cancer histotypes and epigenetic changes can facilitate the development of novel epi-drugs [22].
Drug development has focused mainly on modifying DNMT, HAT and histone deacetylase (HDAC).
Drugs that specifically target the inverted methylation pattern of cancerous cells include the DNA
methyltransferase inhibitors azacitidine and decitabine [23,24]. These hypomethylating agents are
used to treat myelodysplastic syndrome, a blood cancer produced by abnormal bone marrow stem
cells. These agents inhibit all three types of active DNA methyltransferases, and had been thought
to be highly toxic, but proved to be effective when used in low dosage, reducing progression of
myelodysplastic syndrome to leukemia [23]. HDAC inhibitors show efficacy in treatment of T cell
lymphoma [25]. Two HDAC inhibitors, vorinostat and romidepsin, have been approved by FDA.

Use of precision medicine is making major inroads in nephrology. The Nephrotic Syndrome Study
Network, NEPTUNE is implementing the concept of precision medicine for the development of new
disease definitions to be informed by a comprehensive, multilayered analysis of the disease course
in observational cohort studies [26]. NEPTUNE is recruiting patients with nephrotic syndrome
(NS) and has generated datasets which define the underlying genetic architecture and capture
environmental exposures, unique molecular phenotypes, histopathology, and prospective clinical
outcomes. This disease knowledge along the genotype–phenotype continuum can and is being used
by basic and clinical scientists to develop a knowledge network of NS that defines the diseases
from molecular pathogenesis rather than from histopathologic patterns [26]. The molecular disease
definition (i.e., taxonomy) will allow more accurate diagnosis, which is a prerequisite for targeted
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treatments that improve health outcomes in NS. In fact, Angion Biomedica Corp. is partnering
with NEPTUNE to inform inclusion criteria for a clinical trial of its orally biaoavilable fibrokinase
inhibitor ANG3070 in NS-focal segmental glomerulosclerosis (FSGS) based on the drug’s signalosome.
The ANG3070 signalosome associated with beneficial effects in preclinical models of disease will be
compared with the signalosome of individual FSGS patients (Figure 1). Only those patients that house
at least 70% of the ANG3070 disease-modulating signalosome will be recruited in a safety and efficacy
trial with this drug. In other words,

J (A, B)
{A∩ B}
{A} ≥ 0.7 = enroll patient (1)
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Figure 1. Precision medicine in kidney disease. The signalosome of ANG3070, an orally bioavailable
small molecule fibrokinase inhibitor is depicted within the blue circle. The red hotspots indicate
signaling elements modulated by this drug candidate. A precision medicine approach is being used
to inform inclusion criteria for an ANG 3070 clinical trial in nephrotic syndrome- focal segmental
glomerulosclerosis (NS-FSGS). Renal biopsy and urinalysis from these patients will be subjected to
omics analysis and signalosomes (green circle) identified for each patient. Only those patients will be
recruited that share 70% of the ANG3070 signaling elements.

The precision medicine platform is also being leveraged to deliver point-of-care diagnosis in
patients. As an example, emphasis is now on querying the BALFosome (broncheoalveolar lavage fluid)
in patients presenting with acute respiratory distress or urine transcriptome or proteome in patients
presenting with acute kidney disease or NS [27–29]. Use of a minimally invasive or non-invasive
omics query strategy spares the patient pain and/or distress and provides valuable information that
can be acquired relatively rapidly, enabling enrollment or exclusion of the patient. Indeed, the next
several years will bear witness to unprecedented success stories from precision medicine in a variety
of undermet and unmet needs. Finally identification of signaling networks in disease can be used to
develop drug discovery and drug repositioning strategies against that disease. A stellar example is the
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use of Adalimumab in the Novel Therapies for Resistant FSGS (FONT) trial based on experimental
and clinical data supporting the role of tumor necrosis factor α (TNF-α) in the pathogenesis of a wide
spectrum of kidney diseases including FSGS [30].

In summary, the use of precision medicine can reduce noise in clinical trials, can reduce cost and
duration of those trials, can be prognostic and can spur drug discovery or drug repositioning.

3. Drug Repositioning

The cost associated with bringing a new drug to the market can be staggering, up to
$2.0 billion [31]. Coupled with cost is time—on average it takes 10–12 years of discovery and
developmental work to bring a drug to the market. With a limited patent life on the composition of
matter, there is a limited window to recover costs. Repositioning or repurposing involves the use of
existing drugs for another indication following verification of efficacy in the new indication. The drug
being repurposed may be one that is already being marketed or an abandoned drug. A drug candidate
that has been “shelved” after a Phase II trial for lack of efficacy or shelved from a purely business
perspective can also be repurposed. In each case, the drug has been proven “safe” in preclinical
toxicology studies and through Phase I or Phase I and II safety trials. Repurposing de-risks the
program, saves money and time, bypassing several regulatory hurdles. As an example, it is estimated
that $40–$80 million was spent on approval of thalidomide for multiple myeloma compared to the
$1–$2 billion it would cost to develop a drug from scratch [32]. Many academics have found promise
in drugs that have long been on the market, drugs whose patents have expired. Non-profit companies
help usher in these discoveries, which lack monetary incentives, to the clinic. Some companies hoping
to recoup returns on their investments are also looking to repurpose existing drugs still under patent
protection, such as those that were shelved after unsuccessful clinical trials. Because resources have
already been devoted to these unapproved therapies, companies see value in attempting to revamp
them for new indications. The National Center for Advancing Translational Sciences within the
NIH aims to bridge the industry-academia divide by opening pharma’s storehouse of compounds to
university researchers for studies of their mechanisms and potential uses [33]. The center, established
in December 2011, funded nine drug projects in 2013 and another four in 2015. Ongoing phase 2 clinical
trials grew out of these projects and the center announced funding of several new projects in 2017.

With repurposing, a key issue is how one knows which indication to repurpose what drug
for? Graph theory and network analysis is already in use in a number of areas. As an example this
methodology is used in marine biology to compare genetic similarities in geographically distant pods of
mammals. The approach proposed herein is to use Erdos Interactomes of drugs to determine whether
a drug, called a “node” in this graphical representation (Figure 2), positioned for a given indication
can be repurposed for another indication. In this method, drugs are anchored around an original
core motif. For receptor tyrosine kinase inhibitors (TKIs), this core is quinazoline. A first order Erdos
interactome around quinazoline is shown in Figure 2A. Second order drugs in this interactome might
still retain the quinazoline core but host major changes in several side chains. Third order drugs
are more loosely related to the quinazoline core as they could be subjected to some core hopping.
The outermost belt of this interactome retains TKI properties but bears little resemblance to the core
motif or first order drugs. Similar Erdos interactomes have been shown for angiotensin-converting
enzyme inhibitors (Figure 2B) and beta blockers (Figure 2C). Shown in Figure 3 is the Venn diagram
for these interactomes. Drugs that fall within the intersection sets (green arrows) could potentially find
a role in multiple diseases. Given that big pharma has large libraries of compounds, this approach
represents a logical and potentially useful scouting algorithm for repurposing drugs.



Molecules 2018, 23, 2384 6 of 15
Molecules 2018, 23, x FOR PEER REVIEW  6 of 15 

 

 
Figure 2. Erdos interactome representations of drugs. Many drugs developed for a given indication usually share a common core motif. Substitutions are made on this 
core scaffold to tune the biological and drug-like properties and generate intellectual property. An Erdos interactome representation for drugs available or designed to 
treat a particular disease can be built with the drugs closest to the center sharing that core. More distant members in this interactome will more than likely have different 
cores. At the farthest reaches of this interactome, members might find use in other disease as their structures (green arrows) might resemble or completely overlap with 
drugs designed for other indications. (A) Part of the receptor tyrosine kinase inhibitors interactome centered around a quinazoline core. (B) Part of the angiotensin 
converting enzyme inhibitors interactome centered around an aminopropanamido-propanoic acid core. (C) Part of the beta blockers interactome centered around an 
isopropylamino-propan-2-ol core. 

BA

C

Figure 2. Erdos interactome representations of drugs. Many drugs developed for a given indication usually share a common core motif. Substitutions are made
on this core scaffold to tune the biological and drug-like properties and generate intellectual property. An Erdos interactome representation for drugs available or
designed to treat a particular disease can be built with the drugs closest to the center sharing that core. More distant members in this interactome will more than
likely have different cores. At the farthest reaches of this interactome, members might find use in other disease as their structures (green arrows) might resemble or
completely overlap with drugs designed for other indications. (A) Part of the receptor tyrosine kinase inhibitors interactome centered around a quinazoline core.
(B) Part of the angiotensin converting enzyme inhibitors interactome centered around an aminopropanamido-propanoic acid core. (C) Part of the beta blockers
interactome centered around an isopropylamino-propan-2-ol core.
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Figure 3. Algorithm for drug repurposing. In this example, a Venn diagram comprising Erdos
interactomes for receptor tyrosine kinase inhibitors, angiotensin converting enzyme inhibitors and
beta blockers is shown. Intersection sets represent drugs that can be repurposed. For example,
the intersection set between the red and green interactomes represent drugs or drug candidates that
can potentially find use as angiotensin converting enzyme inhibitors or beta blockers.

4. Artificial Intelligence (AI) in Drug Design and Molecular Medicine

Although attractive from the regulatory and business perspectives, repositioning is not always
feasible. De novo drug design and synthesis remain the cornerstone of pharmaceutical research and
development. The ever-expanding cosmos of molecules has aided drug discovery over decades,
however, the enormity of synthesizing all feasible molecules (between 1060–10100) is a Herculean task.
Although the 20th century has been marked by a quantum leap in drug discovery and invention
of new therapeutics, the cost and time associated with this endeavor has increased. This is often
attributed to multivariable parameters that include synthetic feasibility, in vivo activity, toxicity studies
etc. Nevertheless, medicinal chemistry and medicine have started to harness the revolutions in big
data, deep learning and artificial intelligence (AI) that are sweeping other disciplines.

One of the challenges in harnessing advances in genomics to therapeutic gain is to decode
the multifaceted regulatory system that controls gene expression. Controlled at various stages,
regulation of gene expression involves many factors including DNA methylation, regulatory RNAs,
and transcription factors (TFs) [34,35]. Among them, the binding of TFs to specific DNA sequences
known as transcription factor binding sites (TFBSs) that impart positive or negative control on
the transcription of corresponding target genes is a major regulatory component. Revealing and
pinpointing TFBSs for a given TF, remains a long-sought goal in applied genomics [36,37] Chromatin
immunoprecipitation sequencing (ChIP-seq) assay has been the gold standard for evaluating the
interaction of TF with DNA. ChIP-seq, a technology that couples chromatin immunoprecipitation
with massively parallel sequencing, is capable of mapping genome-wide TFBSs [38,39]. As with many
high-throughput sequencing approaches, ChIP-seq produces enormously large data sets, for which
appropriate computational analysis methods are required. To predict DNA-binding sites from ChIP-seq
read count data, peak calling methods have been developed. Some of the popular models are
MACS [40], ODIN [41], Hpeak [42], QuEST [43], MOSAiCS [44] and many others. Resulting motif
data sets are fed in to MatInspector [45] or MATCHTM [46] programs, which utilize a large library of
position weighted matrices for TFBSs, and the putative binding site is located. Recently, many deep
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learning approaches have been developed to predict sequence specificity with more accuracy [47,48].
Figure 4 depicts one of these approaches named DeepSNR that uses convolution-de-convolution
network and a deep learning algorithm to predict the TFBS.
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The concept of implementing AI into drug discovery has been around for decades, however,
an article in the New York Times in recent years made it of public interest wherein a deep learning
network won a quantitative structure activity relationship (QSAR) machine-learning challenge
in drug discovery hosted by Merck [49]. Thus far, various models have been developed to
precisely predict new molecular entities as plausible therapeutic scaffolds [50–52]. In a recent
study, Sanchez-Lengling et al. [53] successfully predicted drug-like molecules which coincided with
FDA-approved drugs using their developed framework based on objective-reinforced generative
adversarial networks (ORGAN). Olivercona et al. [54] developed a sequence-based generative model
for molecular de novo design and have illustrated its application in predicting molecules with
specified desirable properties. Another strategy employed by this group includes various types
of autoencoder models that rendered new structures that were predicted to be active against dopamine
type receptor 2 [55–58]. Even pharmaceutical giants such as Bayer Healthcare and Roche have
attributed their recent success in developing optimized pharmacophores to computer-assisted drug
design technologies [59,60]. A thorough review on this topic could be found elsewhere [61,62].
So far AI has been successfully implemented only to retrospectively generate de novo structures
using already existing data set that encompasses known bioactive compounds and biological targets.
However, in a recent study Merk et al. [63] have demonstrated the applicability of AI in delivering
novel synthetically feasible bioactive compounds for the first time. In this prospective study, they have
aptly modified their model to precisely recognize retinoid X and proliferator-activated receptor agonists
and further synthesized and assayed the de novo generated compounds that altered receptor activity
in cell-based assay.

Transfer learning is a machine learning method where a model developed for a task is reused
as the starting point for a model on a second task [64]. Algorithms used in speech recognition and
language processing can be transferred to medicinal chemistry. In the hypothetical example shown
in Figure 5, a Python-coded pattern matching algorithm has been used to first extract words from
“CHARIOT”. While some or all the letters in CHARIOT can be reorganized a myriad number of ways,
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the pattern matching algorithm references a dictionary and only character combinations that make
known words are retained Subsequently, one can employ a sentence-generating algorithm to build
phrases and even sentences from these words. Such an algorithm can be transferred to an exercise in
medicinal chemistry. In this example, the International Union of Pure and Applied Chemistry (IUPAC)
name for thiamine is first converted to a SMILES nomenclature. The simplified molecular-input
line-entry system (SMILES) is a specification in form of a line notation for describing the structure of
chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors
for conversion back into two-dimensional drawings or three-dimensional models of the molecules.
While a myriad number of smaller SMILES strings, connoting molecules and impossible molecules,
a Python-coded pattern-matching algorithm (run against a known database of chemicals such as
PUBCHEM) is used to retain known smaller molecules and then build larger molecules based on
existing rules in organic chemistry. While the machine/computer generated 2◦ generation molecules
could represent drug-like candidates, in this example, the 1◦ and 2◦ generation small molecules could
just as easily represent Phase 1 and Phase 2 metabolites, respectively, of thiamine.
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Another method to facilitate the synthetic process of novel drug candidates involves a continuous
loop of self-learning in which, initially, it takes advantage of an existing data set of known bioactive
compounds and is expected to produce therapeutically relevant structures [65]. When it comes to
certain sequential machine learning tasks, such as speech recognition, recurrent neural networks
(RNNs) are reaching levels of predictive accuracy, time and time again, that no other algorithm can
match. Most artificial neural networks, such as feedforward neural networks, have no memory of the
input they received just one moment ago. Recurrent networks, on the other hand, do remember what
they have just encountered, and at a remarkably sophisticated level especially RNNs incorporating
long short-term memory (LSTM) [66]. Medicinal chemists are exploring to what extent an RNN with
LSTM cells can figure out sensible chemical rules and generate synthetically feasible molecules after
being trained on existing compounds encoded as SMILES. The networks can to a high extent generate
novel, but chemically sensible molecules. The properties of the molecules are tuned by training on
two different datasets consisting of fragment-like molecules and drug-like molecules. The produced
molecules and the training databases have very similar distributions of molecular weight, calculated
logP, number of hydrogen bond acceptors and donors, number of rotatable bonds and topological polar
surface area when compared to their respective training sets. The compounds are for the most cases
synthetically feasible as assessed with the synthetic accessibility or SA score and Wiley ChemPlanner.

Akin to many scientific discoveries, AI in drug discovery has harbored healthy skepticism among
the medicinal chemists. It is yet to be tested how AI can tackle the challenge of imbibing natural
products to build synthetically feasible de novo designs as effective pharmacophores [67,68]. Also,
the ventured chemical space has largely been small molecules; however, the advent of bio-conjugate
therapies such as immunotherapy, RNAi therapeutics etc., where chemistry converges with biology
is yet to be explored. In fact, converging the large pool of datasets starting from hypothesis to
pharmacovigilance that encompasses multiple variables has never been easy. Most importantly,
a single AI-projected drug candidate is yet to make it as approved therapeutics. It might still be
a prudent idea to cross validate the AI projected de novo designs by experienced medicinal chemists prior
to taking the onus of drug discovery. However, current advancement in the field holds the promise to
resolve the issues in coming future and possibly make an everlasting impact in the realm of drug discovery.

5. Conclusions

The field of directed drug design and molecular therapy is set to grow exponentially, aided greatly
by inroads made in omics analysis, precision medicine, big data capture and analysis, deep learning
and AI. In fact, the marriage of AI-aided drug discovery and synthesis and precision medicine-aided
drug application and patient management will revolutionize the field of medicine. It is not difficult
to imagine that one day each patient will benefit from the use of smart designer drugs tailored to
that individual. Hydrogel-based multi-drug depots could be implanted in patients with multiple
comorbidities. Such a depot would only contain drugs tailored to the omics signature in that patient.
The depot would deploy a particular drug only on demand—say a nephroprotective whose release is
linked to an excursion in the patient’s serum creatinine (SCr). Furthermore, just as many of today’s
smart phones having an inbuilt audio amplification mechanism in the setting of excess ambient noise
or just as many cars’ headlights coming on and off as the vehicle enters and exits an underpass,
respectively, the nephroprtective drug’s clearance could be tuned to a decrease in SCr by linking
SCr with drug levels and the appropriate cytochrome P450. Without a doubt, we have just started
scratching the surface of the AI and precision medicine revolutions in drug discovery, molecular
medicine and patient management.
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