## Supporting Information for Fluorescent Thienothiophene-Containing Squaraine Dyes and Threaded Supramolecular Complexes with Tunable Wavelengths between 600-800 nm Wenqi Liu, Hannah H. McGarraugh, and Bradley D. Smith\* Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA <u>\*smith.115@nd.edu</u>

- A. Compound Characterization
- B. Titration Data
- C. Photophysical Data
- D. Chemical Stability Data
- E. Fluorescence Quantum Yields

# A. Compound Characterization

The peaks assignments below are based on precedent and logic. They have not been confirmed by correlation methods.



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of **S1**.



 $^{13}\text{C}$  NMR (126 MHz, CDCl\_3) of S1.



Chemical Formula: C<sub>34</sub>H<sub>31</sub>N<sub>2</sub>O<sub>3</sub>S\* Exact Mass: 547.2050 Molecular Weight: 547.6925 m/z: 547.2050 (100.0%), 548.2083 (68.%), 549.2008 (4.5%), 549.2117 (3.9%), 549.2117 (2.7%), 550.2041 (1.7%) Elemental Analysis: C, 74.56; H, 5.71; N, 5.11; O, 8.76; S, 5.85



HRMS-ESI of S1.

![](_page_2_Figure_4.jpeg)

<sup>&</sup>lt;sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of **S1PEG**.

![](_page_3_Figure_0.jpeg)

MS-MALDI (DHBA as matrix) of **S1PEG**. A set of peaks around 2363 reflect the polydispersity of the  $PEG_{45}$  chains.

![](_page_4_Figure_0.jpeg)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of **4**.

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_3.jpeg)

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) of **4**.

![](_page_5_Picture_0.jpeg)

Chemical Formula: C<sub>6</sub>H<sub>3</sub>BrS<sub>2</sub> Exact Mass: 217.8860 Molecular Weight: 219.1140 m/z: 217.8860 (100.0%), 219.8839 (97.3%), 219.8818 (9.0%), 221.8797 (8.8%), 218.8893 (6.5%), 220.8873 (6.3%), 218.8853 (1.6%), 220.8833 (1.6%) Elemental Analysis: C, 32.89; H, 1.38; Br, 36.47; S, 29.26

![](_page_5_Figure_2.jpeg)

HRMS-ESI of 4.

![](_page_5_Figure_4.jpeg)

<sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>) of **5**.

![](_page_6_Figure_0.jpeg)

<sup>13</sup>C NMR (126 MHz, Acetone-d<sub>6</sub>) of **5**.

![](_page_6_Figure_3.jpeg)

Exact Mass: 214.0355 Molecular Weight: 214.3205 m/z: 214.0355 (100.0%), 215.0388 (9.7%), 216.0313 (9.0%), 215.0349 (1.6%) Elemental Analysis: C, 50.44; H, 5.64; N, 6.54; O, 7.46; S, 29.92

![](_page_6_Figure_5.jpeg)

HRMS-ESI of 5.

![](_page_7_Figure_0.jpeg)

HRMS-ESI of 6.

![](_page_8_Figure_0.jpeg)

![](_page_9_Figure_0.jpeg)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of **S2PEG**.

![](_page_9_Figure_2.jpeg)

MS-MALDI (DHBA as matrix) of **S2PEG**. A set of peaks around 2421 reflect the polydispersity of the PEG<sub>45</sub> chain.

![](_page_10_Figure_0.jpeg)

<sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>) of **7**.

![](_page_10_Figure_2.jpeg)

 $^{13}C$  NMR (126 MHz, Acetone-d<sub>6</sub>) of **7**.

![](_page_11_Figure_0.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

<sup>1</sup>H NMR (500 MHz, Acetone-d<sub>6</sub>) of 8.

![](_page_12_Figure_0.jpeg)

 $^{13}C$  NMR (126 MHz, Acetone-d\_6) of  $\boldsymbol{8}.$ 

Chemical Formula: C<sub>13</sub>H<sub>16</sub>NOS<sub>2</sub>+ Exact Mass: 266.0668 Molecular Weight: 266.3965 m/z: 266.0668 (100.0%), 267.0701 (14.1%), 268.0626 (9.0%), 267.0662 (1.6%) Elemental Analysis: C, 58.61; H, 6.05; N, 5.26; O, 6.01; S, 24.07

![](_page_12_Figure_4.jpeg)

HRMS of 8.

![](_page_13_Figure_0.jpeg)

ö

 $\label{eq:chemical Formula: $C_{30}H_{28}N_2O_4S_4$ \\ Exact Mass: 608.0932$ \\ Molecular Weight: 608.8040$ \\ m/z: 608.0932 (100.0\%), 609.0965 (32.4\%), 610.0890 (18.1\%), 611.0923$ \\ (5.9\%), 610.0999 (5.1\%), 609.0926 (3.2\%), 612.0848 (1.2\%), 610.0959$ \\ (1.0\%)$ \\ Elemental Analysis: C, 59.19; H, 4.64; N, 4.60; O, 10.51; S, 21.06$ \\ \end{tabular}$ 

![](_page_13_Figure_3.jpeg)

HRMS-ESI of S3.

![](_page_14_Figure_0.jpeg)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of **S3PEG**.

![](_page_15_Figure_0.jpeg)

#### Chemical Formula: C<sub>212</sub>H<sub>394</sub>N<sub>8</sub>NaO<sub>94</sub>S<sub>4</sub>+ Exact Mass: 4707.5071 Molecular Weight: 4710.6752

 Exact Mass: 4707.5071

 Molecular Weight: 4710.6752

 m/z: 4709.5138 (100.0%), 4708.5105 (87.6%), 4710.5172 (75.7%), 4707.5071 (38.2%), 4711.5206 (28.4%), 4711.5181

 (19.3%), 4712.5239 (18.1%), 4711.5096 (18.1%), 4710.5147 (16.9%), 4710.5063 (15.8%), 4711.5206 (14.0%),

 4712.5130 (13.7%), 4712.5214 (12.2%), 4709.5114 (7.4%), 4709.5029 (6.9%), 4713.5248 (5.5%), 4713.5163 (5.1%),

 4713.5139 (3.5%), 4714.5197 (3.3%), 4710.5132 (3.2%), 4713.5273 (3.2%), 4712.5105 (3.1%), 4710.5109 (3.0%),

 4709.5099 (2.8%), 4709.5075 (2.6%), 4713.5163 (2.5%), 4711.5166 (2.4%), 4711.5142 (2.2%), 4714.5172 (2.2%),

 4713.5273 (1.7%), 4711.5072 (1.3%), 4713.5054 (1.2%), 4708.5065 (1.2%), 4708.5042 (1.1%), 4712.5021 (1.1%)

 Elemental Analysis: C, 54.05; H, 8.43; N, 2.38; Na, 0.49; O, 31.93; S, 2.72

![](_page_15_Figure_3.jpeg)

MS-MALDI (DHBA as matrix) of **S3PEG**. A set of peaks around 4391 reflect the polydispersity of the PEG<sub>45</sub> chains.

### **B.** Titration Data

![](_page_16_Figure_1.jpeg)

Figure S1. (*left*) Fluorescence (ex: 630 nm, em: 700 nm, slit 3 nm) titration isotherm for incremental addition of **M2** to a solution of **S1PEG** (250 nM) in water. (*right*) Threading kinetic profile generated by mixing equal molar concentration (50 nM each) of **S1PEG** and **M2** in a stopped flow device (ex: 630 nm, em: 700 nm, slit 3 nm). The red lines are computer fits of experimental data to 1:1 binding model or second order kinetic model, respectively.

![](_page_16_Figure_3.jpeg)

Figure S2. (*left*) Fluorescence (ex: 723 nm, em: 753 nm, slit 5 nm) titration isotherm for incremental addition of **M2** to a solution of **S2PEG** (250 nM) in water. (*right*) Threading kinetic profilegenerated by mixing equal molar concentration (50 nM each) of **S2PEG** and **M2** in a stopped flow device (ex: 723 nm, em: 753 nm, slit 3 nm). The red lines are computer fits of experimental data to 1:1 binding model or second order kinetic model, respectively.

# C. Photostability Data

![](_page_17_Figure_1.jpeg)

Figure S3. Photostability of free **S1PEG** (5  $\mu$ M, *left*) and **M2**  $\supset$  **S1PEG** (5  $\mu$ M, *right*) in H<sub>2</sub>O with continuous irradiation at 550 nm over 15 h (fluorescence spectrum was collected every 30 min).

![](_page_17_Figure_3.jpeg)

Figure S4. Photostability test of free **S2PEG** (2  $\mu$ M, *left*) and **M2**  $\supset$  **S3PEG** (2  $\mu$ M, *right*) in H<sub>2</sub>O with continuous irradiation at 650 nm over 15 h (fluorescence spectrum was collected every 30 min). Note: slight increase in fluorescence over time for free **S2PEG** is attributed to slow deaggregation.

![](_page_17_Figure_5.jpeg)

Figure S5. Photo stability test of the **S3PEG** (2  $\mu$ M, *left*) and **M2**  $\supset$  **S3PEG** (2  $\mu$ M, *right*) in H<sub>2</sub>O with continuous irradiation at 750 nm over 15 h (fluorescence spectrum was collected every 30 min).

## **D. Chemical Stability Data**

![](_page_18_Figure_1.jpeg)

Figure S6. Chemical stability test of **S1PEG** and **M2**  $\supset$  **S1PEG**. (*left*) Change in fluorescent maxima band for solutions of (A) **M2**  $\supset$  **S1PEG** (5.0 µM) or (B) free **S1PEG** (5 µM), in the presence of excess nucleophile Na<sub>2</sub>S (5 mM) in water at 20°C. (*right*) Photograph of samples containing, (A) **M2**  $\supset$ **S1PEG** (80 µM) or (B) free **S1PEG** (80 µM), after sitting in the presence of excess nucleophile Na<sub>2</sub>S (100 mM) in water at 20 °C.

![](_page_18_Figure_3.jpeg)

Figure S7. Chemical stability test of **S2PEG** and **M2**  $\supset$  **S2PEG** by monitoring the change in fluorescent maxima band for solutions of (A) **M2**  $\supset$  **S2PEG** (5.0 µM) or (B) free **S2PEG** (5 µM) over time in the presence of excess nucleophile Na<sub>2</sub>S (5 mM) in water at 20 °C.

![](_page_18_Figure_5.jpeg)

Figure S8. Chemical stability test of **S3PEG** and **M2**  $\supset$  **S3PEG** by monitoring change in fluorescent maxima band for solutions of (A) **M2**  $\supset$  **S3PEG** (1.0 µM) or (B) free **S3PEG** (1 µM), in the presence of excess nucleophile Na<sub>2</sub>S (1 mM) in water at 20 °C.

# E. Fluorescence Quantum Yields

Table S1. Integrated fluorescent and quantum yield of ICG, S3PEG, and M2  $\supset$  S3PEG in H<sub>2</sub>O.

|                         | ICG                 | S3PEG               | $\mathbf{M2} \supset \mathbf{S3PEG}$ |
|-------------------------|---------------------|---------------------|--------------------------------------|
| Integrated fluorescence | 2.2×10 <sup>6</sup> | 2.9×10 <sup>6</sup> | 4.4×10 <sup>6</sup>                  |
| Quantum yield %         | 5.3                 | 7.0                 | 10.6                                 |

Table S2. Photophysical properties of squaraines and their complexes with M1 in CHCl<sub>3</sub>.

|                                          | S1   | M1⊃S1 | S2   | M1⊃S2 | <b>S</b> 3 | M1⊃S3 |
|------------------------------------------|------|-------|------|-------|------------|-------|
| Abs (nm)                                 | 627  | 650   | 692  | 717   | 767        | 783   |
| Em (nm)                                  | 651  | 685   | 715  | 749   | 792        | 820   |
| logɛ (M <sup>-1</sup> cm <sup>-1</sup> ) | 5.39 | 4.68  | 5.48 | 4.84  | 5.59       | 5.02  |