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Abstract: Dendrimers are drug delivery systems that are characterized by a three-dimensional,
star-shaped, branched macromolecular network. They possess ideal properties such as low
polydispersity index, biocompatibility and good water solubility. They are made up of the interior
and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation
of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency,
reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful
for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for
the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by
drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance,
toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for
the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers
for the treatment of viral and parasitic infections.
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1. Introduction

Infectious diseases are caused by microorganisms such as bacteria, viruses, parasites or fungi [1].
The diseases can be transmitted by bites from insects or animals; or they can be spread directly
or indirectly from one person to another or through contaminated food, plants, soil or water [2].
People with compromised immune systems and children are the most affected by the diseases [3,4].
Infectious diseases can be treated but their treatment is hindered by simultaneous resistance to multiple
drugs [3,5]. Due to the development of drug resistance by infectious agents, several researchers have
developed drug delivery systems for the treatment of infectious diseases.

Viruses are microorganisms living cells that replicate only within living cells by using the
enzyme systems of the cells. Viral infections in human include herpes, influenza, HIV/AIDS etc. [6].
About 7.7% of deaths in South Africa were caused by influenza and pneumonia in 2011 [7]. A study
conducted in South Africa also showed that about 44% of HIV patients were likely to have influenza
co-infection [8]. AIDS still remains the top 10 leading causes of death in South Africa [9]. Although the
number of infectious diseases is still high globally, the overall death rate is decreasing. This may be
due to the improved service delivery, improved access to healthcare centre, good nutrition, and better
education about infectious diseases [10]. However, in 2010, the number of death caused by infectious
diseases had decreased [11]. The World Health Organization (WHO) reported that there is a possibility
of a million deaths due to infectious diseases by 2050 indicating that there is a pressing need to develop
therapeutics that can treat infectious diseases effectively [12].

Drug delivery systems are potential therapeutic carriers which offer several advantages when
compared to the conventional drugs used for the treatment of infectious diseases. Some examples of
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delivery systems used for the treatment of infectious diseases are polymer-drug conjugates, micelles,
nanogels, hydrogel, emulsion, dendrimers etc. The unique properties of dendrimers as drug delivery
systems make them potential devices for the treatment of infectious diseases [13]. Some of the
advantages are: reduced toxicity, increased specificity which results in the protection of the healthy
cell, tissues and organs from the toxic side effects of the drug; improved bioavailability; extended
half-life resulting in reduced kidney clearance and protection of the incorporated drugs from premature
degradation by enzymatic reactions and other scavenging mechanisms. This review will report the
biological efficacy of dendrimers in the treatment of infectious diseases.

2. Parasitic Infections

A parasite is an organism that lives within or on a host, and its survival is dependent on the host.
Some parasitic diseases are easily treated, while some are not. Common parasitic diseases are malaria,
leishmaniasis, schistosomiasis and toxoplasmosis [14,15].

2.1. Malaria

Malaria is a parasitic disease caused by the genus Plasmodium parasite carried by female Anopheles
mosquitoes [16]. There are five types of Plasmodium parasite that infect humans, including: P. ovale,
P. malariae, P. knowlesi, P. vivax and P. falciparum [17]. Plasmodium falciparum is the species that causes
the most life-threatening form of malaria. The disease is transmitted to a person by a bite of an infected
female Anopheles mosquito [18]. It can also be transmitted from one person to another through blood
transfusion, an organ transplant, and sharing of needles or syringes [18,19]. It can also be transmitted
from an infected mother to a child at birth. This disease is common in the tropical and subtropical
regions across the world, which include sub-Saharan Africa, Asia and Latin America [19,20]. Malaria
has a major negative impact on economic development, thus leading to poverty [21]. The symptoms
usually begin about ten to fifteen days after a mosquito bite [21]. Typical, symptoms of malaria include:
fever, headaches, and vomiting, but in severe cases it can cause seizures, anemia, abnormal pains
and coma [22].

2.2. Leishmaniasis

Leishmaniasis is caused by the Leishmania parasite that usually lives in infected sand flies. It can
be transmitted from a bite of a female infected sand fly [23]. This disease can also be transmitted from
one person to another through blood transfusion or by sharing of needles [24]. Leishmaniasis is found
in parts of tropic and subtropical regions which include: East Africa, South America and Asia [25].
There are several different forms of leishmaniasis but the most common in humans are: cutaneous and
visceral [26]. The main symptom of cutaneous leishmaniasis is skin sores. Common symptoms for
visceral leishmaniasis are weight loss, fever, enlarged spleen and enlarged liver [27].

2.3. Schistosomiasis

Schistosomiasis is the third most devastating parasitic disease in the world [28]. It is the cause of
mortality and morbidity in developing countries such as Africa, South America and Asia [29]. In 2014,
an estimated 61.6 million people were infected with schistosomiasis [30]. It is caused by a parasite
called Schistosoma and the parasite is a fluke [31]. The parasite affects the intestines and bladder,
but because it lives in the blood, thus it can also affect other systems. After infection, the person may
develop a rash or itchy skin within 1–2 months with symptoms such as muscle aches, fatigue, cough,
weight loss, fever and chills [32].

2.4. Toxoplasmosis

Toxoplasmosis is an infection caused by a parasite called Toxoplasma gondii [33]. The infection
usually occurs from the exposure to infected cat faeces, by eating undercooked meat, or it can be
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transmitted from mother to child during pregnancy [33]. It can also be found in contaminated
water [34]. People who are at a high risk of the infection are those with compromised immune systems
and infants born to mothers with active infection during pregnancy [35]. Toxoplasmosis can cause
serious complications to those with weakened immune systems such as infants, pregnant women and
people living with HIV/AIDS [35]. Most healthy people who are infected with toxoplasmosis show no
signs or symptoms but some may develop symptoms similar to flu, fever, body aches, headache and
fatigue [36]. Toxoplasmosis is life-threatening in people with low immune systems and they are at risk
of developing seizures, confusion, poor eye vision, and lung infection [36,37].

3. Viral Infection

Viruses are microorganisms that replicate only within living cells by using the cells’ enzyme
systems [38]. They cause diseases such as HIV, herpes, cervical cancer (HPV), meningitis, hepatitis,
and influenza etc. [39].

3.1. HIV

HIV is a human immune virus that causes acquired immunodeficiency syndrome (AIDS) over
time [40]. HIV attacks immune system of the body, causing low CD4 count. AIDS is the final stage
of HIV infection, but not everyone with HIV develop AIDS [41]. When HIV has manifested into
AIDS, it becomes life-threatening by destroying the white blood cells that usually fight infections [42].
This can cause serious infections and diseases like tuberculosis, candidiasis and meningitis etc. [43].
HIV is transmitted through sexual intercourse with an infected person, through blood transfusion
from an infected person, and from an infected mother to her baby through breastfeeding, during
pregnancy [44]. The symptoms of HIV usually develop several months or even years after infection
with the virus [45]. The early symptoms of HIV infection include: fever, chill, joint pain, and rashes.
If HIV has manifested into AIDS, then the symptoms may include diarrhea, dry cough, weight loss,
night sweats and serious fever [45,46].

3.2. Influenza

Influenza is a contagious respiratory infection which affects people of all ages [47]. The virus is
transmitted through the air by coughs and sneezes and infects the nose, throat, mouth, and lungs.
It can also be transferred by touching surfaces that are already contaminated with the virus [48].
The virus can be deadly in individuals with low immune system (i.e., newborn babies, elderly people
and people living with chronic diseases) [49]. There are three common forms of influenza, namely:
type A, B and C [50]. Type A flu viruses are the most dangerous and exhibit deadly complications
and are responsible for the large human influenza pandemics [51]. The virus mostly affects humans
but animals and wild birds are also known hosts for the flu virus [51]. Type B virus is less common
than A and it only affects humans [52]. Although type B is very harmful, but it is less severe than type
A [53]. Type B influenza does not cause human pandemics [54]. Influenza type C causes mild diseases
and is less common than other types, there are no epidemics associated with influenza type C [55].
Symptoms include cough, chills, headaches, sore throat and body muscle aches [56].

3.3. Meningitis

Meningitis is a viral infection of the meninges, the tough layer of tissue surrounding the spinal
cord and the brain [57]. Meningitis can lead to brain swelling causing permanent disabilities such
as coma, and can lead to death if not treated [58]. There are four common type of meningitis
which include bacterial, viral, fungal and aseptic meningitis [59]. Bacterial meningitis is the most
life-threatening and can lead to death in few hours [59]. It is caused by the bacterial such as Streptococcus,
Streptococcus pneumonia, Neisseria meningitides and Listeria monocytogenes [60]. Most people are lucky to
recover from it, but they are likely to get permanent disabilities such as hearing loss, brain damage and
coma [60]. Viral meningitis is caused by viruses such as enteroviruses, herpes varicella and mumps
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viruses [61]. Fungal meningitis is caused by pathogens such as Candida spp.-Histoplasma capsulatum
and Cryptococcus neoformans. Fungal meningitis is most common in people with low immune systems,
and it is more severe in people with impaired immune systems (e.g., organ transplantation) [62].
Parasitic meningitis is caused by parasites such as Angiostrongylus cantonensis, Schistosoma, Toxocariasis
and Gnathostoma spinigerum. The infection is believed to occur when there is a predominance of
eosinophilia in the CSF [63]. Symptoms of meningitis include fever, stiffness of neck, nausea, headache
and vomiting [64].

3.4. Herpes

Herpes is a sexually transmitted disease [65]. Oral herpes is also known as HSV-1, or type 1 herpes
simplex [66]. It can be transmitted via infected saliva, mucous membranes or skin [67]. This virus
causes sores in the mouth, gums, tongue, face or nose. It causes symptoms such as fever, swollen lymph
nodes and muscle aches [68]. Genital herpes is also known as HSV-2, or type 2 herpes simplex [69].
This virus causes sores around the genital areas. The virus is transmitted through skin-to-skin contact
with sores [69]. Genital herpes is most likely to affect women than men and women with HIV are
difficult to treat resulting in the administration of higher doses of antiviral drugs [70]. The virus
sometimes hides in the nerves causing no symptoms. If the symptoms are visible, then a person may
experience itchy painful blisters which could results in ulcers [71].

3.5. Hepatitis

Hepatitis is the inflammation of the liver tissue resulting from alcohol abuse, certain medications
and toxins [72]. Common types of hepatitis are Hepatitis A, B and C. Hepatitis A is a virus that
causes liver infection [72]. It is transmitted through the digestion of food or water that is already
contaminated with the faeces of an infected person [73]. Symptoms of hepatitis A include vomiting,
tiredness, joint pains, dark urine and intense itching [74]. Hepatitis B is caused by the virus hepatitis
B and it is transmitted from blood and body fluids of an infected person. It is also transmitted from
mother-to-unborn baby if the mother is infected [75]. Hepatitis B can be prevented by vaccination.
Symptoms are similar to those of type A; they include headache, dark urine, and vomiting etc. [76].
Hepatitis C causes serious liver cancer, which could lead to liver transplant [77]. Approximately 80%
of patients with hepatitis C develop chronic liver infection [78]. It is transmitted via sharing needles
with an infected person, through ingesting drugs and through mother to child transmission during
pregnancy. Symptoms include fever, fatigue, nausea, abdominal pain and jaundice [79].

3.6. Cervical Cancer

Cervical cancer is caused by a virus called human papillomavirus (HPV) and this virus causes
the growth of abnormal cells on the cervix which is cancerous [80]. HPV is transmitted via sexual
intercourse [81]. There are factors that contribute to the development of HPV, such as having many
sexual partners, people living with HIV I are likely to be infected with the disease, long-term use of
contraceptives, having several pregnancies and giving birth at a young age [82]. Symptoms of cervical
cancer include abnormal vaginal bleeding, abnormal vaginal discharge, and vaginal bleeding after
menopause, heavy periods and vaginal bleeding after sex [83].

4. Application of Dendrimers in the Treatment of Infectious Diseases

Infectious diseases are caused by microorganisms, such as bacteria, viruses, parasites or
fungi [84]. Infectious diseases are currently being treated by therapeutics such as antibiotics, antiviral,
anti-parasitic and antifungal [85]. Most of these therapeutics suffer from severe limitations such as
drug resistance, toxicity and their routes of administration result in poor patient compliance [86,87].
The drug-resistant problem is due to different mechanism such as increased efflux system; reduced
membrane permeability or increase of drug degradation [88]. Due to these limitations, the application
of targeted drug delivery system is an attractive carrier for the treatment of infectious diseases [89].
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Drug delivery system is used to transport pharmaceutical compounds directly to the targeted organs
or tissue with less toxic effects on the organs/tissue [90]. There are many different types of drug
delivery systems, such as dendrimers, micelles, liposomes, nanospheres, nanocapsules, hydrogels and
polymer-drug conjugates [91]. An ideal drug delivery system must be able to reduce drug toxicity,
improve bioavailability, biocompatibility, enhance drug solubility, non-immunogenic, biodegradable,
enhance patients’ compliance and be able to overcome drug resistance [92,93].

Dendrimers are synthetic polymers with three-dimensional, star-shaped and branched
macromolecules [94]. They are made up of the interior layers and the exterior layers. The exterior
layer is composed of functional groups which are useful for conjugation of drugs and targeting
moieties [95]. The interior layers are suitable for encapsulation of drug molecules with improved drug
efficacy, reducing drug toxicity and control release mechanisms of drugs [96]. They are water-soluble,
biocompatible, polyvalence, and biodegradable [96]. These properties make them useful for drug
delivery and they are being investigated by several scientists [97]. Figure 1 shows a schematic
diagram of dendrimers from generation one to four. This review will demonstrate the importance of
dendrimers as a targeted delivery system for the treatment of infectious diseases precisely viral and
parasitic infections.

Figure 1. Schematic diagram of dendrimers (G1–G4).

4.1. Various Dendrimers and Their Applications

Dendrimers have several medical and practical applications; they can be used for drug delivery,
gene delivery, tissue engineering and for diagnosis [98]. Several dendrimers have been developed
for biomedical applications [98]. Polyamidoamine (PAMAM) has been used extensively for drug
delivery (Figure 2a) and tissue engineering (Figure 2b), because of their biocompatibility, hydrophilic
nature and non-immunogenic effect [99]. PAMAM dendrimers consist of ethylenediamine core,
their branching units consist of amine groups that can be used to load drugs, antibodies, enzymes
and other bioactive agents [100,101]. Poly-L-lysine (PLL, Figure 2c) dendrimers are mostly used
as gene carriers; they contain two primary amines which are often modified to enhance their
therapeutic effects [102]. Poly-L-Lysine dendrimers are biocompatible, flexible, biodegradable and
water-soluble [102]. Poly (propylene imine) (PPI, Figure 2d) dendrimers are used for diagnosis [103].
The core of PPI is usually based on a 1,4-diaminobutane or ethylenediamine and the branching units
consists of propylene imine monomers [103].
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Figure 2. Schematic representation of dendrimers and their applications, (a) PAMAM-G3 dendrimers
for drug delivery; (b) PAMAM-G1 dendrimers for tissue engineering; (c) PLL dendrimers for gene
delivery; and (d) PPI dendrimers for diagnosis.

4.2. Dendrimers for the Treatment of Leishmaniasis

Leishmaniasis is a life-threatening disease that is caused by a Leishmania parasite and transmitted
through a bite of an infected sand-fly [104]. About 12 million cases of people are affected by
leishmaniasis across the world and two million cases of leishmaniasis occur annually [105]. For several
decades, leishmaniasis was being treated with drugs such as sodium stibogluconate (Pentostam,
Figure 3b) and meglumine antimoniate (Glucantime) [106]. Although, these drugs have been used for
several decades, they have been reported to develop resistance to leishmaniasis with side effects such
as cardiotoxicity and pancreatitis [107]. A study in India revealed that about 65% of patients relapsed
after treatment with an antimonial [108]. There is an increase in the cases of resistance to pentavalent
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antimonial reported worldwide [108,109]. Due to emergence of resistance of the parasite to antimonial
drugs, amphotericin B (AmB, Figure 3c), Miltefosine (Figure 3a), and paromomycin (Figure 3d) are
being used as alternative therapeutics for the treatment of leishmaniasis [110]. However, there are
severe side effects associated with their use and they are also expensive [111]. Amphotericin B is
used as both antifungal and antiparasite, although it shows a good efficacy, but it is expensive and
requires oral dose [112]. Miltefosine is an anticancer drug but it has been approved as an oral drug for
leishmaniasis [113]. Miltefosine also shows good efficacy, but it is very expensive with limitations such
as low blood platelets, nephrotoxicity, diarrhea etc. [113]. Recently, the use of nanocarriers such as
dendrimers have shown promising results in the treatment of leishmaniasis [114]. Dendrimers have the
ability to transport drugs to the targeted site, reduce drug toxicity, increase drug solubilisation, protect
the drug from degradation and ultimately kill the protozoa [115]. Jain et al. developed a formulation
of muramyl dipeptide conjugated with poly (propyleneimine) (PPI) dendrimers encapsulated with
amphotericin B (Figure 4). The synergistic antiparasitic activity of the formulation was evaluated
in vivo. The in vivo results showed that the formulation was active against the parasite infection
of macrophage cell lines and balb/c mice. The toxicity of the formulated drug loaded dendrimers
was compared to the marketed formulation of amphotericin B. The prepared formulation exhibited
a reduction of (p < 0.01) in toxicity towards human erythrocytes cells and J774A.1 macrophage
cells [116], revealing the potential of the dendrimers to reduce the toxicity associated with amphotericin
B (Table 1). The macrophage targeting ability of the formulation was enhanced, resulting in the killing
of the parasites. These results suggested that the formulations are potential immunomodulatory with
antileishmanial activity for targeted drug delivery of amphotericin B. Daftarian et al. developed
a complex between liposome amphotericin B and Pan-DR-binding epitope-based dendrimers to study
the therapeutic efficacy of low dose LAmB/PDD against full dose of LAmB via L. major mouse
method [117]. The formulation exhibited reduced toxicity which was visible by dose reduction.
In vitro toxicity of the formulation revealed reduced toxicity on Hep2 cells. The formulation was
also delivered selectively to parasite reservoir cells, phagocytes [117]. The in vitro and in vivo studies
revealed an 83% improvement in drug efficacy with a significant reduction of parasite burden and
toxicity. Jain et al. prepared a poly (propylene imine) dendrimers containing mannose loaded with
amphotericin B (Table 1). The formulation exhibited good drug incorporation efficiency and the in vitro
results revealed pH-dependent drug release mechanism. The formulation also exhibited reduced
toxicity on human erythrocytes and macrophage cells and the efficacy of the loaded drug was not
compromised [118]. These dendrimers were observed to have significant antiparasitic activity towards
L. denovani amastigotes with a promising antileishmanial activity [118]. Furthermore, pharmacokinetic
and organ distribution studies revealed the controlled delivery mechanism of the formulation which
was characterized by an enhanced drug uptake in macrophage-rich organs.

Table 1. Various dendrimers for parasitic diseases.

Dendrimers Classification Combination with Type of Drugs Type of Infection References

PPI Amphotericin B Leishmaniasis [116,118]

PAA Sulfadoxine, chloroquine
and primaquine Toxoplamosis [118,119]

PAMAM DNA
Chloroquine and primaquine

Schistosomiasis
Malaria

[120]
[121]

Poly-L-lysine Chloroquine Malaria [122]
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Figure 3. Antileishmaniasis drugs (a) Miltefosine; (b) Sodium stibogluconate; (c) Amphotericin B;
(d) Paromomycin.

Figure 4. Dendrimer loaded with amphotericin B.
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4.3. Toxoplasmosis

About two billion people are infected by Toxoplasma gondii. This parasite causes morbidity
and mortality [123]. Pyrimethamine (Figure 5a) and sulfadoxine (Figure 5b) are currently being
used for the treatment of toxoplasmosis (Table 1). However, there are some limitations in their use,
such as toxicity and hypersensitivity [119]. The main problem with the drugs is that they do not
eliminate the parasite because Toxoplasma gondii encysted bradyzoites [124]. There is a pressing need
to develop a new strategy that can effectively treat toxoplasma gondii infection by crossing the host cell
membrane, the parasitophorous vacuole, and the tachyzoite membranes [124]. Transductive peptide
dendrimers are potential therapeutics because they can transport small bioactive molecules across
multiple membranes through intracellular tachyzoites and encysted bradyzoites and they can also
enhance the toxicity of the drugs [125]. There are few studies that have revealed the importance of
dendrimers in the treatment of Toxoplasma gondii [126].

Lai et al. evaluated the potential of the treatment of Toxoplasma gondii infection by conjugating
phosphorodiamidate morpholino oligomers (PPMO) with transductive peptide [127]. The formulation
reduced transfected T. gondii’s fluorescence, luminescence and limited tachyzoite replication. In vivo studies
on infected mice revealed the reduction in the number of viable parasites after administration [127].
Figure 6 is a schematic presentation of PPMO with transductive peptide dendrimers.

Prieto et al. prepared poly (aminoamine)-based anionic and cationic dendrimers containing
a reduced dose of sulfadoxine (0.03–33 mM). The MTT results on Vero and J774 cells showed
no toxicity for cationic-sulfadoxine complex incubated between 0.03 and 33 mM of dendrimers
concentration. However, the anionic-sulfadoxine complex resulted in enhanced cytotoxic effects
when incubated at higher than 33 mM of dendrimers concentration. Both dendrimers were further
tested in vitro using Vero infected cells with RH strain of Toxoplasma gondii for a period of 4 h in
treatment. Cationic dendrimers produced the highest infection decrease of 60% at 0.03 mM and
anionic dendrimers produced between 25% and 40% reduced infections. These results suggest
that a nano dose of sulfadoxine- cationic complex can be used as a potential anti-toxoplasmic
therapy [128]. The dendrimer exhibited high antiparasitic effect even when administered at very
low doses over a period of 4 h of treatment. This revealed that the dendrimers have an antiparasitic
effect. The dendrimers antiparasitic effects are attributed to a combination of surfacial activity and
endosomolytic effect.

Figure 5. Anti-toxoplasmosis drugs: Pyrimethamine (a); Sulfadoxine (b).
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Figure 6. Schematic representation of PPMO with transductive peptide.

4.4. Schistosomiasis

Schistosomiasis is still a major problem in the world; about 200 million people are infected with
schistosomiasis across the globe. The most infected countries are Africa, Asia and South America [129].
The disease is caused by numerous species of trematodes from the genus Schistosoma [130]. Schistosoma
is treated with praziquantel and is an effective bioactive agent (Figure 7) [131]. Despite its availability
and cost-effectiveness, it does not prevent relapse [131]. The emergence of resistance of praziquantel to
schistosomes is spreading and causing a major concern and there is a need to develop a new vaccine
to treat Schistosoma [132]. Dendrimers have been investigated by several researchers and they are
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promising therapeutics to eliminate the disease. Sikwal et al. investigated amphiphilic dendrimers
potential applications for pharmaceutical and biomedical applications [133].

Wang et al. designed PAMAM dendrimers for the delivery of schistosomiasis japonica DNA
vaccine and investigated its ability to enhance a protective effect against Schistosoma japonicum
infection. The dendrimers were prepared by a Lysine-Modified method to form PAMAM-Lys.
The dendrimers cytotoxic effects on 293T cell lines were evaluated by MTT assay, while Poly-lysine
(PLL) was used as a control. It was observed that increasing PLL concentration decreased cell viability.
Overall, the dendrimers exhibited 80–90% cell viability, showing no genitive effect on it cytotoxicity.
When PAMAM-lys was combined with DNA vaccine (Table 1), it exhibited a higher level of efficacy
when compared to the free DNA with reduced worm infection by 45–50% and 59–62% liver eggs
reduction. These results showed that DNA vaccine with the novel PAMAM-lys dendrimers can
enhance immunoreactivity of DNA vaccine, and can be used for the prevention of S. japonicum
infection [120]. The formulation enhanced IgG2a antibody response with an increase in the production
of IL-2 and IFN-γ.

Figure 7. The anti-schistosomiasis drug: Praziquantel.

4.5. Malaria

Malaria is life-threatening and half of the world’s population is at risk of malaria transmission [134].
People that are at a higher risk of being infected by malaria are children under the age of 5 years, pregnant
women, people living with HIV/AIDS and low-immunitive travellers from malaria-endemic regions [135].
In 2015, 214 million cases were reported worldwide, with most deaths reported in sub-Saharan Africa,
South-East Asia and the Eastern Mediterranean [136,137]. Malaria is treated using antimalarials such as
chloroquine (Figure 8a), primaquine (Figure 8b), artemisinin (Figure 8c) and its derivatives. However, they
suffer from severe drug resistance and toxicity which results in treatment failure [137]. Due to the emergence
spread of drug resistance, drug toxicity and poor patient compliance, there is a need to develop drug
delivery systems that can overcome drug resistance, reduce toxicity and improve patient compliance [138].
Dendrimers are promising delivery systems that have been used by many researchers due to its excellent
biocompatibility and biodegradability [139]. Movellan et al. synthesized dendritic derivatives based on
2, 2-bis (hydroxymethyl) propionic acid (bis-MPA) and Pluronic polymers containing chloroquine and
primaquine (Table 1). They were investigated for their targeting ability in Plasmodium—infected red blood
cells (pRBCs) and their antimalarial activity against the human pathogen Plasmodium falciparum and in vivo
against the rodent malaria species Plasmodium yoelii. From the in vitro results, the dendrimers exhibited
antimalarial activity with reduced IC50 of chloroquine and primaquine by 3- and 4-fold down to 4.0 nm and
1.1 µm, respectively. The dendrimers were also found to exhibit specific targeting mechanism to the pRBCs
when compared to non-infected RBCs. Amphiphilic bis-MPA derivatives- based dendrimers have been
used in the application of biomedical field (Figure 9). Bis-MPA derivatives have shown a great therapeutic
efficacy in drug delivery because of their ability to be degraded by enzymes, their compatibility, and high
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solubility in biological environments. They also consist of functional groups that make it easy to encapsulate
antimalarial drugs. Figure 7 shows a typical example of amphiphilic dendrimers [121].

Agrawal et al. synthesized coated and uncoated poly-L-lysine dendrimers having polyethylene
glycol (PEG-100) as a core for the delivery of chloroquine phosphate (Table 1). The in vivo results
revealed that the dendrimers exhibited controlled drug release mechanism. The coated drug
dendrimers exhibited reduced haemolytic toxicity when compared to the free drug [122]. The uncoated
and coated dendrimers were synthesized by the protection and deprotection steps of L-lysine by
di-BOC (di-tertiary butyl pyrocarbonate). The ex vivo results of both the uncoated and coated
dendrimers revealed that the formulations were 5 times effective in reduction of phagocytosis
for the coated dendrimers. The dendrimers were also found to exhibit controlled drug release
mechanism. These findings suggested that the coated dendrimers were less immunogenic than
the uncoated formulations.

Figure 8. Antimalarials drugs: Primaquine (a); Chloroquine (b); Artemisinin (c).
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Figure 9. Schematic presentation of Amphiphilic dendrimers (R = C17H35, X = H2N).

5. Application of Dendrimers for the Treatment of Viral Infections

5.1. HIV

According to the latest data in 2012, the number of human immunodeficiency virus (HIV)
infections has decreased by 35%. However, 2.3 million people are infected with HIV with high
death rates occurring worldwide [140–142]. 60% of people with HIV contracted the virus during
sexual intercourse [143]. Therefore, AIDs are still a serious problem across the globe and there
is a need to develop a new strategy to eliminate this virus [143]. The use of antiretroviral drugs
(ARVs) is effective against HIV infection by delaying the disease progression as well as mortality
rate in HIV-infected patients [144]. Although these antiretroviral are effective, they do not cure or
eliminate the virus; therefore, there is a need for a new strategy [145]. Currently, nanotechnology
provides novel nanoparticles such as dendrimers that can transport antiretroviral to the desired organs.
Dendrimers have an exterior layer that is dominated by functional groups useful for the conjugation
of drugs and targeting moieties [146]. The interior layers are suitable for the encapsulation of drug
molecules with improved drug efficacy, reduced drug toxicity and controlled release mechanisms.
Combination therapy is one promising method to fight this disease [147]. Cardoba et al. developed
a polyanionic carbosilane dendrimers 9G3-S16 and G2-NF16) containing zidovudine (Figure 10a),
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efavirenz (Figure 10b) and tenofovir (Figure 10c) as anti-HIV-1 microbicides (Table 2). These dendrimers
were tested against X4 and R5 HIV-1 strains in vitro. The prepared dendrimers showed a synergistic
activity profile against both strains, and in human cells. The sulphated and naphthylsulfonated
carbosilane dendrimers were able to inhibit viral infection by blocking the interaction between
gp120 and CD4. This means that carbosilane dendrimers can block HIV infection at different stages
of the HIV-1 life cycle before viral integration. The dendrimers act by electrostatic interactions
with the viral envelope proteins resulting in the blockage of gp120/CD4 interaction and avoiding
viral entry [148].

Table 2. Various dendrimers for viral diseases.

Dendrimers
Classification Combination with Type of Drugs Type of Infection References

PAA DNA Influenza [149]

Peptide dendrimers
Acyclovir Herpes [150]

siRNA Cervical cancer [151]
Doxorubicin Cervical cancer [152]

Carbosilane
dendrimers

Zidovudine, efarvenz and tenofovir HIV [148]
Maraviroc and tenofovir HIV [153]

Heparan sulfate Herpes [154]
Oseltamivir Influenza [155]
Sofosbuvir Hepatitis [156]

Acyclovir and tenofovir Herpes [157]
Microbicide HIV [158]

siRNA HIV [159]

PPI Zidovudine HIV [160]

PETIM siRNA Hepatitis [161]

PA Glycoprotein H Herpes [162]

PAMAM
Heparan sulphate Herpes [154]

siRNA HIV [163]

Zidovudine has been reported to be a very effective antiretroviral drug in the treatment of HIV
virus. However, it has been reported to suffer from pharmacological limitations such as poor bioavailability,
short half-life, and resistance. In order to overcome these limitations, Jain et al. developed a sustained release
formulation of poly (propyl ether imine) dendrimers for the delivery of zidovudine (Table 2). Results from
FTIR and NMR shows that zidovudine was successfully encapsulated onto dendrimers. Cumulative drug
release of zidovudine from the dendrimers was 6.5± 0.3% when compared to the 95.8± 4.1% release from
the control drug solution, hence revealing the sustained release profile of the dendrimers. The dendrimers
also showed a reduction in the haemolytic toxicity due to the stable drug encapsulation in the dendrimers
when compared to pure zidovudine drug solution. These findings suggest that the dendrimers are potential
carriers for sustained delivery of zidovudine [160].

Crespo et al. formulated carbosilane dendrimers conjugated with tenofovir and maraviroc for
the treatment of HIV-1 infection (Table 2). They were evaluated for anti-HIV-1 activity, cytotoxicity
and vaginal irritation effects. The combination of maraviroc and tenofovir into the dendrimers
exhibited a greater anti-HIV-1 activity than a single drug. These dendrimers were found to exhibit
a greater synergistic activity profile due to the weighted average combination indices varied between
0.06 and 0.38 [153]. No vaginal irritation was detected in the female BALB/c mice. These results
suggest that combination of two or three drugs into dendrimers can increase the antiviral activity.
Telwatte et al. developed dendrimers SPL7013 as topical microbicides for the prevention of the
transmission of human immunodeficiency virus [164]. It was prepared in a mucoadhesive carbopol
gel. The formulation exhibited HIV-1 virucidal activity against X4 and R5X4. The mode of action
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of the formulation on X4 strain virus was via irreversible binding to HIV-1 envelope proteins.
The inhibition of R5 strains was via reversible binding to HIV-1 envelope proteins, host cell CD4
and chemokine receptors [164]. Chonco et al. also prepared dendrimer-based microbicides which were
water-soluble against HIV infection (Table 2). The formulation blocked activated primary peripheral
blood mononuclear cells (PBMC) infection with HIV-1 and HIV-2 strains, inhibited partially HIV
crossing through trans-epithelial monolayer in vitro. The mechanism of inhibition of the formulation
against HIV-1 and HIV-2 is attributed to direct viral inactivation by blocking the CD4 receptor at
the surface of the target cells. The interaction of the anionic charges of the formulation to HIV
gp120 was higher in HIV-1 strains than in the HIV-2 strains due to variation in amino acids in the
gp120 region [158]. Han et al. prepared polylysine-dendritic sulfated cellobiose via condensation
of polylysine dendrimer generation 3 with acetylated cellobiose followed by deacetylation and
sulfation. The sulfated cellobiose dendrimer exhibited anti-high HIV activity as dideoxycytidine,
an anti-HIV drug and this is attributed to their cluster effects which improves their interaction
with proteins on the surface of the viruses [165]. Borges et al. covalently attached globotriose and
3′-sialyllactose carbohydrate head groups found on two glycosphingolipids to a dendrimer core.
The formulation inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear
cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50 0.1–7.4 µg/mL [166].
Doménech et al. revealed that gallic acid-triethylene glycol dendrimers can bind to the C-terminal
domain of capsid protein. The dendrimers with large hydrophobic moiety at the dendritic branching
inhibited the assembly of the human immunodeficiency virus capsid in vitro revealing the potential of
dendrimers as anti-HIV drugs for targeting capsid assembly [167]. Price et al. studied the retention
of HIV-1 and HSV-2 inhibitory levels of SPL7013 gel in female genital tract over a period of 24 h.
9 and 2.5 mg of SPL7013 administered resulted in high level of inhibition of HIV-1 and HSV-2,
respectively [168]. HIV-1 and HSV-2 inhibition was maintained in 6/11 women. The formulation did
not induce vaginal, vulvar or cervical irritation [168]. Carbosilane are great candidate for the delivery
of HIV-peptides. They form stable compounds with nucleic acids and protect them from binding to
proteins. These dendrimers were reported in the study by Lonov et al. The formulation was prepared in
molar ratio (2.5–3):1 of dendrimer: peptide with size range of 180–275 nm and positive surface charge.
The dendrimers were terminated with amino groups representing cationic particles that are suitable for
binding the negatively charged HIV derived peptides and for the delivery of HIV peptides to dendritic
cells. Figure 11 shows a second generation of carbosilane dendrimers [169]. De Las et al. prepared
water-stable carbosilane dendrimers as non-viral vectors for transfecting nucleic acids against HIV.
These systems formed nanoconjugates with nucleic acids revealing good interaction between the
dendrimers and the nucleic acid. The degree of transfection using these nanoconjugates ranged
between 70–90% depending on the generation [170]. Jiménez et al. developed dendrimers as a delivery
vector for anti-HIV drugs that is capable of crossing the blood-brain barrier (BBB). A time-controlled
degradation of the dendrimers resulting in the release of the encapsulated siRNA cargo was observed
between 12–24 h in vitro (Table 2). The formulation transfected human astrocytes after crossing
an in vitro BBB model. The transfected siRNA reduced replication of HIV-1 strains X4-HIV NL4-3 and
R5-HIV BaL in human astrocyte [159]. Zhou et al. also reported the efficacy of cationic dendrimers
as interfering RNA (siRNA) delivery system in humanized mouse model for HIV-1 infection [163]
(Table 2). The formulation suppressed HIV-1 infection and provided protection against viral induced
CD4(+) T-cell depletion. Follow-up administration of the formulation further resulted in complete
inhibition of HIV-1 titers. The formulation accumulate in the peripheral blood mononuclear cells and
liver without signs of toxicity indicating that the dendrimers are promising therapeutics for systemic
delivery of combinations of siRNAs and the treatment of HIV-1 infection [163]. Briz et al. reported
phosphorus-containing dendrimer for the delivery of ODNs and siRNAs. G4 (NH+ Et2 Cl−) 96 formed
stable complexes with oligodeoxynucleotides or siRNAs with low cytotoxicity in Sup T1 cells or PBMC.
The formulation reduced viral replication significantly indicating that the dendrimers can deliver
and transfect siRNA into CD4-T cells as a potential alternative therapy in the HIV-1 infection [171].
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Dendrimers are characterized by peripheral active groups and can interact with gp120 or CD4 molecule
thereby hindering the attachment of HIV to the host cell. The presence of functional groups also has
a huge effect on its antiviral activity. The enhanced cellular uptake of dendrimers also influences its
biological activity.

Figure 10. Antiretroviral drugs: Efavirenz (a), Zidovudine (b), Tenofovir (c).

Figure 11. Second generation cationic carbosilane dendrimers branched with carbon-silicon bonds.
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5.2. Herpes

Herpes Simplex Viruses (Type 1 and Type 2) are the most common sexually transmitted
infections (STIs) worldwide and they are responsible for a wide variety of clinical infections, including
encephalitis, neonatal infections, and or visceral diseases [172]. About 500 million people are currently
affected with HSV-2 worldwide and about 20 million new cases occur each year across the world [173].
In South Africa, about 31% of women between the ages 15–26 are infected with HSV-2, and 84% are
women who are commercial sex workers in KwaZulu-Natal province [173]. The antivirals that are
currently being used have developed resistance, hence there is an increasing need to improve antiviral
drugs efficacy [174]. Antiviral drug loaded onto dendrimers have been found to inhibit infections by
blocking attachment of the virus to its target cell or tissue [175]. The presence of functional groups on
the dendrimers that are able to interact with cell surfaces also result in the killing of the virus [175].
Peptide-derivative dendrimers consist of multiple covalently functional peptides. Peptide dendrimers
are synthetic and well-defined macromolecules because they directly inhibit viral infections. They are
more effective when combined with other antiviral agents (Figure 12). Lunganini et al. designed
peptide-dendrimers and its derivatives (SB105 and SB105-A10) for the inhibition of herpes type 1 and 2.
The dendrimers and derivatives were tested for antiviral activity against Vero cells infected with HSV.
Both dendrimers derivatives exhibited inhibition HSV adsorption at pH 3.0 and 4.0 and in the presence
of 10% human serum proteins, they were also found to prevent type 1 and type 2 herpes virus
attachment to the targeted cells. When combined with acyclovir (Figure 13) a high synergistic effect
was significant in vitro [150] (Table 2).

Carberry et al. prepared poly (amide)-based dendrimers for viral inhibition. The dendrimers were
functionalized with the membrane-peptide gH (625–644) (gH625) derived from the herpes simplex
virus type 1 (HSV-1) and encapsulated with glycoprotein H, which is known to be able to deliver
cargos into the cellular membrane. The peptide dendrimers showed no sign of cell toxicity with
50% inhibition concentration of 100 nM for HSV-1 and 300 nM for HSV-2 [176]. These results were also
similar to the study by Tarallo et al., confirming that peptide- functionalized with gH (625–644) (gH625)
dendrimers are promising candidates for intracellular targeted delivery of drugs and the prevention of
HSV infection [177]. Ceña-Diez et al. developed polyanionic carbosilane dendrimers with anti-HIV-1
activity as microbicide candidates against sexually transmitted diseases. Plaque reduction assay on
Vero cells proved the dendrimers exhibited inhibitory effect against HSV-2 infection. Some of the
dendrimers acted by binding directly onto the HSV-2 thereby inactivating while some adhered to host
cell-surface proteins. The dendrimers exhibited good synergistic effect with acyclovir and tenofovir
against HSV-2, in vitro. Topical vaginal or rectal administration of the formulation prevented HSV-2
transmission in BALB/c mice in values close to 100% [157]. In another research report by Ceña-Diez
et al. studied the mechanism of action of peptide derivatized-dendrimers, carbosilane dendrimers,
polysulfated galactose functionalized glycodendrimers and PAMAM dendrimers used as microbicides
against sexually transmitted diseases (Table 2). These dendrimers were found to act at the stage of
viral entry into the target cell by blocking the viral particles that bind to the cell surface heparan sulfate
or binding to cellular co-receptors [154]. Tarallo et al. synthesized poly(amide)-based dendrimers
functionalized at the termini with a membrane-interacting peptide obtained from herpes simplex virus
(HSV) type 1 glycoprotein H, gH625–644 (Table 2). This peptide has been shown to interact with model
membranes and to inhibit viral infectivity. The 50% inhibitory concentration of the formulation was
100 and 300 nM against HSV-1 and HSV-2, respectively. These results indicated that functionalization
of the dendrimers with the peptide sequence derived from an HSV glycoproteins are promising
therapeutics for the treatment of HSV infection [162].
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Figure 12. Generic representation of peptide dendrimers.

Figure 13. The anti-herpes simplex drug: Acyclovir.

5.3. Hepatitis

Hepatitis is the major cause of chronic liver disease [178]. About 200 million individuals in
the world are estimated to suffer from Hepatitis C infection [179]. There is no effective vaccine
against hepatitis C and the emergence of transmission of this virus is escalating especially when
prophylactic measures are not taken [179]. The antivirals that are currently used such as sofosbuvir
(Figure 14a), ribavirin (Figure 14b) have developed resistance to hepatitis C infection, hence there
is an urgent need to develop new antiviral agents that will be able to deliver the drugs to its site of
action, minimize the side effects, and enhance therapeutic efficacy [180]. Dendrimers are the best
candidate for the delivery of antiviral agents. They are biodegradable, biocompatible and can be used
as drug carriers [181]. Crespo et al., synthesize polyanionic carbosilane dendrimers for the prevention
of hepatitis C virus infection (Table 2). The preliminary studies showed that one of the dendrimers
encapsulated with sofosbuvir was able to inhibit the virus infection [156]. Khosravy et al. conjugated
hepatitis B virus surface antigen (HBsAg) to dendrimers resulting in the induced high levels of total IgG
in vivo [182]. Immunological assays indicated that the immunogenicity of the conjugated HBsAg was
enhanced when compared to HBsAg alone [182]. Lakshminarayanan reported liver-targeted dendritic
nano-vector functionalized with a galactopyranoside ligand for the delivery of siRNA [161] (Table 2).
Targeted delivery of siRNA to the liver was achieved via a highly specific ligand—receptor interaction
between dendritic galactose and the asialoglycoprotein receptor. A decrease in HCV RNA levels of
75% was achieved in HCV-JFH1 infectious cell culture systems. The targeted release mechanism of
the formulation revealed it is a potential therapeutic for the treatment of infections in the liver such
as hepatitis [161].
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Figure 14. Anti-hepatitis drugs: Sofosbuvir (a); Ribavirin (b).

5.4. Influenza

Influenza is typically treated with antiviral drugs such as oseltamivir (Figure 15a), amantadine
(Figure 15b) and rimantadine (Figure 15c) [183,184]. However, oseltamivir has developed some
resistance against influenza [185]. The reason of resistance of oseltamivir is that it can lose its ability
to bind and inhibit the function of the virus’s NA proteins [186]. Hatano et al. prepared a series
of carbosilane dendrimers with hemagglutinin binding peptide against influenza virus (Table 2).
The dendrimers showed strong inhibitory activities against human viruses A/PR/8/34 (H1N1) and
A/Aichi/2/68 (H3N2) with IC50 values of 0.60 µm [155]. Landers et al. conjugated sialic acid-based
polyaminoamine dendrimers for the inhibition of hemagglutinin adhesion of three influenza subtype A
(H3N2, H2N2 and H3N2). In vivo results showed that the dendrimers were able to permanently inhibit
infection caused by H3N2 but were not effective in preventing pneumonitis caused by an H2N2 subtype.
Figure 16 shows a schematic representation of generation 4 sialic acid-conjugated polyaminoamine
(PAMAM) dendrimers. PAMAM has highly branched functional groups that are useful for the
encapsulation of sialic acid. PAMAM exhibited increased delivery of sialic acid and reduced toxicity
hence preventing the hemagglutinin adhesion. Dendrimers are promising systems for the delivery of
antiviral agents, but issues related to strain specificity must be resolved. Carbosilane dendrimers is the
most suitable core scaffold for HA-binding peptide dendrimers [149] (Table 2).

Figure 15. Anti-influenza drugs: Oseltamivir (a); Amantadine (b); Rimantadine (c).

Figure 16. Generation 4 PAMAM sialic acid-based dendrimers.
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5.5. Cervical Cancer

Cervical cancer is the second most life-threatening cancer among women especially in the developing
countries including Africa, Asia and Latin America. Annually more than 200,000 deaths are reported [187].
Cervical cancer can be treated with radiotherapy or surgically if diagnosed at the early stage [188]. Although
there are a numerous number of drugs to treat cervical cancer, most of them have developed side effects
such as resistance and toxicity [188]. Chemotherapy is one method used to treat cancer; chemotherapy
agents used to treat cervix cancer include cisplatin (Figure 17a), paclitaxel (Figure 17b), and topotecan
(Figure 17c) [189]. The problem with chemotherapy is that patients often experience side effects such as
hair loss, kidney damage and toxicity [190]. Toxicity occurs because the healthy cells are exposed to the
toxic effects of the drugs [191]. Dendrimers can overcome poor immunogenicity and reduce the toxicity
of peptide-based vaccines against cervical cancer [192]. Human papillomavirus (HPV) is the main cause
of cervical cancer; hence there is a need to develop a new therapeutic HPV vaccine. This vaccine must be
able to stimulate CD8+ cytotoxic T lymphocytes that can eliminate HPV infected cells. E6 and E7 peptide
dendrimers have been reported to inhibit the growth of HPV cells. This was confirmed by Lui et al.,
by developing polymer-peptide dendrimers for the treatment of HPV-related cancers. In vivo results
showed that the formulation was able to reduce tumor growth and eliminate E7-expressing TC-1 tumors in
mice [193]. Similar findings were also reported by Hussein et al., whereby peptide-dendrimers were found
to eliminate over 50% tumor cells in vivo [194].

Mekuria et al. synthesized PAMAM dendrimers conjugated with two targeting moieties, IL-6
and RGB peptide (G4.5-lL6 and G4.5-RGD) for the targeted delivery to Hela cells. Both dendrimers
were loaded with doxorubicin with an encapsulation efficiency of 51.3 and 30.1% for G4.5-lL6 and
G4.5-RGB, respectively. G4.5-lL5/DOX dendrimers exhibited lower IC50, higher drug loading and
sustained drug release rate compared to G4.5-RGB/DOX dendrimers [152] (Table 2). It was observed
that G4.5-IL6 is a potential carrier for targeted drug delivery of doxorubicin to cervical cancer cells.

Dutta et al. formulated dendrimers-based siRNA against E7 and E6 cervical cancer (Table 2). Formulation
of dendrimer-siRNA was done by optimization of nitrogen-to-phosphate targeting green fluorescence.
The in vitro results showed that these dendrimers were able to inhibit target genes against E6 and E7
cervical cancer. The formulation was found to exhibit siGFP-entrapment efficiency of 49.76%± 1.62%, vesicle
size of 154 ± 1.73 nm, and zeta potential of +3.21 ± 0.07 mV, and also found to be non-toxic to the cells.
These approaches can result in decreased side effects of the drugs used to treat cervical cancer, overcome drug
resistance and increase the survival rates of individual infected by cervical cancer [151].

Figure 17. Anticancer drugs: Cisplatin (a); Paclitaxel (b); Topotecan (c).
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6. Conclusions

Dendrimers have been investigated as drug delivery systems for the treatment of viral and
parasitic infections. However, there are very few reports on the application of dendrimers for the
treatment of parasitic infections. In the treatment of leishmaniasis and toxoplamosis, the potential of the
dendrimers to reduce the toxicity associated with amphotericin B and its macrophage targeting ability
of the formulation was enhanced resulting in the significant killing of the parasite. The dendrimers
were selective by delivering the drug to the parasite reservoir cells, phagocytes. Dendrimers have also
been developed as vaccine carriers for the delivery of vaccine for the prevention of schistosomiasis
infection which was characterized by IgG2a antibody response with an enhanced production of IL-2
and IFN-γ in vivo. In the treatment of malaria, the dendrimers exhibited specific targeting mechanism
to the plasmodium red blood cells when compared to the non-infected red blood cells.

In the treatment of viral infections, dendrimers have the potential to inhibit herpes simplex
virus. They hindered HSV-1 and HSV-2 attachment to the target cells. They also blocked the sexual
transmission of HIV-1 and destabilized hepatitis C infection. These findings so far suggest that
dendrimers are potential delivery systems for treatment of infectious diseases. However, there is
a pressing need for more studies in order to fully understand their mode of action.
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